Out-Of-Core Sort-First Parallel Rendering for
Cluster-Based Tiled Displays

Wagner T. Corréa Princeton/AT&T
James T. Klosowski IBM
Claudio T. Silva OHSU/AT&T

EG PGV, Germany
September 10, 2002

Goals

Render large models
At Interactive frame rates

Using inexpensive hardware

In high resolution

Applications

Data visualization
Medicine

Engineering

Weather forecasting

Entertainment

Approach

e Out-of-core preprocessing
- build an on-disk octree for the model
e Out-of-core rendering

- load on demand the visible octree nodes

e QOut-of-core parallel rendering

— use a PC cluster to drive a multi-projector
display wall (high resolution, inexpensive)

Why Use a Cluster of PCs?

e Explosive growth of PC graphics cards
e Availability of high-speed networks

e Better than high-end machines

— better price/performance

- can be upgraded more often

— can use different kinds of machines

— can be used for tasks other than rendering

- aggregate power scales with number of PCs

Related Work

e Samanta 01

— assumes model fits in memory of each PC
- client runs load balancing schemes

— client may become a bottleneck
e Humphreys 01: WireGL

— assumes model fits in client's memory

- client sends geometry to servers every frame

— client may become a bottleneck

Related Work

e \Wald 01

- ray tracing (less hardware support)
- slower preprocessing step (2.5h vs. 17/min)

— low resolution (640x480 vs. 4096x3072)

Talk Outline

e Out-of-core preprocessing

e Out-of-core rendering

e Out-of-core parallel rendering

e Results

Talk Outline

e Out-of-core preprocessing

e Out-of-core rendering

e Out-of-core parallel rendering

e Results

The Out-Of-Core Octree Format

hierarchy node
node structure contents node
structure contents

vertices
min point | # vertex normals
max point . ' # vertex colors

octant | # triangles
depth ' '
s leaf

vertices | |,
triangles |,/

vertices
vertex normals
vertex colors

.| triangles

Building the Out-Of-Core Octree

e Break model in sections that fit iIn memory

e For each section

— read hierarchy structure (HS) file
- perform fake insertions

- for each touched node

e read old contents
e reinsert old contents
e update contents on disk

— update HS file on disk

The PLP Algorithm

e Approximate volumetric visibility

e Keeps the octree nodes in a priority
gueue called front

e First visits nodes most likely to be visible

e Stops when a budget is reached

e Doesn't need to read the geometry

— estimates the visible set from the hierarchy
structure (HS) file

The PLP Algorithm

projection priority

The cPLP Algorithm

e Conservative extension of PLP
e Uses PLP to compute initial guess

e Adds nodes to guarantee correct images

e Unlike PLP, needs to read geometry

— can't determine visible set from HS file only
e Our Implementation uses an item buffer

— can be optimized by using visibility
extensions of the graphics hardware

Visibility Preprocessing

e For each node

— for each sample viewing direction

e compute solidity (estimate how much light is
blocked by the node)

— save solidities on disk

e At runtime, projection priorities are
computed by accumulating solidities from
node to node using ray tracing

Talk Outline

e Out-of-core preprocessing

e Out-of-core rendering

e Out-of-core parallel rendering

e Results

Out-Of-Core Rendering

e | oad on demand the visible nodes
e Use multiple threads on a single PC

e Overlap

- rendering

— visibility computations
— fetching

— prefetching

Overview of the Rendering Approach

monitor

&

nodes to

approximate render
L v \ *
visible set

approximate = conservative |Conservaive graphics
visibility: PLP _| visibility: cpLp | iSibleset | rendering

———

e
-

card
(b) | front —~) () (e)
‘ fetch request ‘I

fetch
prefetch request request

predicted camera d’ |

approximate geometry
look—ahead approximate | visibility: PLP cache read request
visible set

geometry

geometr;

Snapshot of the Geometry Cache

node state
hit
B missed
prefetched
B replaced

Using Multiple Threads to Improve Frame
Rates

’Q q‘ u‘\ MW i} M l (

% 9 N ! '%‘Jﬂh u W”’[M }" g - "L”f‘ll " "l"‘f”""»w,._.__l v b "»,h‘f«wj[\‘«q‘J.Ill"‘.w..xl‘,nf.,,]p,r,h‘g,f‘,,, - H.!.,
HENTLLT] et
0

sequential fetching concurrent fetching concurrent fetching,
and rendering and rendering rendering, and
prefetching

Using Prefetching to Amortize the Cost of

Disk Operations

misses
prefetches

|
I\M (Ul H A M M i |JVI 'U 'J‘ M'Iln h l._.ll IJ\ |I| HinY l' 'Ll 'L QJ“'I'.M“ “

200 300
frame number

without prefetching

misses
prefetches

frame number

with prefetching

Advantages of the Rendering Approach

Out-of-core
Exploits frame-to-frame coherence

Uses from-point prefetching
— less preprocessing than from-region

Uses threads in a single processor to
exploit parallelism opportunities

Handles tens of millions of triangles on a
single PC at interactive frame-rates

Talk Outline

e Out-of-core preprocessing

e Out-of-core rendering

e Out-of-core parallel rendering

e Results

Out-Of-Core Parallel Rendering

e SO far
- single PC
- low resolution images (1024x768)
— Interactive frame rates
* Now
— display wall driven by a cluster of PCs

— high resolution images (4096x3072)

- same or faster frame rates

Choosing the Parallelization Strategy

e Sort-first

— distribute object-space primitives

— each processor Is assigned a screen tile
e Sort-middle

— distribute iImage-space primitives

- geometry processors and rasterizers
e Sort-last

— distribute pixels

- rendering and compositing processors

Choosing the Parallelization Strategy

e Why sort-first?

— each processor runs entire pipeline for a tile
e that's what PC graphics cards are optimized for

- exploits frame-to-frame coherence well
e \Why not sort-middle?

- needs tight integration between geometry
processing and rasterization

e Why not sort-last?

- needs high pixel bandwidth

The Out-Of-Core Sort-First Parallel
Architecture

geometry

rendering rendering rendering
server server

image image 1mage

projector 'ee projector

The Out-Of-Core Sort-First Parallel
Architecture

e Given sequential approach, parallel
extension Is trivial

e MPI is only used to start and synchronize

the servers

e Client does almost no work, and can be
as lightweight as a handheld computer

e Very different from Samanta 01 and
Humphreys 01 (WireGL)

Talk Outline

e Out-of-core preprocessing

e Out-of-core rendering

e Out-of-core parallel rendering

e Results

c
&
ol
O
=
O
ol
O
Z
=)

Test Model

Test Model: UNC Power Plant

Tests

e Pre-recorded 500-frame camera path
e Visibility mode

— approximate (using PLP)

— conservative (using cPLP)
e Cluster sizes

-1, 2,4, 8, and 16

e Disk type

— local and network

Testing Environment

Rendering servers

- 900 MHz Athlon, 512 MB of RAM
- GeForce2, IDE disk

Client: 700 MHz Pentium Il
File server: 400 GB SCSI disk array

Network: gigabit Ethernet
e Software: Red Hat Linux 7.2, MPI/Pro 1.6.3

Box Plots

A

[median — 1.5 IQD, median + 1.5 IQD]:

o

R | 99.3% of the data (if Gaussian)
Interquartile
distance (IQD): —t+— median: center

spread

\J

B |

~ —pQutliers

Results for PLP (Approximate Mode)

e Total budget of
400K tri/fframe

w
S
un
@
E
]
|-
=
2
rd
-
@
=
[}
=

e Median frame
rates improve
with cluster size

— e Disk type makes

netl locall net2 local2z netd locald net8 local8 net16 locall6 :
no difference

cluster configuration (disk type and number ot PCs)

Obstacles for Perfect Scalability

e Duplication of effort

— primitives may overlap multiple tiles
e Communication overhead

— parrier at the end of each frame
e Load imbalance

— primitives may cluster into regions

Results for cPLP (Conservative Mode)

e Median frame
rates remain
almost constant

A I

* Disk type makes
no difference

e Additional
obstacle: visible
geometry may
Increase with
resolution

w
S—
L2]
@
£
]
-
=
o ¥
]
—
@
£
o
. —

netl locall net2 local2z netd locald net8 local8 neti16 locall6

cluster configuration (disk type and number ot PCs)

Summary of Best Results

Model size: 13 million triangles
Preprocessing time: 17 minutes
1 PC (1024x768 images, 70K tri/fframe)

- median accuracy: 98.1%

- median frame rate: 9.1 frames per second
16 PCs (4096x3072 images, 25K tri/fframe)

- median accuracy: 99.3%

- median frame rate: 10.8 frames per second

Conclusions

e System for interactive, high-resolution
rendering of large models on cluster-
based tiled displays

e Advantages

- simple
- Inexpensive
- scalable

- better than expensive high-end systems

Future Work

e Add level-of-detall management

e Add load balancing schemes

 Improve heuristic to estimate visibility

e Handle dynamic scenes

Thanks

e Funding

- AT&T, CNPqg (Brazil), Princeton
* Models

— UNC Chapel Hill
e Motivators

— Daniel Aliaga, David Dobkin, Jeff Korn, Kai LI,
Wagner Meira, Emil Praun

