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olume rendering is a powerful computer graphics technique for

visualizing three-dimensional data.! While much visualization
creates a rendering only of surfaces—though they may be surfaces of
3D objects—volume rendering lets us also see “inside,” beneath the
surface of the object being represented. This technique models a vol-
ume as cloudlike cells of semitransparent material. Each cell emits
light, pardally wansmits light from other cells, and absorbs some in-
coming light (see “Volume Rendering” sidebar). For instance, while
a surface rendering of the human body might show the skin, a com-
plete volume rendering also shows the bones and internal organs, vis-
ible from any side in proper perspective.

Volume rendering began with medical visualization but has migrated
to other fields, including visualization and graphics for nonscience
uses. Objects of visualization need not be tangible; in fact, volume ren-
dering is especially well suited for representing the 3D volumetric
scalar and vector fields that frequently arise in computational science
and engineering.

Volume rendering is a nontrivial technique and can be slow. To ef-
fectively use it in studying complex physical and abstract structures,
researchers and engineers need a coherent, powerful, easy-to-use vi-
sualizadon tool. This tool should allow for interactive visualization,
ideally with support for user-defined “computational steering,” that
is, the ability to change parameters during simulation.

But such a visualization tool presents development issues and chal-
lenges. First, even with the latest volume-rendering acceleration tech-
niques running on top-of-the-line workstations, it still takes up to'sev-
eral minutes to volume-render an image—far from interactive! The
large parallel computers that create the most detailed scientific simu-
lations can generate data sets typically on the order of 32 to 512
megabytes and ranging up to 16 gigabytes. Second, even if rendering
time is not a concern, large data sets may be too expensive to store and
extremely slow to transfer over network links to typical workstations.

This raises the question of whether visualization should be per-
formed directly on the parallel machine generating the simulation
data, or sent to a high-performance graphics workstation for postpro-
cessing in the traditional manner. If the visualization and simulation
software were integrated, we would need no extra storage, and visual-
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Volume Rendering

Volume rendering accumulates information from voxels
(volumetric “pixels”) in a 3D data set to produce a2D
image, allowing structures in the data to be examined care-
fully. The technique models the volumetric data set as cloud-
like material that scatters, emits, and absorbs fight." Several
algorithms can be used. With the ray casting algorithm, a ray
is cast in object (or volume) space for every pixel in the im-
age. Roughly, for eachray the rendering equation
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is integrated, where I(f) represents the light intensity ema-
nating from a given portion of the volume and o(s) is the
differential absorption of light (to calculate attenuation
along the viewing direction). The integral is calcutated by a
simple numerical quadrature scheme from a set of uniform
samples. I(f) and o(t) are calculated by assigning. transfer
functions—table lookups. based on the original volume data
f(x, y, ) computed by trilinearly interpolating the eight
values defined at the volume’s closest points. Each sample
contains the color and opacity at a certain distance from
the eye. With color and opacity known, we easily accumu-
late the final pixel, either back-to-front or front-to-back, in
a process called compositing.

For instance, Figure A depicts back-to-front
compositing: If the current voxel has color C, opacity o
and incoming intensity of color I, the outgoing.intensity I’
is given by what computer graphics people call the “over”
operator, since it lays down one voxel over another:

IF=C+I(1-ay=Coverl

The colors are saved premultiplied by the opacities (the
actual color is C/a), which saves one multiplication per
compositing operation. Compositing is associative—
that is, ((A over B) over C) gives the same result as
(A over (B over C))—which is important for parallelization.
Transfer functions specify what portions of the volume are
relevant for visualization. Like color maps, transfer functions
specify color and opacity for each voxel. To locate interesting
properties in data, researchers must often try different com-
binations of transfer functions (see Figure B) and viewing
parameters. For instance, our eyes are well trained to'see
patterns in-moving scenes (such as rotations). Thus,
especially with complex data lacking visible hard edges, we
would like to be able to animate the visualization. Unfortu-
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Figure A. Ray casting combines the color and intensity of voxels along
each line of sight in 3D data to produce a pixelin the 2D visualiza-
tion of the data. Black voxels have been composited, blue is being
worked on, ved voxels bave not been done yet.

Figure B. Volume rendering of MRI data.

nately, volume rendering is. typically slow,even for small data
sets, especially when the volume is relatively transparent.

For example, using VolVis, an-advanced but nonparallel
volume renderer, it takes hours to generate animations of
the data sets shown in this article. With our PVR system, we
can generate even the largest animations in a few seconds
to a few minutes because the system scales easily.’
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ization could be an active part of the simulation.  user observe and modify a simulation as it pro-
Also, integrating simulation and visualization in  gresses, rather than wait for painfully long runs
one tool allows for the possibility of interactively ~ on expensive machines, only to discover during
“steering” the simulation. This developing postprocessing that the simulations were wrong
methodology of computational steering letsa  or uninteresting.
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PVR: PARALLEL VOLUME RENDERING

- Parallel Volume Rendering
- The need to render very large data sets faster, coupled with
more widely available parallel and distributed machines, is the
. force behind parallel volume-rendering research. Good start-
__ing points in the literature are the recent survey by Tom Crock-
. ett! andthe proceedings of the Parallel Rendering Symposia
ot 93 195), the ACM Volume Visualization Symposia, and the
- IEEE Visualization conferences.

Parallel volume rendering can exploit three main types of
_ parallelism: ‘

, 0 Ob/ect—space parallellsm where each rendering node

_ getsa portion of the data set.

. Image space parallelism, where different nodes

‘ compute drs;omt parts of the image.

- Hime-space ot temporal parallelism, where different por-
f’y tions of the rendering plpellne are divided, pipeline fashion,

'[ among |ndependent sets of nodes

, |n addltlon to our group s efforts on the PVR system, other
, researchers have developed several different algorlthms and
; systems based on these types of parallelism,

- The Shastra prolect at Purdue has developed tools for dis-
trlbuted and collaborative visualization.? The system imple-

:; ' ments parallel volume V|sual|zat|on with a mix of image-

f space and object-space load balancing. These researchers

‘i report using up to four processors for'computation but give
;' few details, making it hard to evaluate the system’s usability
in a,masslvely parallel environment.

__ John Rowlan® and his colleagues describe a distributed vol-
ume-rendering system implemented on the 1BM SP1. The
system apparently shares some characteristics with our PVR
_system. In particular, it runs on a massively parallel machine,
. provides object-space partitioning, uses separate rendering
“and composrtlng nodes, and provides a front-end graphical
user interface: Unfortunately, Rowlan provides few details on
the architectural design and implementation, and describes
the rendering only briefly: As far-as we know, their system
does not provide the flexibility, portability, and performance
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of PVR. For instance, it does not support multlple rendenng
or.compositing clusters: o
Another similar system is Discover,* developed at Natlonal] '
Cheng-Kung University; Taiwan. Researcher: eveloped Dis-
cover, which can use remote processor pools, for custom
medical imaging applications. It offers a cllent—server ,
architecture, including suppett for Microsoft Wlndows
Our group is particularly interested ,
that run on distributed-memory machines, such as the Intel
Paragon and the ASC|:-teraflops machine. In these machlnes .
which limit each node’s:-memory access to'its local memory,
we must divide the data set among computing nodes. This
requires that we later group volume samples back together
in an.image.
All ray-casting parallel methods dlffer prrmanly in th
they handle this division and regrouping. Our PVR system
parallelization method:is based ona comblnatron of data set

- Figure C. PVR volume rendering illustm’fés é,onteht-l}ﬂsed Toud bal-

ancing: A subdivision of the MREbead for eight provessors isshowm,

20

In this article, we describe the PVR (Parallel
Volume Rendering) system that we have devel-
oped in a collaboration between the State Uni-
versity of New York at Stony Brook and Sandia
National Laboratories. PVR is an attempt to
provide an easy-to-use portable system for high-

performance visualization with the speed re-

quired for interactivity and steering. The cur-
rent version of PVR consists of about 25,000
lines of Cand Tel/Tk code. We've used it at
Stony Brook, Sandia, and Brookhaven National
Labs to visualize large data sets for over a year.

Overview of PVR

Our original goals were to achieve portability
and performance for rendering beyond that of
available systems and to provide a platform for
further development. In a way, PVR is more than
a rendering system; its components have been
specially designed to enable user-defined com-
putational steering. With PVR, it is much easier
to build portable, high-performance, complex,
distributed visualization environments or DVEs.

Unlike several other approaches to parallel
volume rendering (see “Parallel Volume Ren-
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load balancing® and compositing® schemes proposed
elsewhere. ‘

In our volume-rendering implementation, we divide the
processors into two distinct. groups-of nodes: rendering-and
compositing nodes. The rendering nodes get portions of the
data set; the compositing nodes are responsible for turning
a collection of subray images into a complete and correct
image for viewing.

In PVR, every rendering node receives part of the data set
with approximately the same number of nonempty voxels, as
shown in Figure C. Other approaches, such as giving the
same amount of volume to each node, are also feasible.®
Dyhamic load-balancing schemes have been tried” but are
harder to implement.

The PVR rendering nodes sample and composite their part of
a ray. To avoid global communication, each subvolume region
assigned to a rendering node is convex and belongs to a global
BSP-tree, which makes compositing simpler. The compositing
nodes regroup all subrays together consistently to keep image
correctness, This calculation is only possible because composi-
tion is associative, so-if we have to subray samples where one
ends and the other starts, we can combine their samples into
one subray recursively until we have a value that constitutes the
full ray contribution to a pixel.

Ma et al.® approached compositing differently, switching
the rendering nodes between rendering and compositing.
Our method is more efficient because we can use the
special structure of the subray composition to yield a high-
performance pipeline, where multiple nodes implement the
complete pipeline (see Figure 4 in the main text). Also, the
structure of compositing requires synchronization and light-
weight computation, making it much less attractive for paral-
lelization over many processors.:(In-a more recent paper Ma
does divide the nodes into two classes.?)

The PVR structure lets'us exploit all three types of
parallelism mentioned above. By using more than one
rendering cluster to compute an image, we use “object-space
parallelism” and “image-space® parallelism” (we can specify
that each cluster in PVR compute disjoint scanlines of the

same image). The clustering approach coupled with the
inherent pipeline parallelism available in the recursive
compositing process gives rise to “time-space parallelism.” In
the latter, we can exploit multiple clusters by calculating sub-
rays for several images concurrently that are sent down the
compositing pipeline concurrently. We perform each compo-
sition ‘step in lockstep to avoid mixing of images.
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dering” sidebar), PVR uses a component ap-
proach to building an interactive, distributed
system. At its topmost level, it has a flexible and
high-performance client-server architecture for
volume rendering. The PVR system has the fol-
lowing key features:

¢ Transparency—PVR hides most of the
hardware dependencies from the distributed vi-
sualization environment and the user.

¢ Performance—PVR provides high-speed
pipelined ray casting with a load-balancing

WINTER 1996

scheme that enables performance fine-tuning
for any given machine configuration.

¢ Scalability—All system algorithms are grace-
fully scalable. Scalability concerns machine size
as well as growth in data set and image size.

¢ Extensibiliry—The PVR architecture can be
easily extended, making it easy for the DVE to
add new functionality. Also, new functionality
can be easily added to the PVR shell and its cor-
responding kernel to accommodate user-defined
computational steering coupled with visualiza-
tion.
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_____________________________________________________

File 1O PVR shell

: |Display window ; acoma.cs.sandia.gov
: | Display window Session TCP/P

v handler =§' connection [ ™ Renderer
i Display window l

| Py \ Tel/Tk Session | ! TCP/IP '

i ¢ > | ondler ™ connection [ Renderer

I / interpreter andler | -, l

! | Display window : oI
; Session E TCP/IP :

; handler [ connaction [~ Renderer
' | File VO ! ‘

Figure 1. The PVR architecture, with an emphasis on the PVR shell. The Tcl/Tk core
acts as glue for the client components. Everything except the renderers runs on the
user’s workstation. The renderers run remotely on parallel machines.

an Intel version of OSE/1, in-
stalled at Stony Brook. The
system uses a single protocol
to handle multiple sessions on
machines running different
operating systems.

A session specifies the num-
ber of nodes it needs and the
parameters passed to. those
nodes. The pvrsh and the pvr-
ren interactively exchange, for
example, rendering configura-
tion information, rendering
commands, image sequences,
and performance and debug-
ging information.

The flexible rendering
specification means you can
specify simple rendering ele-

System complexity limits the reliability of ments, such as changing transformation ma-
large software systems. Distributed systems ex-  trices, transfer functions, image sizes and data
acerbate this problem with asynchronous and  sets. Moreover, with commands (see Table 1)
nonlocal communication. PVR attempts to pro-  in a high-level format, you can specify the
vide just enough functionality in the basic sys-  complete parallel rendering pipeline. With
tem, through a component approach, to allow  these parameters, you can use the pvrsh to
development of large, complex visualization and ~ specify almost arbitrary scalable rendering

steering applications. Our client-server archi-  configurations.

tecture has coupled rendering/computing We implemented the PVR shell as a single
servers on one side and the client user worksta-  process (which simplifies porting to other op-
tion on the other. erating systems) in about 5,000 lines of C

We implemented the PVR client-server ar-  code. We augmented our version of the
chitecture in two main components: Tel/Tk interpreter with TCP/IP connection

capabilities. To support several concurrent ses-
¢ the PVR shell (often abbreviated pursh),  sions, the system performs all communication

which runs on the user’s workstation, and asynchronously. We use the Tk_Create-
¢ the PVR renderer (purren), which runs on  FileHandler () routine to arbitrate be-
large parallel machines. tween the different sessions’ input. (We could
have used a Unix select call and polling in-

The PVR shell, pvrsh stead, but that makes the code more complex.)

The PVR shell, an augmented Tel/Tk shell,  Sessions work as interrupt-driven commands,
gives you a single new object: the PVR session. ~ responding to requests one at a time. Every
Tel/Tk, which is a well-designed, debugged  session can receive events from two sources at
script application language and powerful graph-  once: the user keyboard and the remote ma-
ical environment, has helped reduce the system  chine. The system needs locking and disabling
complexity. interrupts to ensure consistency inside critical

The PVR session is an object (in the Tk sense)  sessions.

that contains attributes. A key attribute is the Our code structure lets the user augment ses-
one that binds a session to a particular parallel - sion functionality either externally or internally.
machine. Figure 1 shows some of the PVR shell  External augmentation occurs without recom-
internal architecture and its multiple sessions  pilation, such as that performed by the user in-
capabilities. It shows three sessions, two on an  terface to show images as they are received asyn-
Intel Paragon XP/S with over 1,840 nodesrun-  chronously from the remote parallel server.
ning Sunmos (Sandia—University of New Mex-  Internal augmentation requires source code
ico Operating System), installed at Sandia, and  changes. The source code structure allows easy
one on an Intel Paragon with 110 nodes running  additions of functionality.
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The PVR renderer, pvrren
The PVR renderer runs re-

motely on a parallel machine
(see Figure 1) and has several
components, the most com-
plex being the rendering code
itself. To start up multiple par-
allel processes at the remote
machine, we use the PVR dae-
mon, pvrd. On the remote ma-
chine, the handling process al-
locates the computing nodes
and runs the renderer code on

Table 1. Some external PVR commands. They can be typed interactively, placed in
execution files, or embedded in applications.

Command

Description

:s open M:N

:s image window W
:s image callback F

:s image file F

:s set Option Val
:s set -cluster C
:s set -group G

M is an Internet address; N is a port number.

Wis a Tk photo widget.
Fis a procedure to be called every time a new

image is received.
Fis the name of the local file name where the

video stream is saved.
Changes system status.

Sets cluster size.

Groups multiple clusters, to exploit image-based

them. One PVR daemon can
allocate several processes.
The renderer is the code that
actually runs on the parallel
nodes. The overall code struc-
ture resembles a SIMD (single
instruction, multiple data) ma-
chine with high-level and low-

level commands. There is one latency

:s set-imagesz X, Y
:s render rotate X, ¥,Z S,EEN

:s.performance memory cluster

:s performance comp cluster

parallelism.
Sets the desired image resolution.

Sends a rendering request. Specifies the axis of

rotation and initial, end, and incremental

angles.

cluster.

Returns the amount of data set memory in each

Estimates how long it will take to composite

images in the current cluster configuration.

master node, similar to the mi-
crocontroller on a Thinking
Machines CM-2, and several slzve nodes. Slave
functions depend completely on the master. The
master receives commands from the PVR shell,
translates them, and takes actions such as chang-
ing the slaves’ states and sending them detailed
instructions. ,
For flexibility and performance, instructions
are sent to the nodes through action tables (simi-
lar to SIMD microcode). To ask the nodes to
perform some action, the master broadcasts the
address of the function to be executed. On re-
ceiving that instruction, the slaves execute the
function. With this method, it’s simple to add
new functionality because the added function-
ality can be performed locally, without chang-
ing global files. Also, every function can be
optimized independently, with its own commu-
nication protocol. One shortcoming of this
communication method, as with SIMD ma-
chines, is that you must be careful with nonuni-
form execution, in particular because the Intel
NX communication library (both OSF and Sun-
mos have support for NX) has limited function-
ality for handling nodes as groups. For example,
in setting up barriers with NX it’s impossible to
select a group from all allocated nodes. Newer
communication libraries such as MPI? solve this
shortcoming by introducing groups of nodes.
The master node divides other nodes into
clusters. Each cluster has a specialized compu-
tational task; multiple clusters can cooperate in

WINTER 1996

High-level
Master
commands
Low-level commands
I | [ ] S
| | | |
Rendering Rendering Rendering Rendering
cluster cluster cluster cluster
L | 1 |
1 |
Compositing Compositing
cluster cluster
Rendering pipeline
Single Multiple
node nodes
Image Collector Low bandwidth
sequence High bandwidth

Figure 2. In PVR, the master node receives high-level commands
that are converted into virtual microcode by action tables. When
rendering is the task at hand, the high-level commands are for gen-
erating animations by rotations and translations. The rendering
clusters work in parallel. The collector groups images together and

sends an ordered image sequence to the client.

groups to perform larger tasks. Cluster configu-
rations require only that the basic functions be
specified in user-defined libraries linked in a sin-
gle binary. During runtime, you can use the
master to reconfigure clusters according to im-
mediate goals and use the PVR shell to interac-
tively send such commands. Figure 2 shows how
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Figure 3. Data partitioning of a volume (shown in
2D cross section). The seven lines (planes in 3D)
marked with binary numbers partition the
volume into eight pieces A to H in a canonical
hierarchical manner. A line-of-sight ray, with dis-
crete samples shown as dots, passes through the
volume. The ray’s samples get composited back
into a single value as shown in Figure 4.

the configuration for the PVR system’s high-
performance volume renderer makes use of such
a clustering scheme.

This clustering paradigm could help in im-
plementing user-defined computational steer-
ing. This would usually be done by adding the
functionality to the action tables (for example,
linking the computational code with PVR dis-
patching code), and also adding extra options to
the PVR shell to interactively modify the rele-
vant parameters. '

PVR volume-rendering code was the inspira-
tion for this overall code organization and is a
very good application to demonstrate its fea-
tures. However, because this article focuses on
describing the PVR system, not on the volume-
rendering code, in the next section we only
sketch the implementation.

Volume-rendering pipeline

Besides the master node, the PVR rendering -

pipeline is composed of rendering nodes, composit-
ing nodes, and a collector node (usually just one), as
in Figure 2. Optimal rendering performance and
flexibility require this specialization. All the clus-
ters work in a simple dataflow mode, where data

IR AR R N R R R R YRR

Rendering cluster

!W*Wﬁ’ﬂﬁ

Compositing cluster

Figure 4. The internal structure of one composit-
ing cluster, one rendering cluster, and their inter-
connection. In PVR, communication between the
compositing and rendering clusters is flexible;
since the first level of the compositing tree han-
dles a set of tokens to guarantee consistency, sev-
eral rendering clusters can work together in the
same image. Because of its tree structure, one
properly synchronized compositing cluster can
work on several images at once, depending on its
depth. The compositing cluster shown relates to
the decomposition in Figure 3.

moves from top to bottom in a pipeline fashion.
Every cluster has its own fan-in and fan-out
number and type of messages (see Figures 3 and
4). The master configures (and reconfigures) the
overall dataflow with user-defined and automatic
load-balancing parameters.

Rendering clusters reside at the top level. The
clusters’ nodes resample and shade a given vol-
ume data set. Generally, the inputis a view ma-
trix, and the output is a set of subimages, each
related to a node in the compositing binary tree.
The master can use multiple rendering clusters
working on the same image (but on disjoint
scanlines) to speed up rendering. Once PVR
computes the subimages, they are passed down
the pipeline to the compositing clusters..

The compositing clusters are organized in a
binary tree structure, matching that of the com-
positing tree that corresponds to the decompo-
sition of the volume on the rendering nodes.
The number of processors doing compositing
can differ from the number of nodes in the com-
positing tree, as we can apply virtualization to
fake more processors than allocated. We pipeline
images down the tree, with every iteration com-
bining the compositing results until all the pixels
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are a complete depth-ordered
sequence. At the root of the
compositing tree, pixels are
converted to red-green-blue
(RGB) format and sent to the
collector node(s).

The collector node receives
RGB images from the com-
positing nodes and compresses
them with a simple, fast run-
length encoding scheme. Fi-
nally, the system either sends
the images to the PVR shell for
user viewing (or saving), or lo-
cally caches them on the disk.

Details more completely de-
scribing our system and per-
formance issues related to
CPU speed, synchronization,

source: stat.icl

;inthe specified window; and draw a small
; performance graph
pvr session :brain ; creates a session called “brain”
‘brain image window .rgb.p
:brain image callback imgCaliback
:brainopen . acoma.cs.sandia.gov

; specifies the external command

;- opens a connection with-acoma using the

; default number of nodes (100); the defaults
;-are in.pvrsh; if this command suceeeds;, we
; are connected g

:brain set "~dataset brain:slc +specifies the data set

: External command specified in stat.tcl, it will
; placeimages that get fo the session handler

» specifies the window that receives the images

brainset ~cluster 1,16 =group 0,0,1,1 ;14 rendering clusters of 16 nodes divided into

;2 groups, nodes in a group share the same
;image calculation: .-

sbrainset . ~imagesz 512,512 : specifies the image size

:brainrender rotation 01,0 1559:60 - ;specifies the rendering of 45:images, starting

: from one guarter rotation along the y axis

Figure 5. A simple PVR program with a set of PVR rendering commands. This
program renders images of a human brain. The commands can be put in a file and

executed in batch, or can be typed interactively on the keyboard (or mixed). You can

write Tcl/Tk code (for example, “stat.tcl”) to take care of portions of the actions.

and memory usage appear
elsewhere.>*

Rendering with PVR

Figure 5 shows a simple PVR program, which
demonstrates the seamless integration with
Tel/ Tk, the flexible load-balancing scheme, and
the interactive specification of parameters. The
set command can have several options (in Fig-
ure 5, options are usually specified in multiple
lines but could be specified in a single line). For
instance, - imagesz specifies the size of images
output by the system.

A cluster of multiple nodes and a group of clus-
ters are the two basic components of the PVR
system’s load-balancing scheme. Together they
specify flexible configurations of image-space,
object-space, and time-space parallelism. The
master node assigns different image scanlines to
rendering clusters, and assigns each group of
clusters a complete image. The -cluster and
-group options are used to specify this unique
capability of the PVR system’s load-balancing
scheme. With both optons, you can specify the
relative sizes of the rendering and compositing
clusters together with the image calculation
allocation.

Several scalability strategies are possible. A
rendering cluster must be large enough to hold
the entire data set and at least a copy of the im-
age. By increasing the cluster size (its number
of nodes), the memory needed per node de-
creases. By grouping clusters (splitting the im-~
age computation across multiple clusters), the
number of scanlines per given cluster decreases,
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lowering both the image memory requirements
and the computational cost, thus speeding up
image calculation.

You can use the same commands to configure
compositing clusters. These don’t scale at the
same rate as rendering clusters, because com-
positing is a relatively light-computation, high-
synchronization operation, unlike rendering.
Compositing nodes need memory to hold two
copies of the images, which can be quite large
(our parallel machine nodes only have between
16 and 32 Mbytes of RAM). The compositing
latency increases as the number of nodes in-
creases (the actual rate of increase depends on
the height of the compositing tree).

How PVR can be used

PVR is a flexible system that can be used for vi-
sualization in many ways. For example, the PVR
system architecture facilitates the visualization of
time-varying data, such as the time-step volumes
computed during a computational fluid dynamics
simulation. When rendering time-varying data,
we add a permanent caching cluster to the pipeline
in Figure 2 that efficiently distributes the volume
data to the rendering nodes. We use the caching
nodes only as smart memory; they hide I/O la-
tency from disk (or other sources) and are used
as buffer nodes to optimize the computation dur-
ing our content-based load-balancing data distri-
bution. You can thus visualize a data set for as
long as it takes to receive updated data. Handling

~ data that changes too rapidly (that is, faster than
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Figure 6. The simple PVR GUL. The user specifies general rotations
in the main window (right). Clusters are configured at upper left.
At lower left is a volume rendering of a 100 x 110 x 92 data set
showing T-cell receptor density on the surface of a T-cell/B-cell in-
terface. This lets biologists clearly check that chemical interactions
are actually happening. The data sets were generated by immuno-
fluorescence microscopy, and prepared for visualization by decon-
volution on Sandia’s Intel Paragon. Volume-rendering animations
were generated at multiple frames per second using PVR.®

we can move and render it) is impossible because
it would require excessive buffering.
Another use for our parallel renderer is as a vi-

Figure 7. PVR volume rendering
of the 512 x 512 x 1,877-voxel
Visible Human data set.
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sualization server for large
computational parallel jobs.’
For this, you would preallocate
nodes that can be shared some-
what by multiple users for visu-
alizing their data. To imple-
ment this server effectively,
you’d also need a caching clus-
ter, as described above. The
cluster, in this case, would cache
alternate user data sets.

PVR can be used to develop
distributed visualization envi-
ronments by means of the
client-server metaphor. A
DYVE developed with Tel/ Tk is
very portable, as Tel/Tk ver-
sions exist for almost all of the
operating systems available,
and TCP/IP, which underlies
our communication PVR pro-
tocol, is virtually universal.
"Table 1 listed more details on
some of the primitives from
which DVEs can be built.

Figure 6 shows a simple pro-.

R R R R R R R R R R R R N R R R R X

totype GUI, written in Tel/Tk, developed at
Sandia. Necessary rendering parameters (such as
image size and transfer function) are specified in
the right window, and the load-balancing para-
meters in the left window. This simple interface
uses only a single session, but we will be adding
more functionality. With the prototype GUI -~
written in a well-documented interface language,
users can straightforwardly add functionality to
the PVR GUI as needed.

PVR performance results

PVR has let us visualize numerous scientific data
sets, giving us useful performance information.
Our biggest challenge thus far is the limited
memory on. our Intel Paragon nodes. It’s diffi-
cult, from the software engineering point of view,
to consistently and reliably allocate memory, es-
pecially for visualization of very large data sets.

Visible Human ‘ ,

At the Supercomputing '95 conference in San
Diego, we demonstrated PVR’s ability to vol-
ume-render a 500-Mbyte data set, the 512 x 512
x 1,877—-voxel Visible Human from the National
Institutes of Health (see Figure 7). (This is only
a subset of the full Visible Human data set.) We
did this with approximately 128 rendering nodes
and 127 compositing nodes of the Intel Paragon
at Sandia, remotely displaying in San Diego.
Rendering a 512 x 512 image takes about 5 sec-
onds per frame. The main bottleneck is reading
the 500 Mbytes of data from the Paragon disks,
which currently takes around 15 minutes.

Figure 8 shows rendering times for each
frame of a 72-frame animation sequence of the
Visible Human data set. This is a full 360-de-
gree rotation along the y-axis. The times are
wall-clock times calculated at the collector node
as it receives the images and saves them to a lo-
cal disk. Each image is 400 x 400, with three
color channels. For rendering, PVR represents
the images as an array of pixels, each represented
as four floating-point numbers (amounting to
16 bytes per pixel). At 400 x 400, each image is
over 2.5 Mbytes.

"The system transmits images from the render-
ing nodes to the compositing nodes, until they
reach the root node of the compositing tree.
There, we convert images to RGB format, with
one byte per color channel, and transmit them to
the collector node. The collector saves the final
images (each 480,000 bytes) to disk. Computing
the complete animation takes 129.23 seconds, or
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1.79 seconds per frame, resulting in 32 Mbytes of
data being saved to disk.

The noticeable peaks in the image generation
time deserve further study. We believe the source
of the pipeline stalls is load imbalance and also
contention in writing the images to disk (the col-
lector node stalls the pipeline whenever an image
is received before the previous image is saved).
‘The first image takes considerable longer than
the others; this is the pipeline initialization cost.

Our next step is to extend the system to ren-
der the full RGB Visible Human data set (14
Gbytes) with high temporal resolution; that is,
many frames for the rotational animation. (A 72-
frame rotation uses 5-degree increments.
Smaller increments are highly desirable, but a
0.5-degree increment would expand the anima-
tion files to more than 300 Mbytes.) This pro-
ject would require the use of parallel I/O, a ca-
pability that we currently lack, and dedicated use
of a very large parallel machine, such as the en-
tre 1,840-node Intel Paragon at Sandia.

Scaling experiments

To show PVR’s scalability, we used a 256 x
256 x 937 version of the Visible Human data set.
Table 2 shows the rendering times for five dif-
ferent configurations, varying the number of
rendering and compositing nodes. While ren-
dering scales reasonably well, a comparison of
rows 2 and 4 and rows 3 and 5 in the table indi-
cates that it is apparently not cost-effective to
increase the size of the compositing cluster for
relatively small images.?

VR introduces a new level of interactivity to

high-performance visualization. Larger dis-
tributed visualization environments can be built
on top of PVR and yet be portable across several
architectures. These DVEs that use PVR have
the opportunity to effectively use available pro-
cessing power (up to a few hundred processors),
giving a range of cost/performance to end users.
PVR is a strong foundation for building cost-
effective DVEs.

PVR also introduces a simple way to create
user interfaces. No longer must users spend dme
coding in X/Motif (or Windows) to create the
desired user interface. The Tcl/Tk combination
is much simpler, gives more flexibility, and is
nearly as powerful as the other alternatives.

Even though we have completed a usable, ef-
ficient system, much work remains. We are, for
example, making the system stable enough for
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Figure 8. PVR rendering times for a 72-frame ani-
mation sequence of the 512 x 512 x 1,877 Visible
Human data set. Each image is 400 x 400.

general distribution, and we are creating a more
complete DVE (using the VolVis system’ as a
model) on top of PVR.

Functionality now missing from PVR must be
incorporated. The most important element is
probably the support for multiple data sets in a
session. Implementing this capability may com-
plicate the load-balancing scheme, and simple
heuristics might not generate well-balanced de-
composition schemes. If the volumes were al-
lowed to overlap (as in VolVis), the problem
would be even harder, and the solution would re-
quire heavier processing on the compositing end.
It might be necessary to have a reconfiguration
phase whenever a new volume is introduced, al-
though how to do so efficiently is unclear.

Research is ongoing to incorporate irregular
grid rendering in PVR. Moreover, we are con-
sidering adding a recent algorithm® that exploits
a high level of locality, which should ultimately
lead to more efficient communication schemes.
Finally, we are porting PVR to use MPI as the
communication layer, instead of NX.

Table 2. Scalability of PVR rendering times on a 72-frame animation
sequence of a 256 x 256 x 937 version of the Visible Human. Images

were 250 x 250.

Rendering nodes = Compositing

Total rendering Mean time

(and clusters) nodes time (s) per frame (s)
16 (1 -cluster) 15 104.10 1.44
32 (2 clustersof 16) 15 67.24 0.93
“ 64 (4 clustersof 16) 15 56.73 0.78
32 (1 cluster) 31 71.42 0.99
64 (1 cluster) 63 58.79 0.81
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~ For More Information
‘More t’PVR‘-related’ information, including publications, images,
and several animations of the data described in this article, can be
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. foundat

. http://WWw.cs.sunys‘b_edu/evislab
'+ http://cg.ams.sunysb.edu/~pvr
+ http//www.cs.sandia.gov/VIS

' “’PVR ysourcekcodéy(lntel Paragon version) is available to users will-
. lng to provide feedback to our beta testing program. (Contact
. csilva@ams.sunysb.edu.) '
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