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Abstract
We present a fast, memory efficient algorithm that generates a manifold triangular mesh S passing through a set
of unorganized points P� R3. Nothing is assumed about the geometry, topology or presence of boundaries in
the data set except that P is sampled from a real manifold surface. The speed of our algorithm is derived from a
projection-based approach we use to determine the incident faces on a point. We define our sampling criteria to
sample the surface and guarantee a topologically correct mesh after surface reconstruction for such a sampled
surface. We also present a new algorithm to find the normal at a vertex, when the surface is sampled according
our given criteria. We also present results of our surface reconstruction using our algorithm on unorganized point
clouds of various models.

1. Introduction

The problem of surface reconstruction from unorganized
point clouds has been, and continues to be, an important
topic of research. The problem can be loosely stated as fol-
lows: Given a set of points P which are sampled from a sur-
face inR3, construct a surface S so that the points of P lie
on S. A variation of thisinterpolatorydefinition is whenS
approximatesthe set of pointsP.

There are a wide range of applications for which surface
reconstruction is important. For example, scanning complex
3D shapes like objects, rooms and landscapes with tactile,
optical or ultrasonic sensors are a rich source of data for a
number of analysis and exploratory problems. Surface rep-
resentations are a natural choice because of their applica-
bility in rendering applications and surface-based visual-
izations (like information-coded textures on surfaces). The
challenge for surface reconstruction algorithms is to find
methods which cover a wide variety of shapes. We briefly
discuss some of the issues involved in surface reconstruc-
tion.
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We assume in this paper that the inputs to the surface re-
construction algorithm are sampled from an actual surface
(or groups of surfaces). A proper reconstruction of these
surfaces is possible only if they are “sufficiently” sampled.
However, sufficiency conditions like sampling theorems are
fairly difficult to formulate and as a result, most of the exist-
ing reconstruction algorithms ignore this aspect of the prob-
lem. Exceptions include the works of3; 5; 2.

If the surface is improperly sampled, the reconstruction
algorithm can produce artifacts. A common artifact is the
presence of spurious surface boundaries in the model. Man-
ual intervention or additional information about the sampled
surface (for instance, that the surface is manifold without
boundaries) are possible ways to eliminate these artifacts.
The other extreme in the sampling problem is that the sur-
face is sampled unnecessarily dense. This case occurs when
a uniformly sampled model with a few fine details can cause
too many data points in areas of low curvature variation.

The choice of underlying mathematical and data structural
representation of the derived surface is also important. The
most common choice are triangular or polygonal mesh rep-
resentations. Triangular meshes also allow us to express the
topological properties of the surface, and it is the most popu-
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lar model representation for visualization and rendering ap-
plications.

Currently, most of the surface reconstruction algorithms
that guarantee a “good” quality triangulation and are the-
oretically sound typically produce higher dimensional sim-
plicials like tetrahedra. A second stage of these algorithms
remove interior facets to produce the final triangulation.
Therefore, these algorithms usually take on the order of a
few minutes to run on data sets of moderate sizes (about
20000 to 30000 points) and their applicability to very large
data sets (order of millions of points) is not very clear. In this
paper, we present an algorithm which guarantees a correct
reconstruction (and a good quality triangulation) under some
assumptions about the underlying object and runs more than
an order of magnitude faster than the above mentioned algo-
rithms.

1.1. Main Contributions

In this paper, we present a fast and efficient algorithm for
surface reconstruction from unorganized point clouds based
on localized two-dimensional Delaunay triangulation. Our
algorithm incrementally develops an interpolatory surface
using the surface oriented properties of the given data points.
The main contributions of this paper include:

� Sampling criteria: We present a new local sampling cri-
teria for the problem of surface reconstruction. The crite-
ria is based on directional curvatures on the surface that
is sampled. Based on this criteria and some well placed
assumptions about the underlying surface, our algorithm
produces the correct reconstruction.

� Fast surface reconstruction algorithm: Our algorithm
is based on theadvancing fronttechniques for surface re-
construction. Each iteration of our algorithm advances the
reconstructed surface boundary by choosing one point on
it and computing all the faces incident on it.

� Normal estimation algorithm: We also present a new
and simple algorithm for robust estimation of normals for
the points in an unorganized point set. It is very similar in
approach to the method of Hoppe et. al.16, but we believe
that the formulation is different.

� Fast Delaunay neighborhood computation:We have
developed a fast and simple algorithm to compute the De-
launay neighborhood on a plane around a point, given an
angle ordered set of possible candidate Delaunay neigh-
bors. This is supported by a fast algorithm for ordering of
a set of points by angle around a reference point.

� System implementation:We have developed a system
based on the above results and have applied it to a number
of models of varying sizes. The empirical performance of
our system is very encouraging and can generate surfaces
from point clouds of sizes around 100,000 points in few
tens of seconds.

2. Previous Work

The problem of surface reconstruction has received signif-
icant attention from researchers in computational geometry
and computer graphics. In this section, we give a brief survey
of existing reconstruction algorithms. We use a classification
scheme by Mencl et. al.21 to categorize the various methods.
The main classes of reconstruction algorithms are based on
spatial subdivision, distance functions, surface warpingand
incremental surface growing.

The common theme in spatial subdivision techniques is
that a bounding volume around the input data set is subdi-
vided into disjoint cells. The goal of these algorithms is to
find cells related to the shape of the point set. The cell selec-
tion scheme can be surface-based or volume-based.

The surface-based scheme proceeds by decomposing the
space into cells, finding the cells that are traversed by the sur-
face and finding the surface from the selected cells. The ap-
proaches of16; 11; 4; 3 fall under this category. The differences
in their methods lie in the cell selection strategy. Hoppe et.
al. 16; 17 use a signed distance function of the surface from
any point to determine the selected cells. Bajaj et. al4 con-
struct an approximate surface usingα-solids to determine
the signed distance function. Edelsbrunner and Mucke22; 11

introduce the notion ofα-shapes, a parameterized construc-
tion that associates a polyhedral shape with a set of points.
The choice ofα has to be determined experimentally. More
recently, Guo et. al.13 use visibility algorithms and Teich-
mann et. al.27 use density scaling and anisotropic shap-
ing to improve the results of reconstruction usingα-shapes.
For the two-dimensional case, Attali3 introducesnormalized
meshesto give bounds on the sampling density within which
the topology of the original curve is preserved.

The volume-based scheme decomposes the space into
cells, removes those cells that are not in the volume bounded
by the sampled surface and creates the surface from the
selected cells. Most algorithms in this category are based
on Delaunay triangulation of the input points. The earli-
est of these approaches is Boissonat’s8 “Delaunay sculpt-
ing” algorithm that successively removes tetrahedra based
on their circumspheres. Veltkamp29 uses a parameter called
γ-indicator to determine the sequence of tetrahedra to be
removed. The advantage of this algorithm is that theγ-
indicator value adapts to variable point density. However,
both the approaches of Boissonat and Veltkamp cannot han-
dle objects with holes and surface boundaries. Amenta et.
al. 2; 1 use a Voronoi filtering approach based on three-
dimensional Voronoi diagram and Delaunay triangulation to
construct thecrust of the sample points. They provide the-
oretical guarantees on the topology of their reconstructed
mesh given “good” sampling.

The distance function of a surface gives the shortest dis-
tance from any point to the surface. The surface passes
through the zeroes of this distance function. This approach
leads to approximating instead of interpolatory surfaces
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16; 7; 10. Hoppe et. al.16 use a Reimannian graph to compute
consistent normal throughout the surface to determine the
signed distance function. The approach of Curless and Levoy
10 is fine-tuned for laser range data. Their algorithm is well
suited for handling very large data sets.

Warping-based reconstruction methods deform an initial
surface to give a good approximation of the input point set.
This method is particularly suited if a rough approximation
of the desired shape is already known. Terzopoulos et. al.
28 usedeformable superquadricsto fit the input data points.
A different approach to warping was suggested by Szeliski
et. al.25 with oriented particles. By modeling the interaction
between the particles, they construct the surface using forces
and repulsion.

The basic idea behind incremental surface construction is
to build-up the surface using surface-oriented properties of
the input data points. The approach of Mencl and Muller
19; 20 is to start with a global wireframe of the surface gener-
ated using Euclidean minimum spanning tree construction,
and to fill it iteratively to complete the surface. Boissonnat’s
surface contouring algorithm8 starts with an edge and it-
eratively attaches further triangles at boundary edges of the
emerging surface using a projection-based approach. This
algorithm is similar in vein to our approach. A crucial dif-
ference between our methods is that Boissonnat’s algorithm
is edge-based, while ours is vertex-based. We also provide
guarantees on quality triangulation. Further, his algorithm
can only generate manifolds without boundaries.

The Spiraling-Edge triangulation technique proposed by
Crossno and Angel9 is also related to ours. Major differ-
ences include the fact that they make several limiting as-
sumptions about the data, including normal information for
each point, and also an estimate of each point’s neighbors.
Their algorithm works by creating a star-shaped triangula-
tion between a point and its neighbors. But the paper pro-
vides no theoretical foundation for the actual triangulation
computed, including no estimates for the sampling neces-
sary to produce correct triangulations.

Another recent advancing-front triangulation scheme is
the Ball-Pivoting Algorithm (BPA) of Bernardini et al6.
Given a point cloud and a radiusρ, BPA finds an interpola-
tory surface where each of its triangles are characterized by
the fact that the ball of radiusρ that sits on its vertices has
no internal point (i.e., it is anρ-exposed triangle). The al-
gorithm works by finding a “seed”ρ-exposed triangle, then
extending the surface as far as it can by “pivoting” a ball
of radiusρ along each boundary edge of the current sur-
face (which is continuously updated). Under some sampling
conditions, BPA is guaranteed to finish with a correct tri-
angulation. One shortcoming of BPA is the fact that it does
not allow for reconstructing surfaces out of variable-sampled
points without multiple passes and they assume that the nor-
mal information is available for the input point set.

3. Algorithm Overview

Our surface reconstruction algorithm takes a set of unorga-
nized 3D pointsS as input with no other additional infor-
mation like normals. The output of the algorithm is a set of
triangles, which defines a manifold surface with or without
boundary, passing through the input set of points. This algo-
rithm uses a progressive triangulation technique where the
triangulation incrementally progresses over the surface. The
neighbors of a vertex in the final triangulation is computed
on its tangent plane. Hence it is a local triangulation tech-
nique.

Our surface reconstruction algorithm goes through four
major steps: normal computation, candidate point selection,
Delaunay neighbor computation, and finally the triangula-
tion step. This section gives a brief description of all the
above steps.

Normal Computation:The first step in our algorithm is to
compute the normal at all sample points. This step is per-
formed only if we the normal information is not part of the
input. This step also consistently orients the normals of the
sample points to get an orientable manifold.

Candidate points selection:This step chooses those points
which might be possible neighbors to a vertex in the final tri-
angulation. Using our sampling criteria described in Section
4, we compute this candidate point set (Pp) for every sample
point p.

Delaunay Neighbor Computation:We map each of the
candidate points in the setPp on the tangent plane atp by
a simple rotation about a well defined axis on the tangent
plane. The set of these mapped candidate points are referred
asPT

p . Then we compute the local Delaunay neighborhood
from the setPT

p aroundp in its tangent plane. This compu-
tation is repeated for all the points inS, and the final surface
triangulation is determined from this neighborhood relation-
ship.

The candidate point setPp plays a crucial role in deter-
mining the final triangulation. In order to obtain the correct
surface, we must impose a certain sampling criteria. In the
next section we formulate this criteria mathematically. We
also justify the above algorithm using the sampling criteria.

4. Sampling Criteria

In this section, we present a sampling criteria to guarantee a
triangulation homeomorphic to the surfaceF. The sampling
density at a point along a particular direction (in the tangent
plane) isinversely proportionalto thedirectional curvature
at that point. The geometric intuition behind this criteria is
that the positioning of the normals of the set of point sam-
ples on the Gaussian sphere is uniform provided the product
of the directional curvature and the arc length on the sur-
face is constant (see24 for an explanation of this fact). In the
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Figure 1: The Darboux Frame

rest of this section, we shall quantitatively explain what the
above criteria means using concepts from differential geom-
etry. We shall start by giving a few definitions and notations
which will be used by us. More detailed explanations can be
found in the appendix.

� Consider a pointp on a surfaceF as shown in Figure 1.
Let the normal vector toF at p be~N. Given a unit vector~v
on the tangent plane atp, define a curvec(t) : [�ε;ε]! F
such thatc(0) = p, c0(0) = v. TheDarboux frame at p is
defined as the orthonormal differential frame~T =~v;~B=
~N�~T;~N. Figure 1 shows the Darboux frame on the sur-
face of a cone. It is easy to see that for surfaces with a
well defined tangent plane everywhere, every point on the
surface has a unique Darboux frame associated with it in
a given direction v in the tangent plane.

� Surface curvature: Associating a local differential frame
at every point on the surface allows us to measure some
geometric invariants on the surface. If we walk infinites-
imally along a direction~v, the change of the surface nor-
mal in the direction~v is called thenormal curvature. As
we move along different directions in the tangent plane,
the normal curvaturevaries. The directions with mini-
mum and maximum normal curvatures are called princi-
pal directions and the corresponding curvatures in these
directions are called principle curvatures. These principal
directions are orthogonal to each other. In the rest of this
paper, we will refer to the principal curvatures ask1 and
k2 (or kmin andkmax).

� Local surface as a height function:We make use of the
well known implicit function theorem23 to express the
surface in the neighborhood of a point as a height function
in terms of the principal curvatures. We will represent the
height function in the local neighborhood as

h(x;y) =
1
2
(k1x2+k2y2)+higher order terms

h(r;θ)� r2

2
(k1 cos2 θ+k2sin2θ);

wherer =
p

x2+y2 andθ is the angle the vector(x;y)
makes with thex-axis. The derivation of the above ex-
pression is given in detail in the appendix.

� The Euler equationrelates the normal curvature,kv, at
some pointp on the surface along a direction~v in the tan-
gent plane to the principal curvatures,k1 andk2. Let the
principal directions atp be~v1 and~v2. Then

kv = k1 cos2 θ+k2sin2θ;

whereθ represents the angle~v makes with~v1.
Using this result on the expression forh(r;θ) above, we
get

h(r;θ) = kvr2

2
(1)

� It is possible to describe the behavior of the normal vector
along space curves on a surfaceF passing through some
point p. The equation below can be derived from the Car-
tan’s equations for differential frames18; 23.

∂~N =�kv∂s~T� t∂s~B;or (2)

j∂~Nj=
q

k2
v + t2 j∂sj (3)

Here kv is the normal curvature andt (also known as
geodesic torsion) intuitively measures the twist along the
~N�~B plane.
The quantity

p
k2

v + t2 is called thetotal curvatureof the
space curve throughp. We simplify the above equation
for the special case of planar curves throughp for which
t is always zero. Then the total curvature becomeskv, the
normal curvature. Our sampling criterion now can be for-
mulated mathematically as

kv∂s= constant (4)

Intuitively, this sampling implies that the dot product be-
tween the normals at a given point on the surface and the
nearby point samples is constant. Higher the curvature in
a particular direction, closer the point samples should be
and vice-versa.

� We call a pointp on a surfaceF a regular point if the
surface in the neighborhood ofp is homeomorphic to an
open disk. We replace the constant term in equation 4 by
δ and the arc length∂sby the edge length. Given aregular
point p on F with unit normalNp, let Cδ

p be the (closed)
contour onF aroundp such that

kvjpqj = δ;8q2Cδ
p;v= (~pq� (~pq�Np)Np);

where jpqj denote the Euclidean arc length along the
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surface. It is clear thatCδ
p partitions surfaceF into two

(or more) parts: one that containsp and others that do
not. We define the former partition as theimmediateδ-
neighborhood(Bδ

p) of the pointp.
� We call a point setSa δ-samplingof a surfaceF if every

point p2 F has a closest pointq in the sample setSsuch
thatq2Cδ

p. In the above definition,δ is a parameter that
can be changed to obtain different samples of the surface.

The definition of aδ-sampling is clearly a local sampling
criterion and makes an intrinsic assumption about the tubular
neighborhood of the underlying object. This has the disad-
vantage of not being sensitive to global features of the object
like two layers of the same object coming very close to each
other. We make some assumptions on the tubular neighbor-
hood of the object. Given a pointq2 F not in theimmediate
δ-neighborhoodof p, we place a bound (function ofδ and
principal curvatures) on the dot product of the vector~pqwith
the unit normal atp. For the rest of this discussion, we will
assume that

� The surface under consideration is smooth and that the
ratio of the maximum to minimum principal curvature at
any point is bounded above by the constantρ.

� The arcpqv along the surface can be replaced by the edge
pqv. This assumption is reasonable for smallδ.

In this section, we shall state without proof a couple of
properties aboutδ-sampled surfaces. The proofs are given in
the appendix.

Lemma 1Given aδ-sampleSof a surfaceF and two points
p;q2 Ssuch thatq2Cδ

p. Thenp2Cδ
q.

The above lemma will later be used to claim the symme-
try in the choice of neighborhood around a point. We now
proceed to show that ratio of the distances between any two
pointsq; r 2Cδ

p to p is bounded.

Let p2 F. Define the contourCδ
p aroundp as before.

Theorem 1(a) Consider any two pointsq; r 2Cδ
p. Then the

maximum ratio of edge distancesjpqj
jprj is bounded above by

a function of principal curvatures.
(b) Let Np be the unit normal toF at p and let ˆpq de-
note the unit vector fromp to q. Define the height function
H(p;q) = jNp � ~pqj. ThenH(p;q) is bounded above by the

quantity
p

1+δ2�1
kmin

. kmin is the smaller of the principal curva-
tures.
(c) Define the angle functionD(p;q) = jNp � p̂qj. Then

D(p;q) is a constant,
p

1+δ2�1p
1+δ2+1

, for all q2Cδ
p.

The result about the height function can be used to pre-
cisely quantify how close two different parts of the model
can come so that aδ sampling is sufficient for the recon-
struction algorithm. Since the maximum height value for

any point inCδ
p is bounded by

p
1+δ2�1
kmin

, we bound the dis-
tance between two different layers of the model to be greater

p

q

r

s

Cp

Cq

Figure 2: Angle between adjacent samples on δ-sampled
surface

than twice this value. Observe that this condition is similar
to putting a bound on the distance of any point from its clos-
est medial axis feature2; 1. On the converse side, if we know
that two different layers of an object are within distanced of
each other, then we can impose aδ-sampling on the surface

such thatδ�
p

d2k2
min+4dkmin

2 .

The above results show that the points in the neighbor-
hood of a pointpon aδ-sampled surface satisfy strict bounds
on the ratio of the distances and the angles from the normal.
Further, the assumption about different layers not coming
too close together justifies our local sampling criterion. We
shall now argue that instead of computing the three dimen-
sional Voronoi diagram of the sample points, it is sufficient
to compute the local two-dimensional Voronoi cell of each
sample point in its local tangent plane.

We will first try to bound the maximum angle deviation
between adjacent sample points on the contourCδ

p. Intu-
itively, given a δ-sampled surface, adjacent points on the
contour cannot lie arbitrarily far away since the sampling
will not be preserved. For the smooth curves which define
Cδ

p, the angle bound is 90�. Figure 2 illustrates one such case.

Consider the pointq in Cδ
p. The contourCδ

q can be thought of
as a similar curve with a small rotation of the principal direc-
tions atp because of proximity top and the fact that we are
associating a differential reference frame at every point on
the smooth surface. Adjacent point samples onCδ

p are con-
strained by the fact that they have to lie in the intersection
points ofCδ

p andCδ
q. Let the intersection points ber ands. It

is easy to see that the angles6 rpq and6 qpsare less than the
corresponding angles if the pointsr, qandsare flattened into
the tangent plane atp. The extreme values of angles occur
whenq is along one of the principal directions ofp. In either
of these cases, the sum of the angles6 rpq+ 6 qps< 180�
with symmetric positioning ofr ands. This shows that the
maximum deviation between adjacent samples is less than
90�.
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Figure 3: Voronoi sites in the plane

Theorem 1(c) showed that the expression for the angle
function D(p;q) (cosine of the actual angle) is constant for
all points onCδ

p whose value is small for small values ofδ.
Consider the planeΠq formed by the normal vectorNp and
the vector~pq. This plane intersects the tangent plane atp
along a particular direction~v. The angle between~v and ~pq
which is justjπ=2� cos�1 D(p;q)j is thus also very small.
This implies that we can map the points on the sampled con-
tour Cδ

p to points on the tangent plane by a rotation of~pq
in their corresponding planeΠq without affecting the neigh-
borhood aroundp and little change in the relative distances
between adjacent sample points.

The above result suggests a simple scheme for completing
the triangulation around the pointp. Take the sample points
in theδ-neighborhood ofp. Map them onto the tangent plane
at p using the scheme above. Compute the two-dimensional
Voronoi cell of p with the neighborhood points. Its dual
determines the triangulation aroundp. Unfortunately, the
above scheme has a small problem. Consider the situation
in Figure 3. Letq andr be two adjacent samples on the con-
tour Cδ

p 90� apart at a distanced from p. Consideringp, q
andr in isolation produces a Voronoi vertexs at a distance
d=
p

2 away. It is now possible that some other sample pointt
which is outsideCδ

p but within distancel =
p

2d from p can
alter the Voronoi cell atp. However, points which are fur-
ther thanl from p cannot affect its Voronoi cell. Therefore,
we modify our earlier triangulation scheme by considering
sample points in the 2δ-neighborhood ofp.

There is an interesting connection between therestricted
Voronoi diagramin Amenta et. al.1 and our Voronoi cell
computation. In their paper,1 define therestricted Voronoi
diagram as the cell decomposition induced on the surface
F: the boundaries of the cells onF are simply the intersec-
tions of F with the three-dimensional Voronoi cell bound-
aries. They also define agood trianglewith vertices from the

sample setS if it is dual to a vertex of therestricted Voronoi
diagramand go on to show that for a good enough sampling
of the surface, thegood trianglesform a polyhedron home-
omorphic toF. Figure 4 shows the similarity between the
restricted Voronoi diagramcomputation of1 and the three-
dimensional lifting of our 2D Voronoi cell computation on
the local tangent plane.

5. Algorithm

In this section, we will describe in more detail, the steps we
briefed in Section 3.

5.1. Computation of Vertex Normal

The first step in our algorithm is to find the normal, and thus
the tangent plane of the surface, at every sample pointp.
This is computed using the closest neighbor information. We
choosek�nearestneighbors ofp for this purpose. We need
to find a vector which is a good representative of the nor-
mal to that surface atp. We propose that the normal vector
~np is the vector that minimizes the variance of the dot prod-
uct between itself and the vectors fromp to its k�nearest
neighbors. If thek�nearestneighbors areq1 to qk, then the
vectors fromp to its k�nearestneighbors are~Vi = qi � p,
1� i � k. We want to find~np such that it minimizes

∑k
i=1 (Di � ∑k

i=1 Di

k )
2

k
(5)

whereDi = ~np �~Vi .

The vectors~Vi can be viewed as the coordinates of thek-
nearestneighbors withp as the origin. Removing the scale
factor 1

k from the above equation, we get

min(
k

∑
i=1

(~np �~Vi � ∑k
i=1 ~np �~Vi

k
)

2

), or (6)

min(
k

∑
i=1

((~Vi � ∑k
i=1

~Vi

k
) � ~np)

2) (7)

If p is at the origin, the centroid ofk nearest candidate points

isC = ∑k
i=1

~Vi

k . Thus, the above equation can be rewritten as,

min(
k

∑
i=1

((~Vi �C) � ~np)
2) (8)

If A is ak�3 matrix where~Vi�C defines the row vectors,
then the above expression reduces to

min(kA~npk2) (9)

This minimization problem can be posed as a standard
singular value decomposition problem12. The eigenvector
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Figure 4: Left: Restricted Voronoi diagram of [AB98], Right: Three-dimensional lifting of our 2D Voronoi cell computation

which corresponds to the smallest eigenvalue ofA is the nor-
mal vector which minimizes the above equation. Hoppe et.
al. 16 proposed the use of principal component analysis of
a covariance matrix to determine the normals. Even though
our formulation is very different, it turns out that the result-
ing normal vectors computed by both methods are the same.

5.1.1. Propagation of Normal Direction

The normal vector found by the above process is correct only
upto sign. To find a consistent orientation of the surface, we
fix the orientation of one of the normals and propagate this
information to rest of the points. We use the technique pro-
posed by Hoppe et. al.16 to do the propagation. Hoppe et.
al. pose this problem as a minimum spanning tree problem,
where the vertices of the model are the vertices of the graph,
and the edges of the model are the edges in the graph. The
weight of the edge between the vertexi and j is assigned
to be(1� j~ni � ~nj j), where~ni and~nj are the normals at the
verticesi and j computed using the method given in the pre-
vious section. The minimum spanning tree of the thus con-
structed graph would give the propagation sequence of nor-
mals for the consistent orientability of the model. An arbi-
trary vertex of the graph is assumed to be the root and the
normal is propagated to its children recursively. When the
normal direction is propagated from vertexi to vertex j , if
ni �nj is negative, then the direction ofnj is reversed; other-
wise it is left unchanged.

5.2. Computation of Principal Curvatures

We use an adaptation of the method described by Taubin
26 to compute the curvature tensor at every point. Taubin’s
method was described for a surface mesh. Since we have
only a discrete set of points, we choose thek�nearestneigh-
bors ofp instead of the explicit neighborhood defined by the

mesh. Givenp and one of the nearest neighborsqi , the nor-
mal curvature along the direction~vi (= ~pqi � (~np � ~pqi)~np) in

the tangent plane atp is defined askvi
p � 2(~np� ~nqi )� ~pqi

k ~pqik2 .

Taubin 26 shows that the principal curvatures and direc-
tions correspond to linear combinations of the (non-zero)
eigenvalues and eigenvectors of the rank deficient 3�3 ma-
trix Mp = 1

2π
R π
�π kv

p~v~v
Tdθ, where~v is represented in terms

of the principal directions (~vp
1 and~vp

2) as~v = cosθ~vp
1 +

sinθ~vp
2, whereθ is the angle~v makes with~vp

1.

The integral is discretized into a weighted sum of thek�
nearestneighbors normal curvatures. We first compute the
angles that~vi makes with an arbitrary frame in the tangent
plane. Then we sort the angles in counterclockwise order
(fα1;α2; : : : ;αkg). The discrete form is

Mp = Σk
i=1wi

pkvi
p~v~v

T ;

wherewi
p = (

αi+1�αi�1
4π ).

5.3. Candidate point selection

To complete the triangulation around a pointp, we consider
all the points in its proximity determined by the sampling
criteria. Given aδ-sampling Sof a surfaceF, we consider
all the sample points in the 2δ neighborhood ofp2 F. By
theorem 1, we know that the maximum ratio of distances
of two points in the contourCδ

p is the ratio of the principal
curvatures at the pointp. When we consider all points inside
the 2δ-neighborhood, this ratio simply scales up by a factor
of two. This gives us a value ofmp =

2kmax
kmin

. This constantmp

is used by our candidate point selection algorithm described
here.
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This step is similar to clustering algorithms used by other
triangulation schemes16; 14. We first apply adistance crite-
rion to prune down our search for candidate adjacent points
in the spatial proximity ofp. It is executed in two stages.
In the first stage, the simplerL1 metric is used to define
the proximity aroundp. Our algorithm takes an axis-aligned
box of appropriate dimensions centered atp and returns all
the data points inside it. The second stage of pruning uses
a Euclidean metric, which further rejects the points that lie
outside asphere of influencecentered atp. Our data structure
for this stage of pruning is a depth pixel array similar to the
dexelstructure proposed in15. We maintain a 2D pixel array
into which all data points are orthographically projected. The
points mapped on to the same pixel are sorted by their depth
(z) values. This data structure makes the search for candidate
points very easy.

By using this data structure, this search is limited to the
pixels around the pixel wherep is projected. The size of the
bounding box for choosing the candidate points usingL1
metric, and the radius of thesphere of influenceused in the
second stage of pruning is determined by the valuemp. As-
suming that the distance ofp from its closest neighbor iss,
the bounding box and the sphere should enclose all points,
which are at the distance less thanmps from p.

The set of points obtained by these two pruning stages
is further pruned by computing the height values of these
points inp’s local tangent plane. If the height value is greater

than
p

1+4δ2�1
kmin

(refer to Theorem 1b), we remove those
points from consideration because they lie outside the tubu-
lar neighborhood of the surface nearp. The points that re-
main are the possible Delaunay neighbors ofp.

5.4. Triangulation

The next step is the find the neighbors of each vertex to find
the final triangulation of the surface. Once we have a consis-
tent orientation of the normals for all the vertices, we map
the candidate points as found in Section 5.3 onto the tangent
plane at the reference pointp. This mapping is the rotation
of the vectorVi , from p to the candidate point, on the plane
defined by the normal andVi , to the tangent plane atp. These
projected candidate points on the tangent plane are ordered
by angle aroundp.

5.4.1. Fast Ordering by Angle

The candidate points are transformed to the local coordinate
system and are mapped as explained above to the tangent
plane atp. These points have 2D coordinates, with an im-
plicit definition of coordinate axes. The projected candidate
point set is partitioned on the basis of the quadrant where the
points lie on this tangent plane in the local coordinate sys-
tem. The points within each quadrant are ordered by angle
using a simple method as explained below.

The square of the sine of the angle from the implicitx�

p

B

Voronoi Edges

C
A

M

CL

IBL

BL B

ACI

AL

Figure 5: Finding Delaunay neighbors. Given points A, B
and C, check whether B is a Delaunay neighbor of p. The
thick edges are local Voronoi edges around p.

axiscan be easily computed without any use of square-root
or trignometric functions. We find the square of sine as it is
a close-to-linear function. We discretize the range between 0
to π=2 degrees and store its sine-square values in a look-up
table. Any value of sine-square can be looked up in the table
to give the angle between 0 toπ=2. The values in-between
the discretized values represented in the table are linearly
interpolated and the angle is found. We use the sine-square
value to order the points within the same quadrant, and we
use the angle computed in this section to identify surface
boundaries and to fill up holes in the triangulation.

5.4.2. Delaunay Neighbor Computation

This section describes the details of finding the neighbors for
the reference pointp from the candidate point set. We use
2D local Delaunay triangulation aroundp to find the neigh-
bors of p. We compute the Delaunay neighbors ofp using
the following algorithm. Given the ordering of the candidate
vertices aroundp, the goal is to choose the subset which are
its Delaunay neighbors. The basic function of the algorithm
takes the reference point and three consecutive points in an-
gle orderA, B, andC, from the ordered candidate point set
to check whether the middle point (B) could be a Delaunay
neighbor top in the presence ofA andB. Figure 5 explains
this algorithm pictorially.

bool CheckDelaunay(p, A, B, C)
{

LA = Perpendicular bisector of the line segmentpA.
LB = Perpendicular bisector of the line segmentpB.
LC = Perpendicular bisector of the line segmentpC.
IAC = Intersection point ofLA andLC.
LIB = Line parallel toLB, and passing throughIAC.
MB = Mid point of the line segmentpB.
If both p andMB lie on the same side ofLIB, then

B is a local Delaunay neighbor top
when compared withA andB.

returnTRUE.
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No. of No. of Normal Comp.Time Triangulation Time Total Time
Model points Triangles (in secs) (in secs) (in secs)

Oil Pump 30937 61772 8.18 10.63 20.99
Club 16864 33643 4.30 3.32 7.90
Bunny 34834 69630 9.25 8.31 18.64
Foot 20021 39862 5.23 4.77 10.53
Skidoo 37974 75364 9.73 6.42 16.66
Mannequin 12837 25438 3.37 3.59 7.62
Phone 83034 165981 22.40 19.42 44.41

Table 1: Performance of our algorithm: See Figure 7* (color plate)

else
B is not a Delaunay neighbor top.
returnFALSE.

}

If q1 : : :qn are the ordered projected candidate points
of p, then the above function is called for every triplet
qi�1;qi ;qi+1. If the test passes, then the next triplet
qi ;qi+1;qi+2 is tested. But, if the test fails, thenqi is rejected,
and the algorithm backtracks with the callqi�2;qi�1;qi+1 to
re-evaluateqi�1 for its validity. As the ordering of the ver-
tices is by angle, and hence is cyclic, any point can be chosen
as the first pointq1. We choose the closest point top asq1,
as it is always a Delaunay neighbor, and further, it is used
as a terminating condition for the backtracking algorithm.
The implementation of the above algorithm is optimized for
speed, and each call to the above function takes less than 35
mathematical operations.

The Delaunay neighbors of each vertex is found and is
stored in a list ordered by angle. VerticesA, B, andC form
a triangle if and only if {B C}, { C, A}, and {A, B} are con-
secutive voronoi neighbors in ordered voronoi neighbor lists
of A, B, andC respectively. There are a few degenerate cases
and problems arising out of improper sampling. These cases
are described in the next section.

6. Implementation and Performance

We have implemented the algorithm described in this paper.
This section describes a few of the implementation issues
and give the performance of our method on various models.

Most of the sample point clouds that we obtain in prac-
tice do not necessarily satisfy our sampling criteria. Further,
the positions of these points might be in some kind of geo-
metric degeneracies. In the triangulation stage of our algo-
rithm, assume thatA, B, C, andD form a quadrilateral in
their Delaunay neighborhood relationship. There might be
cases where bothBD andAC are Delaunay edges. The other
case is the hole formation by the above quadrilateral, where
neitherBD nor AC is a Delaunay edge. In the first case, a
simple contention detection and removal method is used to
unambiguate the triangulation. In the second case where the

hole is left due to lack of Delaunay edges, we cannot deter-
mine if is an actual hole in the model or a hole formed due
to sampling artifacts.

We use a simple thresholding strategy based on number
of edges in the hole to decide whether to fill the hole or not.
This in combination with the hole size forms a good oper-
ating rule of thumb to decide the hole filling operation. The
average of the normals of the vertices forming the hole is
taken as the projection plane normal, where the vertices and
the edges forming the hole is projected. A simple 2D tri-
angulation algorithm is used to fill up the 2D hole. This is
projected back in 3D to achieve 3D hole filling. This simple
heuristic for finding the projection plane works reasonably
well for all the practical models we have used in this paper.

We ran the implementation of our algorithm on various
models, and the results have been documented in Table 1.
All timings are measured on an SGI-Onyx with an R10000
processor running at 194 MHz. Figure 7* (color plate) shows
the result of our algorithm on a few models. Our algorithm
and implementation is extremely modular and is suitable for
parallelization without any change.

7. Conclusion

We have presented a new, simple, and fast surface recon-
struction algorithm for unorganized point clouds. We have
introduced a new sampling criteria that a given point cloud
has to respect so that our algorithm generates the correct re-
constructed surface. Our algorithm falls under the classifica-
tion of advancing front paradigm for surface reconstruction.
We proceed by computing a local neighborhood around each
sample point and computing the triangulation in its local tan-
gent plane. We have implemented our algorithm and shown
its performance on a number of models with varying sample
densities and curvature.
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p=(0,0,0)

xy−plane

M

Wp

Vp

Figure 6: Quadratic approximation of a surface

Appendix

In this section, we shall prove some of the theorems from
differential geometry which we used in the section on sam-
pling.

Surface Approximations using Power Series

Consider a 2-manifoldF�R3 and a pointp2 F as shown in
Figure 6. Without loss of generality, we make the following
assumptions aboutp andF.

� p is the origin,
� the tangent plane ofF at p (Tp(F)) is thez= 0 plane, and
� the two principal directions ofF at p are the coordinate

axese1 = (1;0;0) ande2 = (0;1;0).

It is easily seen that these conditions can be achieved by
a simple rigid transformation ofF. To proceed further, we
make use of a result from classical differential geometry
which we state here without proof.

Theorem 223 There exists a small neighborhoodWp of p2
F such that the mapπ : (x;y;z)) (x;y) is a one-to-one map
with its image being an open setVp�R2. Moreover the map
π is a diffeomorphism.

The point(x;y;z)2 F is a point in the local neighborhood of
p and is defined in a local coordinate system atp.

The fact thatπ is a diffeomorphism implies thatπ�1 exists
and thatπ andπ�1 are smooth mappings. Therefore, we can
approximate the surface in the neighborhood ofp (Wp) as

Wp = f(x;y;h(x;y)) : (x;y) 2Vpg
Here, h(x;y) intuitively represents the surface as a height
function. Further, the tangent plane ofWp � F is given

by the basis vectors∂Wp

∂x = (1;0; ∂h
∂x(0;0)) and ∂Wp

∂y =

(0;1; ∂h
∂y(0;0)). Since, we assumed that the tangent plane at

p is thez= 0 plane,∂h
∂x(0;0) =

∂h
∂y(0;0) = 0.

Shape operatoris a familiar concept in differential geom-
etry. Essentially, the shape operator at a pointp2 F (denoted
by Sp(F)) is a linear operator that maps an element ofTp(F)
to another element inTp(F). If vp1 andvp2 are a set of ba-
sis vectors forTp(F), Sp(avp1+bvp2) = cvp1+dvp2 (a;b;c
andd are real valued scalars). For the special case of a vec-
tor v being a principal direction,Spv = Kv, whereK is the
principal curvature. In our particular case, the tangent plane
is spanned bye1 ande2. The shape operator applied to the
vectorse1 ande2 are given by

Spe1 =
∂2h
∂x2 (p)e1+

∂2h
∂x∂y

(p)e2

Spe2 =
∂2h
∂x∂y

(p)e1+
∂2h
∂y2 (p)e2 (10)

Sincee1 ande2 are the principal directions, we can con-

clude that ∂2h
∂x∂y(0;0) = 0 and that∂

2h
∂x2 (0;0) and ∂2h

∂y2 (0;0) are
the principal curvatures (denoted byk1 andk2 respectively).

We now use Taylor’s formula to expandh(x;y) around the
origin (0;0). Thus,

h(x;y) = h(0;0)+x
∂h
∂x

(0;0)+y
∂h
∂y

(0;0)

+
1
2
(x2 ∂2h

∂x2 +2xy
∂2h
∂x∂y

+y2 ∂2h
∂y2 )

+higher order terms

=
1
2
(k1x2+k2y2)+higher order terms

� r2

2
(k1cos2 θ+k2sin2 θ);

wherer =
p

x2+y2 andθ is the angle the vector(x;y)
makes with thex-axis.

Euler Equation

Thenormal curvature kv at a pointpon the surface in a given
direction~v on the tangent plane is defined as the curvature of
the intersection curve of the surface with the plane formed
by the vectors~v and the surface normal atp. Using theshape
operator, it can be written as

kv = Sp(~v) �~v

We can represent~v in terms of the principal directions (~v1
and~v2) as~v= cosθ~v1+sinθ~v2, whereθ is the angle~v makes
with~v1. Therefore
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kv = Sp(cosθ~v1+sinθ~v2) � (cosθ~v1+sinθ~v2)

= (k1 cosθ~v1+k2 sinθ~v2) � (cosθ~v1+sinθ~v2)

= k1 cos2θ+k2 sin2 θ

The above equation is also known as theEuler equation.
It expresses the normal curvature at a point on the surface in
terms of the principal curvatures there.

Frenet-Serret equations for Darboux Frame

We will now present the equations which govern the behav-
ior of the Darboux frame for space curves on a surfaceF
passing throughp. These equations are a modified form of
the well-known Frenet-Serret equations18; 23.

0
B@

∂~T
∂s
∂~B
∂s
∂~N
∂s

1
CA =

0
@

0 g kv

�g 0 t
�kv �t 0

1
A
0
@

~T
~B
~N

1
A

The entries in the above matrix define the geometrical in-
variants at the point in consideration.kv is the component
of the acceleration along the surface normal (normal cur-
vature). g (or geodesic curvature) is the component of the
acceleration in the tangent plane.t (also known asgeodesic
torsion) intuitively measures the twist along the~N�~B plane.

Of this, the third equation governing the change in normal
is of most interest to us.

∂~N =�kv∂s~T� t∂s~B;or

j∂~Nj=
q

k2
v + t2j∂sj

Proofs of various theorems

We shall prove some of the theorems claimed in section 4.

Lemma 1Given aδ-sampleSof a surfaceF and two points
p;q2 Ssuch thatq2Cδ

p. Thenp2Cδ
q.

Proof: We will first show that the angle between the normal
at p and the normals at all the points onCδ

p is a constant, and
is related toδ. Specializing equation (2) by zeroing out the
torsion factor, we know that

~N+ ~∂N = ~N�kv∂s~T (11)

Therefore the cosine of the angle between~N and~N+ ~∂N
is simply 1=

p
1+(kv∂s)2 or 1=

p
1+δ2 which is a contant.

Since the dot product is just a function ofδ which is
constant throughout the surface, and since the deviation (or

dot product) is symmetric,p2Cδ
q.

Let p2 F. Define the contourCδ
p aroundp as before.

Theorem 1 (a) Consider any two pointsq; r 2Cδ
p. Then the

maximum ratio of edge distancesjpqj
jprj is bounded above by

a function of principal curvatures.

(b) Let Np be the unit normal toF at p and let ˆpq de-
note the unit vector fromp to q. Define the height function
H(p;q) = jNp � ~pqj. ThenH(p;q) is bounded above by the

quantity
p

1+δ2�1
kmin

. kmin is the smaller of the principal curva-
tures.

(c) Define the angle functionD(p;q) = jNp � p̂qj. Then

D(p;q) is a constant,
p

1+δ2�1p
1+δ2+1

, for all q2Cδ
p.

Proof: (a) From equation (4),kvqjpqj = kvr jprj = δ. There-

fore, jpqj
jprj =

kvr
kvq

. This ratio reaches maximum whenkvr is

maximum andkvq is minimum. They are attained when the
two directionsvr andvq are the principal directionsv1 and
v2. Therefore, the maximum ratio at every point is the ratio
of the principal curvatures at that point. But this is bounded
by our assumption.

(b) In order to prove the height function bound, let
us assume without loss of generality thatp is the ori-
gin and the normal vector atp is (0;0;1) and q is given
by the point(x;y;h(x;y)). Then H(p;q) is simply h(x;y).
From equation (1) we know thath(x;y) can be rewritten

as kvr
2

2 . Also ourδ-sampling criterion gives us the equation

kv

q
r2+

k2
vr4

4 = δ. After some simple algebraic manipula-

tion and replacingkvr
2

2 by h, we get the quadratic equation
k2

vh2+2kvh�δ2 = 0. The positive solution of this equation

is
p

1+δ2�1
kv

. It reaches a maximum when the normal curva-
ture is minimum. This value is attained at the smaller of the
two principal curvatures.

(c) The angle functionD(p;q) = h(x;y)p
x2+y2+h2(x;y)

. From

equation (1) and simplifying after substitutingr =
p

x2+y2,

we getD2(p;q) = k2
vr2

(4+k2
vr2)

. Using a similar manipulation as

was done for proving the height function bound but substitut-
ing k2

vr2 by d, we get the quadratic equationd2+4d�4δ2 =
0. The positive root of this quadratic equation is the constant
2(
p

1+δ2�1). Plugging this value into the expression for

D(p;q), we get
p

1+δ2�1p
1+δ2+1

. Therefore, all the points in the

curveCδ
p make the same angle with the normal atp.
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(a) 34834 points, 69630 triangles, 18.64 seconds (b) 16864 points, 33643 triangles, 7.90 seconds

(c) 20021 points, 39862 triangles, 10.53 seconds (d) 12837 points, 25438 triangles, 7.61 seconds

(e) 30937 points, 61772 triangles, 20.99 seconds (f) 83034 points, 165981 triangles, 44.41 sec-
onds

Figure 7: Triangulations generated by our algorithm. Below each image, we include the number of points and triangles gener-
ated, and the running time of the algorithm.
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