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Goals

Render large models
At Interactive frame rates

Using inexpensive hardware

In high resolution




Applications

Data visualization
Medicine

Engineering

Weather forecasting

Entertainment




Approach

e Out-of-core preprocessing
- build an on-disk octree for the model
e Out-of-core rendering

- load on demand the visible octree nodes

e QOut-of-core parallel rendering

— use a PC cluster to drive a multi-projector
display wall (high resolution, inexpensive)




Why Use a Cluster of PCs?

e Explosive growth of PC graphics cards
e Availability of high-speed networks

e Better than high-end machines

— better price/performance

- can be upgraded more often

— can use different kinds of machines

— can be used for tasks other than rendering

- aggregate power scales with number of PCs




Related Work

e Samanta 01

— assumes model fits in memory of each PC
- client runs load balancing schemes

— client may become a bottleneck
e Humphreys 01: WireGL

— assumes model fits in client's memory

- client sends geometry to servers every frame

— client may become a bottleneck




Related Work

e \Wald 01

- ray tracing (less hardware support)
- slower preprocessing step (2.5h vs. 17/min)

— low resolution (640x480 vs. 4096x3072)




Talk Outline
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e Results
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The Out-Of-Core Octree Format

hierarchy node
node structure contents node
structure contents

# vertices
min point | # vertex normals
max point . ' # vertex colors

octant | # triangles
depth ' '
s leaf

# vertices | |,
# triangles |,/

vertices
vertex normals
vertex colors

.| triangles




Building the Out-Of-Core Octree

e Break model in sections that fit iIn memory

e For each section

— read hierarchy structure (HS) file
- perform fake insertions

- for each touched node

e read old contents
e reinsert old contents
e update contents on disk

— update HS file on disk




The PLP Algorithm

e Approximate volumetric visibility

e Keeps the octree nodes in a priority
gueue called front

e First visits nodes most likely to be visible

e Stops when a budget is reached

e Doesn't need to read the geometry

— estimates the visible set from the hierarchy
structure (HS) file




The PLP Algorithm

projection priority




The cPLP Algorithm

e Conservative extension of PLP
e Uses PLP to compute initial guess

e Adds nodes to guarantee correct images

e Unlike PLP, needs to read geometry

— can't determine visible set from HS file only
e Our Implementation uses an item buffer

— can be optimized by using visibility
extensions of the graphics hardware




Visibility Preprocessing

e For each node

— for each sample viewing direction

e compute solidity (estimate how much light is
blocked by the node)

— save solidities on disk

e At runtime, projection priorities are
computed by accumulating solidities from
node to node using ray tracing
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Out-Of-Core Rendering

e | oad on demand the visible nodes
e Use multiple threads on a single PC

e Overlap

- rendering

— visibility computations
— fetching

— prefetching




Overview of the Rendering Approach
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Snapshot of the Geometry Cache
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Using Multiple Threads to Improve Frame
Rates
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Using Prefetching to Amortize the Cost of

Disk Operations
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Advantages of the Rendering Approach

Out-of-core
Exploits frame-to-frame coherence

Uses from-point prefetching
— less preprocessing than from-region

Uses threads in a single processor to
exploit parallelism opportunities

Handles tens of millions of triangles on a
single PC at interactive frame-rates
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Out-Of-Core Parallel Rendering

e SO far
- single PC
- low resolution images (1024x768)
— Interactive frame rates
* Now
— display wall driven by a cluster of PCs

— high resolution images (4096x3072)

- same or faster frame rates




Choosing the Parallelization Strategy

e Sort-first

— distribute object-space primitives

— each processor Is assigned a screen tile
e Sort-middle

— distribute iImage-space primitives

- geometry processors and rasterizers
e Sort-last

— distribute pixels

- rendering and compositing processors




Choosing the Parallelization Strategy

e Why sort-first?

— each processor runs entire pipeline for a tile
e that's what PC graphics cards are optimized for

- exploits frame-to-frame coherence well
e \Why not sort-middle?

- needs tight integration between geometry
processing and rasterization

e Why not sort-last?

- needs high pixel bandwidth




The Out-Of-Core Sort-First Parallel
Architecture
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The Out-Of-Core Sort-First Parallel
Architecture

e Given sequential approach, parallel
extension Is trivial

e MPI is only used to start and synchronize

the servers

e Client does almost no work, and can be
as lightweight as a handheld computer

e Very different from Samanta 01 and
Humphreys 01 (WireGL)
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Test Model




Test Model: UNC Power Plant




Tests

e Pre-recorded 500-frame camera path
e Visibility mode

— approximate (using PLP)

— conservative (using cPLP)
e Cluster sizes

-1, 2,4, 8, and 16

e Disk type

— local and network




Testing Environment

Rendering servers

- 900 MHz Athlon, 512 MB of RAM
- GeForce2, IDE disk

Client: 700 MHz Pentium Il
File server: 400 GB SCSI disk array

Network: gigabit Ethernet
e Software: Red Hat Linux 7.2, MPI/Pro 1.6.3




Box Plots
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Results for PLP (Approximate Mode)

e Total budget of
400K tri/fframe
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e Median frame
rates improve
with cluster size

— e Disk type makes
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no difference

cluster configuration (disk type and number ot PCs)




Obstacles for Perfect Scalability

e Duplication of effort

— primitives may overlap multiple tiles
e Communication overhead

— parrier at the end of each frame
e Load imbalance

— primitives may cluster into regions




Results for cPLP (Conservative Mode)

e Median frame
rates remain
almost constant

A I

* Disk type makes
no difference

e Additional
obstacle: visible
geometry may
Increase with
resolution
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Summary of Best Results

Model size: 13 million triangles
Preprocessing time: 17 minutes
1 PC (1024x768 images, 70K tri/fframe)

- median accuracy: 98.1%

- median frame rate: 9.1 frames per second
16 PCs (4096x3072 images, 25K tri/fframe)

- median accuracy: 99.3%

- median frame rate: 10.8 frames per second




Conclusions

e System for interactive, high-resolution
rendering of large models on cluster-
based tiled displays

e Advantages

- simple
- Inexpensive
- scalable

- better than expensive high-end systems




Future Work

e Add level-of-detall management

e Add load balancing schemes

 Improve heuristic to estimate visibility

e Handle dynamic scenes
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