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Abstract

We propose a new hardware ray casting algorithm for unstructured meshes composed of tetrahedral
cells. Our work builds on the technique published at IEEE Visualization 2003 by Weileret al.. Our
contributions can be divided into three categories. First, we propose an alternate representation for mesh
data in 2D textures that is more compact and efficient, compared to the 3D textures used in the original
work. Second, we use a tile-based subdivision of the screen that allows computation to proceed only at
places where it is required. Finally, we do not introduceimaginarycells that fill space caused by non-
convexities of the mesh. Instead, we use a depth-peeling approach that captures when rays re-enter the
mesh, which is much more general and does not require a convexification algorithm. Our experiments
show that our technique is substantially faster than the technique of Weileret al. on the same hardware.

1 Introduction

In this paper, we propose a new hardware-based ray casting algorithm for volume rendering of unstructured
meshes. Unstructured grids are extensively used in computational science and engineering and, thus, play
an important role in scientific computing. They come in many types, and one of the most general types are
non-convex meshes, which may contain voids and cavities. The lack of convexity presents a problem for
several algorithms, often causing performance issues [2].

Garrity [6] pioneered the use of ray casting for rendering unstructured meshes. His technique was based
on exploiting the intrinsic connectivity available on the mesh to optimize ray traversal, by tracking the
entrance and exit points of a ray from cell to cell. Because meshes are not necessarily convex, any given
ray may get in and out of the mesh multiple times. To avoid expensive search operations during re-entry,
Garrity used a hierarchical spatial data structure to store boundary cells.

Bunyk et al. [1] proposed a different technique for handling non-convexities in ray casting. Instead
of building a hierarchical spatial data structure of the boundary cells, they exploit the discrete nature of
the image. And simply determine for each pixel in the screen, the fragments of the front boundary faces
that project there (and are stored in front-to-back order). During ray traversal, each time a ray exits the
mesh, Bunyket al. use the boundary fragment intersection to determine whether the ray will re-enter the
mesh, and where (i.e., the particular cell). This approach turns out to be simpler, faster, and more robust to
floating-point calculations.

Weiler et al. [13] propose a hardware-based rendering algorithm based on the work of Garrity. They
store the mesh and traversal data structures on the GPU using 3D and 2D textures respectively. On their
technique, there is no need for information to be send back and forth between the CPU and GPU, and
all computations are performed directly on the GPU. GPU performance currently outpaces the CPU, thus



Figure 1: Volume rendering using depth peeling. Three pairs of images are shown. On the right of each pair,
we show the pixels that have active intersections to be performed on the current pass. On the left, we show
a partial image after the rays corresponding to those intersections have been terminated (i.e., they have left
the current component).

naturally leading to a technique that scales well over time as GPUs get faster. Strictly speaking, their
algorithm only handles convex meshes. (i.e., it is not able to find the re-entry of rays that leave the mesh
temporarily), and they use a technique originally proposed by Williams [15] that calls for theconvexification
of the mesh, and the markings of exterior cells asimaginary so they can be ignored during rendering.
Unfortunately, convexification of unstructured meshes has many unresolved issues that make it a hard (and
currently unsolved) problem. We point the reader to Combaet al. [2] for details. For their experimental
results, Weileret al. manuallyconvexified the meshes.

In this paper, we propose a novel hardware-based ray casting algorithm for volume rendering unstruc-
tured meshes. Our work builds on the previous work of Weileret al. [13], but improves it in several sig-
nificant ways. Our rendering algorithm is based on the work of Bunyket al. [1], which has a better match
for a hardware implementation, since, as shown later, we can use depth peeling [9] (see Figure 1) to gen-
erate the ordered sequence of fragments for the front boundary faces, and depth peeling can be efficiently
implemented in hardware [3, 7]. Our technique shares with Weileret al. the fact that all the processing
is GPU-based, but it subsumes their technique in that we can handle general non-convex meshes. As can
be seen below, we have also substantially optimized the storage of data as to allow the use of 2D textures,
leading to substantially improved rendering rates.

2 Tiled Ray Casting Algorithm

Our algorithm is based on the hardware ray casting algorithm of Weileret al. [13]. The tetrahedral mesh
data and pre-integrated tables are packed inside textures to avoid the bottleneck caused by data transfer
between GPU and CPU. Ray casting is a trivially parallelizable algorithm that fits the SIMD programming
model supported by GPUs quite effectively. Ray traversal is done by several ping-pong rendering steps,
where the GPU advances over the mesh, one cell at a time, computing the volume rendering integral over all
cells that are inside the viewing frustum. The algorithm takes advantage of the early-z test to avoid the cost
of computations related to rays that miss the mesh, or that have been traversed already. (We note that the
early z-test feature, found on almost all current consumer graphics hardware, was also used by Krueger and
Westermann [8] in a proposal of two acceleration techniques for volume rendering, including an efficient
ray casting approach. Roettgeret al. [11] presents another approach for ray casting regular grids.)

The mesh data (vertices, normals, faces, tetrahedra) is kept inside textures, which leads to the maximum
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Figure 2: Mesh notation showing the relationship between vertices, faces, normals, and tetrahedra.

size of a mesh to be constrained by the amount of GPU memory available. This also means that special care
must be taken when choosing how to layout the data inside textures. We present a new layout for packing
the data inside textures that can save up to 30% of GPU memory, allowing the storage of bigger data sets.

In our algorithm we use image tiling, which has been shown to improve performance by taking advan-
tage of memory (cache) coherence. In particular, Farias and Silva proposed an image-based task partitioning
scheme for their ZSWEEP algorithm for rendering unstructured meshes [4,5] that works well in distributed
shared-memory machines. In their approach, the screen was divided into several tiles, that could be dynam-
ically sent to several processors, allowing for parallel processing. Detailed analysis of the tile-based version
of the algorithm showed improvements in memory coherence and an increase in the rendering performance,
even on single-processor machines. Another example of performance improvement due to the use of tiling
was demonstrated by Krishnan, Silva and Wei [7] in their hardware-based visibility ordering algorithm.

The final component of our algorithm is depth peeling, which is used to compute for each pixel in the
screen, the fragments of the front boundary faces that project there. We note that Nagy and Klein [10]
also developed an approach for the visualization of thenth iso-layer of a volumetric data set based on depth
peeling. Their technique only requires one pass for the visualization of any number of layers, and can render
interior and exterior iso-surfaces, but it is not capable to integrate through the volumetric data set.

Before describing our complete algorithm in detail we first discuss how to perform the individual steps
necessary for the implementation of the technique.

2.1 Notation

The mesh is referenced using the following notation. A meshM is composed ofnt tetrahedral cells (tetra)
andnv vertices. Each tetrahedron can be referenced by an indexti . For each tetrahedron,fi represents the
ith(i = 0..3) face of a tetrahedron,nt,i represents the normal of theith face (always pointing outside), the
vertex opposed to theith face is referred to asvt,i . Each cell is adjacent to up to four cells by one of its faces.
We callat,i the cell that is adjacent to cellt by its ith face. Figure 2 illustrates the mesh notation.

The parametric equation of a line is used to describe casting rays, using the origin of the ray (eye ore)
and a normalized direction (ray orr). A point x over a given ray is computed using the equationx = e+λ r.
Important to the ray casting algorithm are two coordinate systems that are used for intersection calculations.
The object coordinate system(OCS) represents the coordinate system where the mesh is defined, and the
world coordinate system(WCS) the coordinate system obtained after applying geometric transformations to
the mesh. Rays defined in the OCS (WCS) will be defined by an eye and ray referred to aseocs (ewcs) and
rocs (rwcs) respectively.
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2.2 Computing Ray-Mesh Intersections

The ray casting algorithm is designed to exploit the parallelism of modern GPUs. For a given screen reso-
lution, rays are defined for each pixel from the eye into the center of the pixel. The first intersection of each
ray against the mesh is computed for all rays. The algorithm proceeds by simultaneously computing the
point that each ray leaves the tetrahedron, and advances one intersection at a time. The process ends when
all rays leave the mesh.

A ray-tetrahedron intersection can be done by computing four intersections of a given ray against the
supporting planes of tetrahedron faces [12]. Each parametric intersectionλi can be computed using the
following equation:

λi =
(v−e) ·nt,i

r ·nt,i
where v= vt,3−i (1)

Only positiveλi values need to be considered. The entry pointλin corresponds to the maximum lambda
among values with negative denominator (using our normal convention). Similarly, the exit pointλout cor-
responds to the minimum lambda among values with positive denominator. Ifλin > λout then no intersection
exists.

Since the algorithm proceeds incrementally, computing the exit point of a tetrahedron also requires
computing the intersection against all faces, including the entering face. Distinguishing between them is
done using the denominator rule described above. Weiler [13] suggests discarding the entering point by
checking it against a face index that is explicitly stored, but this is not necessary.

Important to evaluating the volume rendering equation is the value of the scalar field at intersection
points. An interpolation procedure of the scalar values at the vertices uses the gradient of the scalar field
gt and a reference pointx0 (which can be one of the vertices). The scalar field values(x) of a pointx at a
tetrahedront is computed as:

s(x) = gt · (x−x0)+s(x0) (2)

The distances between the entry and exit point (normalized using the length of the greatest edge of
the mesh), along the values of the scalar fields of both points, are used as indices into a pre-integrated 3D
lookup table (LUT) that returns the color(r,g,b) and opacity(α) contributions. An alternate 2D LUT table
can be used instead if we assume a fixed distance value. The returned color(C′

k) is composed using the
front-to-back composition formula:

Ck = C′
k−1 +(1−αk−1)Ck (3)

2.3 Tile Partitioning

Spatial coherence is used in many different ways to accelerate ray casting queries. Several calculations
performed by the algorithm proposed by Weiler [13] can be made more efficient if the image screen is
partitioned into disjoint tiles, each one performing independent intersection calculations. Since different
regions on the screen might have different computation needs, subdividing the screen into tiles can improve
this process in several ways. For an area that does not require any computation at all (i.e., no intersection
between rays and the mesh), no ray casting calculations are performed. Even if all areas initially require
computation, it is likely that the number of iterations until all the rays leave the mesh is different among
different tiles. Therefore, allowing each tile to work independently allows a variable number of intersection
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Figure 3: Depth peeling is used to compute for each pixel in the screen, the fragments of the front boundary
faces that project there. This allows for a simple and effective way to handle non-convexities without the
need for convexification.

passes, which better approximates the minimum required number of passes. This also has the effect of
issuing occlusion queries at smaller regions, and reducing significantly the number of processed fragments.

The optimal tiling decomposition of the image screen is the one that minimizes unnecessary ray-intersection
calculations. The simplest tiling scheme is to decompose the image screen into fixed-size tiles, and we used
this approach in our algorithm.

2.4 Depth Peeling

One of the problems of the basic ray casting algorithm that simply traverses cells one by one is that it only
works for convex meshes. For non-convex meshes, it requires computing the point that each ray re-enters
the mesh.

A general solution to this problem is to use a depth peeling approach, as shown in Figure 3. This is
equivalent to the idea used in Bunyket al. [1]. Since only entry and exit points are important, only the
boundary faces of the tetrahedral mesh need to be considered. The algorithm producesn layers of visible
faces (back-face culling is used to remove non-visible faces). The first layer corresponds to the initial set of
visible faces. Subsequent layers contain the next visible faces discarding faces in previous layers.

The ray-casting algorithm uses the information stored in all layers to capture missing non-convexities.
Starting from the first layer, computation proceeds as before until all rays leave the mesh. If the next layer
contains visible faces, a second pass using as starting points the information stored in the second layer is
issued. This process is repeated until all rays leave the mesh and the following layer does not contain visible
faces.

3 GPU Implementation

The implementation of the tiled ray-casting algorithm described in the previous section is not trivial, and it
requires several fragment shaders. An overview is given in Figure 4. The implementation can be divided
into four different phases: first intersection calculation, depth peeling, ray-casting/occlusion test and final
display. Before describing each phase in detail, we review the storage of data structures into GPU memory.

3.1 Details of Data Structure Storage

Two different types of data structures need to be stored into the GPU memory: mesh and traversal data
structures. The first type corresponds to the mesh information for all tetrahedron: vertices, normals, face
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Figure 4: Overview of the implementation of our tiled ray-casting algorithm. The complete source code for
the system can be obtained from the publisher’s or the authors’ website. Our implementation uses DirectX 9
and only works under Microsoft Windows.

adjacencies and scalar values. The second type corresponds to the information needed to recover the cell that
the ray is currently located, as well as the intersection point and scalar field at this point. This information
is needed for each pixel.

The data structures described in Weiler [13] requires 160 bytes per tetrahedron. Mesh data is stored using
3 floating-point 3D-textures (vertices, normals and face adjacencies) and 1 floating-point 2D-texture (scalar
data). Access to 3D textures uses an index that is composed of two components describing the tetrahedral
index and a third index that specifies which vertex (or normal, or face adjacency) is to be retrieved. We note
that the need to have the tetrahedral index separated into two indices comes from the fact that current GPUs
limit the index of 2D textures to small values (currently up to 4096 per dimension).

The traversal data is updated using a fragment shader that uses the Multiple Render Target (MRT)
capabilities to write into 3 floating point 2D textures with screen dimensions (intersection, current cell and
color data). We need to have a buffer that accumulates the color information that would normally go directly
into the frame-buffer because current GPUs do not allow writing to the frame-buffer while using MRTs.

One of the issues with Weiler [13] is that their approach leaves several texture components unused,
wasting valuable GPU memory. We propose a different way to store the information. First, we store mesh
data into 2D textures instead of 3D textures. This is very important, since in most current graphics pro-
cessors 3D textures are slower than 2D textures. Also, because most GPUs either have no true branching
or branching is quite expensive, an intersection calculation has to fetch all vertices and normals of a given
tetrahedron. By storing them consecutively in texture memory, there is no need to have a third index (a
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Mesh data Texture format Texture coordinates Texture data
u v r g b a

vertices F32x4 tu tv vt,0.x vt,0.y vt,0.z vt,3.x

vertices F32x4 tu tv+dv vt,1.x vt,1.y vt,1.z vt,3.y

vertices F32x4 tu tv+2dv vt,2.x vt,2.y vt,2.z vt,3.z

face normals F32x4 tu tv nt,0.x nt,0.y nt,0.z nt,3.x

face normals F32x4 tu tv+dv nt,1.x nt,1.y nt,1.z nt,3.y

face normals F32x4 tu tv+2dv nt,2.x nt,2.y nt,2.z nt,3.z

neighbor data F32x4 tu tv at,0 at,1

scalar data F32x4 tu tv+2dv gt,x gt,y gt,z st

Table 1: Data structures that are stored in GPU memory to maintain mesh information. Overall, we use 144
bytes per tetrahedron and only 2D textures.

.

simple displacement in texture indices is used to get the next value). As a result, our approach only requires
3 two-dimensional structures, and each tetrahedron requires 144 bytes leading to a 10% economy in space.
Detailed information is shown in Table 1.

Traversal Structures Texture format Texture coordinates Texture data
u v r g b a

current cell F32x4 raster position tu tv λ s(e+λ r)
color, opacity F32x4 raster position r g b a

Table 2: Data structures used for ray traversal. As the mesh information, this is also stored directly in GPU
memory as 2D textures.

The traversal data is also more compact than that of Weileret al. since removing the storage of the third
index leads to the need for only 2 traversal structures: (1) the current cell/intersection and (2) color. Details
are shown in Table 2).

3.2 Details of the Vertex and Fragment Shaders

In this section we describe the different vertex and fragment shaders used to implement our tiled ray-casting
algorithm. We refer the reader to the available complete source code for complete details of our implemen-
tation. Figure 4 provides an overview of the complete process.

Phase 1 - Computing First Intersection The first shader is responsible for initializing the traversal data
structures with the information of the first intersection of rays against mesh faces. This can be accomplished
by rendering only the boundary faces, using special vertex and fragment shaders that properly update the
traversal structures. Each boundary face sent through the graphics pipeline is setup to contain at each vertex
the tetrahedron index where it is defined (coded in the two componentstu andtv). Since we draw these faces
with Z-buffer enabled, this information is only updated in the traversal structure for the first visible face
along the ray associated with each fragment.
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The update of the parametric valueλ and scalar field values requires an additional intersection computa-
tion in the fragment shader. Unlike the intersection computed during rasterization that happens in WCS, the
λ intersection computation happens in OCS (no geometric transformations are applied to mesh vertices).
Both intersection results must match. This is accomplished by changing eye and ray direction in the vertex
shader into OCS by applying the inverse of the modeling transformation. In the fragment shader, mesh data
is retrieved from texture (vertices, normals, face adjacencies and scalar data). The directions of the ray,rocs,
and eye,eocs, are used to compute the first intersection as described before. The scalar field is evaluated at
this time and both values are stored into the traversal data structure with the tetrahedron indices.

Phase 2 - Computing Depth Peeling Levels The second phase consists of computing additional depth
peeling levels. Most of the computation is similar to what is performed in the first intersection shader,
and for this reason, we use the same vertex shader. The difference lies in the fragment shader, and how
successive layers are generated. Since current GPUs do not have the ability to read and write into the
same texture, a multi-pass approach that computes one layer at each pass is used. The fragment shader is
essentially the same described in phase 1, with an additional test that discards the previous layer of visible
faces. This is accomplished by using the information generated for the previous layer as input for the next
level computation. For each candidateλ , its value is compared to the one stored in the previous layer. If
the value is smaller or equal, the fragment is discarded. As a result, only the next visible information will
be stored. It is important to notice that back-face culling must be turnedONin this process, and a bias value
must be used in the comparison test to reduce artifacts due to numerical calculations.

Phase 3a - Ray-Casting The ray casting shader is responsible for advancing for each ray one intersection
against the mesh, and this process is repeated through multiple passes until all rays leave the mesh. Since
the result of each pass needs to be used in a subsequent pass, and no read-write textures are available in
current GPUs, a pair of traversal textures are used and switched at each pass. This is often calledping-pong
rendering.

For each pass, computation is forced to be performed for all fragments in the screen by rendering one
screen-aligned rectangle. If multiple tiles are being used, multiple rectangles corresponding to each indi-
vidual subregion are rendered. The information generated in the first intersection shader is used as input to
the first ray casting pass. The computation for each fragment in a given pass uses the current intersection
position and tetrahedron to compute the next intersection along the ray direction. Both entry and exit points
(and their distance) are used to retrieve pre-computed color information and are accumulated into the color
value as described in Equation 3. Like the first intersection and depth peeling shaders, this computation is
performed in the OCS. However, the intersection test looks for the minimumλ (instead of the maximum).
In addition, the adjacent tetrahedron at the intersection point must be computed and stored in the traversal
structures. If there is none, a special index is stored in the traversal structure, indicating that the ray has left
the mesh.

This process is executed until all rays leave the mesh, which is detected in a separate occlusion pass
described below. Once the first layer of rays leave the mesh, the next depth peeling layer is recovered and
computation restarts in the first pass, but using this layer information as starting point (only the color buffer
is not reset). Computation ends when the next depth peeling layer is empty (no visible faces).

Phase 3b - Z-update and Occlusion Test Ray casting calculation must end when all rays leave the mesh,
but this is not directly returned by the intersection calculation. This is accomplished by first rendering a
screen-(or tile)-aligned rectangle that writesznear into the depth buffer for every fragment that left the mesh
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Figure 5: We show our Tiled Ray Casting in action. In particular, each image shows the number of passes
necessary for each tile.

(the traversal structure contains an invalid tetrahedron index). Once the depth values were updated for all
rays, a second rectangle is rendered with occlusion query turned on. The result of the occlusion query will
represent how many fragments are still active (i.e., rays that are still inside the mesh). This approach has
the additional advantage that writing values to the depth-buffer allows the early z-test to reject fragment
processing for rays that already left the mesh. However, the additional z-update and occlusion test incur in
additional costs, and this needs to be be amortized by only running this step afterk ray casting passes.

Phase 4 - Display Resulting Color The final shader is responsible for displaying the color computed
during the ray casting calculation into the screen. It renders a screen-aligned rectangle that samples the
color texture generated by the ray-casting pass.

4 Results

We report on experiment results performed in a machine equipped with an ATI Radeon 9700 Pro 128MB
graphics card and a NVIDIA GeForce 6800 GT with 256 MB. Our code is implemented using C++, Di-
rectX 9.0, and Microsoft High Level Shading Language (HLSL).

We have tried our system with a large number of non-convex tetrahedral datasets. We report numbers
using 512×512 viewports on three non-convex datasets composed of tetrahedra: spx1 (103K), blunt (187K)
and F117 (240K). For each dataset, we report the performance on different camera positions, and different
tile counts (from 1 to 36 tiles). On Figure 5, we show our system in action, in particular, we plot the
number of passes required to finish rendering the SPX dataset with 36 tiles. We implemented both 2D and
3D pre-integration approaches to accumulate the final color contribution. Since the artifacts from using
a 2D pre-integration were minimal if compared to the 3D approach, all results reported here used the 2D
pre-integration (current graphics hardware has faster 2D texturing capabilities than 3D).

In Tables 3 to 6 we report minimum and maximum rendering times for were recorded for each dataset
under all the different tile configurations. It is interesting to note that tiling shows better results on the ATI
card, while on the NVIDIA there is no clear advantage. In addition, increasing the number of tiles improves
performance until a ”sweet” spot is found (an optimal tiling subdvision), after this performance decreases.
For instance, the results for spx1 on the ATI 9700 in table 3 show a sweet spot at the tiling resolution 5×5,
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where we obtain the best minimum and maximum values.
Image quality is very good. We have, however, experienced a small number of artifacts on the ATI 9700

(regardless if 2D or 3D pre-integration was used). The exact cause of the artifacts is hard to determine.
But we hypothesize that this is probably caused by the 24-bit floating point representation. We note that
the artifacts on the NVIDIA 6800 are much less severe. Since this card has 32-bit precision, this seems to
substantiate the claim. Another potential cause of the problem might be the bias factor that is used in the
depth peeling though.

5 Discussion

Implementing algorithms on a GPU is an involved process. While working on this project, we were surprised
with how hard it was to reproduce the results in Weileret al. [13]. One central difficulty we faced was to
implement the ray casting shader in a single pass (which limits our shaders to up to 64 ALU and 32 texture
instructions). Part of the problem was the lack of comprehensive documentation for the GPU features, driver
releases and APIs, not to mention inadequate debugging tools. Our first success was a limited version of
their algorithm working without the pre-integration calculation, but it was slow, possibly due to the large
number of 3D texture look-ups. We were unable to incorporate the pre-integration without violating the
instruction limit.

This lead us to consider a complete redesign of the mesh representation, leading to a more compact data
structure based on 2D textures. This worked quite well. We are able to have the full ray casting code in a
single pass using 60 instructions (See source code.) The use of tiles is crucial to speed up the rendering,
because datasets tend to have uneven screen coverage. Finally, depth peeling turned out to be an elegant and
general solution, handling non-convex meshes, and requiring no manual intervention.

Web Information

Complete source code containing all C++ files, HLSL shaders and a sample dataset is available athttp:
//www.acm.org/jgt/papers/BernardonEtAl05/ .
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Table 3: Summary of performance statistics for each dataset tested. We report the minimum and maximum
frame rate (FPS), and also the minimum and maximum rendering rates in thousands of tetrahedra per second.

ATI 9700 Pro Min FPS Max FPS Min Tets/s Max Tets/s

spx1 1.18 1.68 121K 173K
blunt 2.18 7.09 398K 1.32M
f117 1.36 2.46 326K 590K

GeForce 6800 GT Min FPS Max FPS Min Tets/s Max Tets/s

spx1 1.88 3.38 195K 350K
blunt 0.93 10.64 173K 1.99M
f117 1.83 3.77 438K 906K

Table 4: Number of ray casting passes necessary in the 2D pre-integration.
Mesh Min Pass Max Pass

spx1 571 601
blunt 341 439
f117 571 601

Table 5: Rendering time in milliseconds when using a 2D pre-integration lookup table.
ATI 9700 Pro 1×1 2×2 3×3 4×4 5×5 6×6

spx1 625-812 625-797 625-797 609-766 609-750 594-844
blunt 203-422 187-391 172-407 188-406 141-391 141-469
f117 453-734 422-672 406-641 406-656 359-640 406-625

GeForce 6800 GT 1×1 2×2 3×3 4×4 5×5 6×6

spx1 296-516 312-500 313-547 296-531 312-531 312-610
blunt 94-1250 109-1125 109-1094 94-1078 109-1094 125-1094
f117 281-610 265-547 266-562 265-547 266-563 266-828

Table 6: Rendering time in milliseconds when using a 3D pre-integration lookup table.
ATI 9700 Pro 1×1 2×2 3×3 4×4 5×5 6×6

spx1 750-921 750-907 735-906 734-906 688-907 718-969
blunt 390-547 375-547 375-532 375-515 344-500 344-562
f117 500-812 484-766 484-734 469-750 453-719 500-687

GeForce 6800 GT 1×1 2×2 3×3 4×4 5×5 6×6

spx1 297-516 312-516 312-515 297-500 313-547 329-609
blunt 94-1203 94-1047 94-1062 94-1031 109-1032 109-1047
f117 156-484 157-453 157-453 156-437 172-438 172-469
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