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Abstract

Visibility determination, the process of deciding what surfaces can be seen
from a certain point, is one of the fundamental problems in computer graphics.
Its importance has long been recognized, and in network-based graphics, virtual
environments, shadow determination, global illumination, culling, and interactive
walkthroughs, it has become a critical issue. This course reviews fundamental is-
sues, current problems, and unresolved solutions, and presents an in-depth study of
the visibility algorithms developed in recent years. Its goal is to provide students
and graphics professionals (such as game developers) with effective techniques for

visibility culling.
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4:15 - 4:45 The visibility complex  Drettakis

4:45 - 5:00

Final questions (All speakers)



Speaker Biographies

Daniel Cohen-Or

Computer Science Department

School of Mathematical Sciencees

Tel-Aviv University, Ramat-Aviv 69978, Israel
E-mail: daniel@math.tau.ac.il

Daniel Cohen-Or is a senior lecturer at the Department of Computer Science since 1995. He
received a B.Sc. cum laude in both Mathematics and Computer Science (1985), an M.Sc. cum
laude in Computer Science (1986) from Ben-Gurion University, and a Ph.D. from the Department
of Computer Science (1991) at State University of New York at Stony Brook. He has been a
lecturer at the Department of Mathematics and Computer Science of Ben Gurion University in
1992-1995.

He is on the editorial advisory board of the international Computers and Graphics journal. He is
the Program Co-chair of the symposium on volume visualization to be held in the year 2000. He
is a member of the program committees of several international conferences on visualization and
computer graphics, including IEEE Visualization and Eurographics. Between 1996-8 he served as
the Chairman of the Central Israel SIGGRAPH Chapter.

Dr. Cohen-Or has a rich record of industrial collaboration. In 1992-93 he developed a real-time
flythrough with Tiltan Ltd. and IBM lIsrael for the Israeli Air Force. During 1994-95 he worked

on the development of a new parallel architecture at Terra Ltd. In 1996-1997 he has been working
with MedSim Ltd. on the development of an ultrasound simulator. His research interests are in
Computer Graphics, and include rendering techniques, client/server 3D graphics applications,
real-time walkthroughs and flythroughs, volume graphics, architectures and algorithms for
voxel-based graphics.

Yiorgos Chrysanthou

Department of Computer Science
UCL University of London

Gower Street, London WC1E 6BT, UK
E-mail: Y.Chrysanthou@cs.ucl.ac.uk

Yiorgos Chrysanthou is a lecturer in the Computer Science Department of University College
London, UK. He received his BSc in Computer Science and Statistics (1990, 1st Class Honours)
and his PhD in Computer Graphics (1996) from Queen Mary and Westfield College. During the
period of 1996-98 he worked for as a research fellow on the COVEN (Collaborative Virtual
ENvironments) ACTS project. His research interests include real-time rendering, virtual reality
and computational geometry.



Claudio T. Silva

AT&T Labs-Research

Shannon Laboratory

180 Park Avenue — room D265
Florham Park, NJ 07932-0971
E-mail: csilva@research.att.com

Claudio Silva is a Senior Member of Technical Staff in the Information Visualization Research
Department at AT&T Research. Before joining AT&T,aCidio was a Research Staff Member at

IBM T. J. Watson Research Center, where he worked on geometry compression, 3D scanning,
visibility culling and polyhedral cell sorting for volume rendering. Claudio got his PhD in

computer science at the State University of New York at Stony Brook in 1996. While a student,

and later as an NSF post-doc, he worked at Sandia National Labs, where he developed large-scale
scientific visualization algorithms and tools for handling massive datasets. His research interests
include graphics, visualization, applied computational geometry, and high-performance

computing.

George Drettakis

IMAGIS-GRAVIR/IMAG

Inria Rhones-Alpes

ZIRST - 655 avenue de I'Europe

F-38330 Montbonnot Saint-Martin, France
E-mail: George.Drettakis@imag.fr

George received his Ptychion (B.Sc. equivalent) in 1988 from the Dept. of Computer Science in
Crete, Greece. As an undergrad he worked at the ICS/FORTH on European Community research
programs. Then completed Masters (in 1990) and Ph.D. (Jan 1994) at the Dept. of C.S. at the
University of Toronto, Canada, under the supervision of Eugene Fiume . Dr. Drettakis also
worked as a summer intern in 1990 at the Advanced Technology Group at Apple Computer in
Cupertino Ca. in the US. Hi M.Sc. and Ph.D. were in Computer Graphics, and he worked in the
Dynamic Graphics Project in Toronto.

He was an ERCIM postdoctoral fellow in '94-'95. The first part of his ERCIM postdoc (Jan.
94-Nov. 94) was at iIMAGIS in Grenoble, France. The second part was in Barcelona, Spain at the
UPCI/LIiSi graphics group (Dec. 94 to Mar. 24 1995). The last part of his ERCIM tour of Europe

at VMSD-GMD in Germany (Mar. 24- Jul. 24 1995). He is now a member of the permanent
researcher staff at IMAGIS- INRIA in Grenoble.



Contents

Introduction to visibility Cohen-Or

“A Survey of Visibility for Walkthrough Applications”, D. Cohen-Or,
Y. Chrysanthou, and C. Silva, manuscript, 2000.

Object-space visibility Silva

“The Prioritized-Layered Projection Algorithm for Visible Set Estimation”,
J. Klosowski and C. Silva, Submitted for publication, 2000.

“Efficient Conservative Visibility Culling Using The Prioritized-Layered Projection Algorithm”,
J. Klosowski and C. Silva, Submitted for publication, 2000.

Image-space visibility Chrysanthou

“Virtual occluders: An efficient intermediate pvs representation”, V. Koltun, Y. Chrysanthou, and
D. Cohen-Or, Submitted for publication, 2000.

The visibility complex Drettakis

“A Multidisciplinary Survey of Visibility”, F. Durand, manuscript,2000.



Visibility Problems for
Walkthrough Applications

Daniel Cohen-Or

Computer Science Department
Tel-Aviv University

http://www.math.tau.ac.il/~daniel/

Visibility Problems for Walkthrough
Applications

Daniel Cohen-Or, Tel-Aviv University

Yiorgos Chrysanthou, University College of London
Claudio Silva, AT&T Labs-research

George Drettakis, iIMAGIS- INRIA in Grenoble




Virtual Reality Applications

# The user "walks" interactively in a virtual
polygonal environment.
Examples: model of a city, museum, mall,
architectural design

The goal: to render an updated
image for each view point and for
each view direction in interactive
frame rate

The Model

+ Composed of 3D
geometric objects -
Lots of simple parts

¢ Large and complex -
hundreds thousands
or even millions of

polygons




The Visibility Problem

¢ Selecting the (exact?)
set of polygons from the
model which are visible
from a given viewpoint

The Visibility Problem is important

# Average humber of
polygons, visible from a

viewpoint, is much smaller
than the model size




Indoor scene

Oil-tanker ship




Copying Machine

The Visibility Problem
IS hot easy...

A small change of
the viewpoint mlghT
causeslarge '
changes in the
visibility




The Visibility Problem

IS hot easy...

A small change of the viewpoint might
causes large changes in the visibility




Far details Close details

Culling

Avoid processing polygons which
contribute nothing to the
rendered image

A primitive can be culled by:

View Back Face Occlusion
Frustum Culling Culling
Culling




Pass through
scene
primitives
entirely
inside

odify remaining Remove

primitives so as to primitives
pass through only entirely
the portion inside outside the

view frustum

field of view

Backface Culling

cull away polygons
whose front sides face
away from the viewer

<90




B O el

Occlusion Culling

# Cull the polygons occluded
by other objects in the
scene

+ Very effective in densely
occluded scenes

Global: involves
interrelation between the

polygons




Visibility Culling

View-frustum culling

Back- face culling

>0

Y

Occlusion culling

Hidden Surface Removal

Polygons overlap, so somehow, we must
determine which portion of each
polygon to draw (is visible to the eye)

Output
sensitive
algorithms

=




Exact Visibility

Includes all the polygons which are at
least partially visible and only these

polygons. @
Approximate Visibility

Includes most of the visible polygons plus
maybe some hidden ones.
@

Conservative Visibility

Includes at least all the visible objects

plus maybe some additional invisible
objects

O

May classify invisible object as visible

but may never classify visible object as
invisible




Point Visibility

¢~ From this point only the red objects are
visible

24

Compute the set of all
polygons visible from
every possible
viewpoint from a region
(view-cell)

: - Cell Visibility

/" From this cell the red objects are visible

as well as orange ones
25




The Aspect Graph

Isomorphic graphs

26

The Aspect Graph

¢ ISG — Image Structure graph
The planner graph, defined by the outlines
of an image, created by projection of a
polyhedral object, in a certain view direction




The Aspect Graph (Cont.)

¢ Aspect
Two different view directions of an object
have the same aspect iff the corresponding
Image Structure graphs are isomorphic

e

The Aspect Graph (Cont.)

¢ VSP — Visibility Space Partition
+ Partitioning the viewspace intfo maximal connected

regions in which the viewpoints have the same view
or aspect

¢ Visual Event
A boundary of a VSP region called a VE for it marks a
change in visibility




The Aspect Graph (Cont.)

¢ Aspect Graph
# A vertex for each region of the VSP
# An edge connecting adjacent regions

Regions of the VSP are not maximal but maximal connected regions.

Aspect graph (Cont.)

2 polygons - 12 aspect regions




Aspect graph (Cont.)

3 polygons - "many"” aspect regions

Different aspect regions can have
equal sets of visible polygons




Supporting & Separating Planes

~~. 1,/. Separating -
2;\\\': o Supporting
3 %A\\\:>::” /I-
4 - BNV 4 Supporting
2y -7 [ :
-7 et “~~._ Separating

T is not occluded in region 1
T is partially occluded in region 2

T is completely occluded in region 3

Visibility from the light source

@




The Art Gallery Problem

See: ftp://ftp.math.tau.ac.il/pub/~daniel/pg99.pdf

Classification of visibility
algorithms

Exact vs. Approximated
-Conservative vs. Exact
‘Precomputed vs. Online

‘Point vs. Region

‘Image space vs. Object space
Software vs. Hardware
-Dynamic vs. Static scenes




Visibility is important and
Interesting

*Only a small fraction of the scene
is visible from a given point.

*Small changes in the view point can
cause large changes in the visibility




Point Visibility

From this point only the red objects
are visible

’% From-region

Visibility

Daniel Cohen-Or

Tel-Aviv University

Web-based system

polygons visible
from every possible
viewpoint from a
region (view-cell)

o Cell Visibility
Compute the set of all
g o8

"
From this cell the red objects are
visible as well as orange ones
W o A Lerercy Web-based client-server

atency!

%ﬁ = Latency! system
Latency!
5 g y

ﬁ‘n

viewcell

A walkthrough frame

\ o

A huge 3D scene

t




Sampling?

N

- Is the green
%ﬁﬂ building visible
from some point
e B P

<- E <§ in the viewcell?

viewcell

R WL Il t R “IF  Weakly Occluded
arger cell - no stron ea cclude
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visibility set




- 0__
-."‘:._ Individual
.

umbra are not

E effective...

- = )
-‘_"' The Umbra of a Single
- - Occluder

The individual
umbrae (with
respect to the yellow
viewcell) of object
1,2 and 3 does not
intersect. How fo
aggregate their
occlusion into the
large umbra (in light
blue)

Virtual Occluders

ey

Cost effective analysis
of the view cell size

Cell size:1.0x1.0 Cell size:0.8x0.8

Cell size:0.5x0.5 Cell size:0.2x0.2

Visibility Streaming

Building Virtual Occluders I

Computing the potential visibility set

Stream

Rendering the potential visibility set l




A Survey of Visibility for Walkthrough Applications

Claudio T. Silvd
AT&T Labs-Research

Daniel Cohen-Or
Tel Aviv University

Yiorgos Chrysanthou
University College London

Abstract One of the most interesting visibility problems in this con-
text can be stated as the problem of selecting the set of poly-
The last few years have witnessed tremendous growth in the gons from the model that are visible from a given viewpoint.
complexity of computer graphics models as well as network- More formally (after [13]), let the scen§, be composed of
based computing. Although significant progress has been modeling primitives €.g, triangles)S = {Po,P1, ..., Pn},
accomplished for handling large datasets on single graphics and a viewing frustum defining an eye position, a view di-
workstations, solutions for network-based graphics and virtual rection, and a field of view. The visibility problem encom-
environments are woefully inadequate. The situation is set to passes finding the fragments within the scene which are visi-
worsen in the future, with graphical models becoming increas- ble, that is, connected to the eyepoint by a line segment that
ingly complex. One of the most effective ways of managing meets the closure of no other primitive. One of the obstacles

the complexity of virtual environments is through the applica-
tion of smart visibility methods.
Visibility determination, the process of deciding what sur-

faces can be seen from a certain point, is one of the fundamen-

tal problems in computer graphics. It is required not only for
the correct display of images but also for such diverse appli-
cations as shadow determination, global illumination, culling
and interactive walkthrough.

The importance of visibility has long been recognized, and

to solve the visibility problem is its complexity. For a scene
with n = O(|S|) primitives, the complexity of the set of visi-
ble fragments might be as high @n?) (i.e., quadratic in the
number of primitives in the input).

What makes visibility an interesting problem is that for
large scenes, the number of visible fragments is usually much
smaller than the total size of the input. For example, in a typi-
cal urban scenes, one can see only a very small portion of the
entire city, regardless of one’s location. Such scenes are said

much research has been conducted in this area in the last thre¢o bedensely occludedn the sense that from any given view-
decades. The proliferation of solutions, however, has made point only a small fraction of the scene is visible [8]. Other

it difficult for the non-expert to deal with effectively. Mean-
while, in network-based graphics and virtual environments,
visibility has become a critical issue, presenting new problems
that need to be addressed.

In this survey we review the fundamental issues in visibil-
ity and conduct an in-depth study of the algorithms developed
in recent years. We will also identify existing problems and
discuss various unresolved issues.

1 Introduction

The termvisibility is very broad and has many meanings and
applications in various fields of computer science. Here, we
focus on visibility algorithms in support of virtual reality ap-

plications. For a more general survey see [15] (included in the
course CD-ROM). For those interested in the computational

geometry literature, see [13, 12, 14]. Zhang’s PhD thesis [49]
contains a short survey of computer graphics visibility work.

examples include indoor scenes, where the walls of a room
occlude most of the scene, and in fact, from any viewpoint in-
side the room, one may only see the details of that room or
those visible through thportals (Fig. 1). A different exam-
ple is a copying machine (shown in Fig. 2) where from the
outside one can see only its external parts. Although this is
intuitive, this information is not available as part of the model
representation, and only a non-trivial algorithm can determine
it automatically. Note that one of its doors might be open.

Visibility is not an easy problem, since a small change of the
viewpoint might cause large changes in the visibility. It means
that solving the problem at one point does not help much in
solving it in a nearby point. An example of this can be seen in
Fig. 3. Theaspect graptidescribed in Sec. 3) and thisibility
complex(described in [15]) will shine light into the complex
characteristics of visibility.

The rest of this paper is as follows. We first give a brief
description of some 3D graphics hardware features which are
important for visibility culling (Sec. 2). Then, we present a

Moller and Haines [34, Chapter 7] covers several aspects of taxonomy of visibility culling algorithms in Sec. 4. This intro-

visibility-culling.
We are primarily dealing with algorithms related to walk-

ductory part is then followed by more detailed description and
analysis of recent visibility-culling algorithms.

through applications where we assume that the scene consists

of a very large number of primitives. Moreover, we can as-

sume that models keep getting larger and more complex and

that the user appetite will never be satisfied by the computa-
tional power available. For very complex models we can usu-
ally do better with a smart rendering algorithm than with faster
machines.

*daniel@math.tau.ac.il
TY.Chrysanthou@cs.ucl.ac.uk
*csilva@research.att.com

2 3D Graphics Hardware

In this section, we briefly review some features of modern 3D
graphics hardware which are helpful for visibility calculations.
We do not cover the important topic of efficient use of spe-
cific graphics hardware, in particular the optimization of a par-
ticular application to an specific hardware. A good place to
start is the text by Moller and Haines [34]. The interested
reader should also consult the OpenGL tutorials given every
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Figure 1: With indoor scenes often only a very small part of the geometry is visible from any given viewpoint. Courtesy of Craig
Gotsman, Technion.

Figure 2: A copying machine; only a fraction of the geometry is visible from the outside. Courtesy of Craig Gotsman, Technion.

@ (b)

Figure 3: A small change in the viewing position can cause large changes in the visibility.



year at Siggraph.
Hardware features for specific visibility calculations are

2.3 Z-Buffer

usually bare-bones, because of the need of the graphics hard-T he z-buffer is similar to the stencil buffer, but it serves a more

ware to be streamlined, and very simple. Most often, by care-

ful analysis of the hardware, it is possible to combine a soft-
ware solution which exploits the basic hardware functionality,
but at the same time improves it considerably.

2.1 Graphics Pipeline

The graphics pipeline is the term used for the path a particular
primitive takes in the graphics hardware from the time the user

defines it in 3D to the time it actually contributes to the color
of a particular pixel on the screen. At a very high level, given
a primitive, it must undergo several simple tasks before it is
drawn on the screen.

Often, such as in the OpenGL graphics pipeline, a triangle
primitive is first transformed from its local coordinate frame
(in “object-space”) to a world coordinate frame; then it is

transformed again to a normalized coordinate frame, where

it is “clipped” to fit the view volume. At this point, a division
by “w” is performed, to obtain non-homogeneous normalized

coordinates, which are then normalized again to be in “screen-
space”. At this point, depending on a set of user-defined state

flags, the hardware can “reject” the primitive based on the di-
rection of its normal, this is called “back-face” culling, and it
is a very primitive form of visibility culling.

Once a primitive has passed all these phases,

intuitive purpose. Basically, the z-buffer saves at each pixel its
“depth”. The idea is that if a new primitive would be obscured
by a previously drawn primitive, the z-buffer can be used to
reject the update. The z-buffer consists of a number of bits per
pixel, usually 24 bits in several current architectures.

The z-buffer provides a brute-force approach to the prob-
lem of computing the visible surfaces. Just render each primi-
tive, and the z-buffer will take care of not drawing in the color
buffer those that are not visible. The z-buffer provides a great
functionality, since it is able to solve the visibility problem (up
to screen-space resolution) of a set of primitives in the time it
would take to scan-convert them all.

As a visibility algorithm, the z-buffer has a few drawbacks.
One of them is the fact that each pixel in the z-buffer is touched
as many times as the its depth complexity (which can be com-
puted with the stencil buffer), although one simply needs the
top surface of each pixels. Because of this potentially exces-
sive overdrawing a lot of computation and memory bandwidth
is wasted. Visibility pre-filtering technique, such as back-face
culling can be used to help improve the speed of rendering
with a z-buffer.

2.4 HP Occlusion-Culling Extension

the There have been several proposals for improving on the z-

“rasterization-phase” can start. Itis here that the colors of each buffer, such as the hierarchical z-buffer [21], and related tech-

pixel are computed. The hardware will incrementally fill sev-

niques. A simple, yet effective hardware technique for improv-

eral buffers in order to compute the image. The actual image ing the performance of the visibility computations with a z-

we see on the screen is essentially the “color buffer”. Other
buffers include the “stencil buffer” and the “z-buffer”. (There

buffer has been proposed by HP [39]. The idea is to add a feed-
back loop in the hardware which is able to check if changes

are other buffers, such as the accumulation buffer, etc., but we would have been made to the z-buffer when scan-converting a

do not use them anywhere in the rest of this paper.)

In OpenGL, updates to the different buffers can be
toggled by a set of function -calls,e.g. glEn-
able(GL _DEPTHTEST). One view of the OpenGL buffers
are as simple processors with little memory (just a few bits
each), and a very limited instruction set.

2.2 Stencil Buffer

The stencil buffer is composed of a small set of bits (usually
8 bits) which can be used to control which areas of the other
buffers,e.g. color buffer, are currently active for drawing. A

common use of the stencil buffer is to draw a piece of static

given primitive.

One possible use of this hardware feature is to avoid ren-
dering a very complex set model by first checking if it is
potentially visible. In general this can be done with the HP
occlusion-culling extension by checking whether an envelop-
ing primitive (usually the bounding box of the object, but in
general it might be more efficient to use an enclosing k-dop
[27]) is visible, and only rendering the actual object in case
the simpler enclosing object is actually visible.

An interesting feature of this hardware-acceleration tech-
nigue is that the fastest the z-buffer converges to the visible
polygons, the faster the rendering overall. It is possible to ac-
tually slow down rendering (since testing actually has a non-

geometry once (the cockpit of an airplane), and then mask the trivial cost) if primitives are rendered in some bad ordering
area so that no changes can be made to those pixels anymore (€.9, from back to front in visibility terms). Thus, it seem that

But the stencil buffer is actually much more flexible, since
it is possible to change the value of pixels on the stencil buffer

techniques which are able to find potentially visible polygons,
and draw them first would make the best use of this hardware

depending on the outcome of the test that is performed. For feature. Currently, this is supported in HP's fx graphics accel-
instance, a very useful computation that uses the stencil buffer erator series.

is to compute the “depth-complexity” of a scene. For this, one
can simply program the stencil buffer as follows:

glStencilFunc(GL_ALWAYS, "0, “0);
glStencilOp(GL_KEEP, GL_INCR, GL_INCR);

Which essentially means the stencil buffer will get incre-
mented every time a pixel projects on top of it. Fig. 4 shows
a visual representation of this. The stencil buffer is useful in
several types of visibility computations, such as real-time CSG
calculations [19], occluder calculations [15], etc.

3 The aspect graph

The aspect graph is an important theoretical concept that ev-
eryone dealing with visibility must consider. Let's look at the
two isomorphic graphs in Fig. 5. They are a projection of a 3D
object, however, we treat them as 2D entities. First, lets define
thelmage Structure grapfiSG) as the planner graph, defined
by the outlines of an image, created by projection of a poly-
hedral object, in a certain view direction. Then two different
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Figure 4: Depth complexity of the scene as rendered by (a) view-frustum culling, (b) a conservative occlusion culling technique.
The depth complexity ranges from light green (low) to bright red (high). If the occlusion-culling algorithm were “exact”, (b) would
be completely green.

view directions of an object have the saaspecif and only if
their corresponding ISG are isomorphic (see Fig. 6). Now we
can partition the viewspace into maximal connected regions
in which the viewpoints have the same view or aspect. This
partition is the VSP - the visibility space partition, where the
boundary of a VSP region is calledvisual evenfor it marks

a change in visibility.

Figure 7: 3 polygons - “many” aspect regions.

Figure 5: Two different view directions of an object have the Figure 7 shows a visibility space partition in 2D, which is

sameaspectf and only if the corresponding Image Structure  created just by three segments (the 2D counterparts of poly-
graphs are isomorphic. gons. One can observe that the number of aspect regions is
already large. For a typical number of segments (say tens of
The term aspect graph refers to the graph created by as-thousands) the number of regions exponentially increases. In
signing a vertex for each region of the VSP, where the edges terms of space and time it turns the aspect graph impractical.
connects adjacent regions. It is important to note that regions
of the VSP are not maximal but maximal connected regions.

_ Figure 8: Different aspect regions can have equal sets of visi-
< ble polygons.

= | However, as can be seen in Figure 8 different aspect regions
| can have equal sets of visible polygons. This means that there

‘ are many less different regions of different visibility sets than
different aspects.

Looking again at the aspect partition of two segments (Fig-
ure 9) we can treat one as an occluder and one as the occludee
then we define their endpoint connecting lines asstingport-
ing linesand theseparating linesThis lines partition the space

Figure 6: 2 polygons - 12 aspect regions.



into three regions (i) the region from which no portion of the
occludee is visible, (ii) the region from which only a portion
of the occludee is visible and (iii) the region from which the
occluder does not occlude any part of the occludee (see [10]).

1 A - occluder

T - occludee

2

Y
%

Supporting

T
Supporting

Soary, o

1

T isnot occluded from region 1
T ispartidly occluded from region 2
T isfully occluded from region 3

Figure 9: Supporting and separating planes.

4 A Taxonomy of Visibility Culling Al-
gorithms

Visibility algorithms have recently regained attention in com-
puter graphics as a tool to handle large and complex scenes,
which consist of millions of polygons. In the early 1970s
hidden surface removal (HSR) algorithms were developed to
solve the fundamental problem of determining the visible por-
tions of the polygons in the image. In light of the Z-buffer be-
ing widely available, and exact visibility computations being
potentially too costly, one idea is to use the Z-buffer as filter,
and design algorithms that lower the amount of overdraw by
computing an approximation of thvésible set In more precise
terms, define the visible s& C S to be the set of modeling
primitives which contribute to at least one pixel of the screen.
In computer graphics, visibility-culling research mainly fo-
cussed on algorithms for computing (hopefully tight) esti-
mations ofV, then using the Z-buffer to obtain correct im-
ages. The simplest example of visibility-culling algorithms
are backface and view-frustum culling [17]. Backface-culling
algorithms avoid rendering geometry that face away from the
viewer; while viewing-frustum culling algorithms avoid ren-
dering geometry that is outside of the viewing frustum. Even

View-frustum culling
QEk»Faﬂe Culling
visi

N

Occlusion Culling

Frustum

Figure 10: Three types of visibility culling techniques: (i)
view frustum culling, (ii)back-face culling and (jii) occlusion
culling.

which are at least partially visible, and only these poly-
gons.

The approximate visibility setA, is a set that includes
most of the visible polygons plus maybe some hidden
ones.

e Theconservative visibility se€, is the set that includes
at least all the visible objects plus maybe some additional
invisible objects. It may classify invisible object as visi-

ble but may never classify visible object as invisible.

4.1 Conservative Visibility

A very important concept is the idea obnservative visibil-
ity. The idea is to design efficient output-sensitive algorithms
for computingC, then use a standard HSR as a back-end for
computing the correct image.

These methods yield a potential visibility set (PVS) which
includes all the visible polygons, plus a small number of oc-
cluded polygons. Then the HSR processes the (hopefully
small) excess of polygons included in the PVS. Conservative
occlusion culling techniques have the potential to be signifi-
cantly more efficient than the HSR algorithms. Conservative
culling algorithms can also be integrated into the HSR algo-
rithm, aiming towards an output sensitive algorithm [21].

To reduce the computational cost, the conservative occlu-

though both of these techniques are very effective at culling Sion culling algorithms usually use a hierarchical data struc-

geometry, more complex techniques can lead to substantial ture_where Fhe scene is traversed top-down and tested for oc-

improvements in rendering time. Occlusion culling is the term  €lusion against a small number of selected occluders [11, 25].

used for visibility techniques which avoid rendering primitives N these algorithms the selection of the candidate occluders is

which are occluded by some other part of the scene. This tech- done before the_onl_lne visibility calculations. The efficiency of

nique is global and thus far more complex than local visibil- these methods is directly dependent on the number of occlud-

ity techniques. The kinds of visibility culling can be seen in €S and their effectiveness. Since the occlusion is tested from

Fig. 10. a pomt,_these algorithms are applied in each frame during the
It is important to note the differences between occlusion interactive walkthrough.

culling and HSR. HSR algorithms determined which portions

of the scenes needs to drawn on the screen. These algorithmgg 2 A Taxonomy

eventually remove the occluded parts, but in doing so, they are ) ] o )

much expensive, since they usually have to touch all the prim- In order to roughly classify the different visibility-culling al-

itives inS (and actually have a running time that is superlinear gorithms, we will employ a loosely defined taxonomy:

in the size ofS). Occlusion-culling techniques are supposed

to beoutput sensitivgthat is, their running time should be pro-

portional to the size 0¥ , which for most complex scenes is a

e Conservative vs. Approximated.
Few visibility-culling algorithms attempt to find the ex-

small subset. act visible set, since they are mostly used as a front-end
Let’s define the following notation for a scene consisting of for another hidden-surface removal algorithm, most of-
polygons: ten the Z-buffer. Most techniques described in this pa-

per are conservative, that is, they over estimate the vis-

e The exact visibility setV, is the set of all polygons ible set. Only a few approximate the visible set, but



are not guaranteed to find all the visible triangles, e.g.,
PLP [29, 28] (there is also a conservative version of PLP
which is described in [30]). Others attempt to be conser-
vative, but might actually miss small visible primitives,
such as HOM [50, 49], and also the OpenGL assisted
occlusion culling of Bartz et al. [4, 3].

Precomputed vs. Online.

Most techniques need some form of preprocessing, but
what we mean by “precomputed” are the algorithms that
actually store visibility computations as part of their pre-
processing.

Almost all of the From-region algorithms should be clas-
sified as “precomputed”. A notable exception is [31].

In general, the other algorithms described do their visi-
bility computation “online”, although a large amount of
preprocessing might have been performed before. For
instance, HOM [50, 49], DDO [5], Hudson et al. [26],
Coorg and Teller [11], perform some form of occluder
selection which might take a considerable amount of
time (on the order of hours of preprocessing), but in gen-
eral have to save very little information to be used during
rendering.

Point vs. Region.

The major difference here is whether the particular al-
gorithm perform computations that depend on the exact
location of the viewpoint, or performs bulk computations
which can be reused anywhere in a region of space.

Obviously, From-region algorithms perform their visibil-
ity computations on a region of space, that is, while the
viewer is inside that region, these algorithms tend to ren-
der the same geometry.

Most other algorithms attempt to perform visible-set
computations that depend on the exact location of the
viewpoint.

Image space vs. Object space.

Almost all of the algorithms create some form of hierar-
chical data structure. We classify algorithms as operat-
ing in “image space” versus “object space” depending on
where the actual visibility determination is performed.

For instance, HOM [50, 49] and HZB [21, 22] perform
the actual occlusion determination in image space (e.g.,
in HOM, the occlusion maps are compared against a
2D image projection and not the 3D original represen-
tation.). Other techniques that explore image-space are
DDO [5] (which also explores a form of object-space
occlusion-culling by performing a view-dependent oc-
cluder generation) and [4, 3].

Most other techniques work primarily in object-space.

Software vs. Hardware.

Several of the techniques described can take further (be-
sides the z-buffer) advantage of hardware assistance ei-
ther for its precomputation or during the actual render-

ing.

[15] makes non-trivial use of the stencil buffer; HOM

[4, 3] uses the OpenGL selection mode; and Meissner et
al [33] uses the HP occlution-culling test.

The HP occlution-culling test [39] is not actually an al-
gorithm by itself, but a building block for further algo-
rithms. It is also exploited in [30].

Dynamic vs. Static scenes.

A few of the algorithms in the literature are able to han-
dle dynamic scenes, such as [43] and HOM [50].

One of the main difficulties is handling changes to ob-
ject hierarchies that most visibility algorithms use. The
more preprocessing used, the harder it is to extend the
algorithm to handle dynamic scenes.

Individual vs. Fused occluders.

Given three primitives, A, B, and C, it might happen that
neither A or B occlude C by itself, but together they do
occlude C. Some occlusion-culling algorithms are able
to performoccluder-fusionwhile others are only able to
exploit single primitive occlusion.

4.3 Related Problems

There are many other interesting visibility problems, for in-
stance:

5

— Shadow algorithms. The parts that are not visible from

the light source are in the shadow. So occlusion culling
and shadow algorithms have a lot in common and by
many aspects they are conceptually similar. However,
shadow algorithms are usually solved in an exact way
and the principle of conservative visibility cannot be ap-
plied.

The Art Gallery Problem. One classic visibility prob-

lem is of posing grades in a gallery so that this set of
grads is minimal and covers all he walls of the gallery.
Where cover might have different meaning. In 2D this
is an NP-hard problem and very little is know in 3D. In
[16] some research in this problem has been made and a
practical algorithm for posing cameras automatically is
proposed.

Radiosity solutions. This is a much harder problem to
compute accurately. In Radiosity, energy needs to be
transfered from each surface to every othisible sur-
face in the environment. This requires a from-region
visibility determination to be applied at each surface or
patch. Exact solutions are not practical and techniques
such as clustering [42, 41] and hierarchical transfers [23]
are often employed.

Object-Space Culling Algorithms

Work on object-space occlusion culling dates back at least to
the work of Teller and &quin [44] and Airey et al. [1] on in-
door visibility. The work of Teller and &juin is mostly based

on 2D, since it resolves around computing potentially visible
sets for cells in an architectural environment. Their algorithm
For instance, the From-region technique of Durand et al first subdivides space into cells using a 2D BSP tree. Then
use the connectivity between the cells, and compute whether
[50, 49] uses the texture hardware to generate mipmaps; straight lines could hit a set of “portals” (mostly doors) in the
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Figure 13: The algorithm of Coorg and Teller [10] tracks vis-
ibility changes between two convex objects A and B by keep-
ing track of the relationship between supporting and separating
planes and the silhouette vertices and edges of the respective
objects. Courtesy of Satyan Coorg, MIT.

Figure 11: Results from [44] showing the potentially visible
set from a given cell. Courtesy of Seth Teller, UC, Berkeley.

A partially ¥
e handle the potential quadratic complexity computational blow
out. One drawback of this technique (as pointed out by the au-
thors in their subsequent work [11]) is exactly the fact that it
needs to reconstruct the visibility information for a continuous
sequence of viewpoints.
In [11], the authors propose a more efficient algorithm. (It
is still based on the visibility relationship shown in Fig. 12.)
Instead of keeping a large number of continuous visibility
) ) o o ] events, in [11], the authors dynamically choose a set of oc-
Figure 12: Figures highlights the visibility properties ex-  cluders, which will be used to determine which portions of the
ploited by the algorithm of Coorg and Teller [10, 11]. While rest of the scene cannot be seen. The scene is inserted into
an observer is between the two supporting planes to the left an object hierarchy, and the occluders are used to determine
of A, it is never possible to see B. Courtesy of Satyan Coorg, which portions of the hierarchy can be pruned, and not ren-
MIT. dered.
In this paper, the authors develop several useful building
blocks for implementing this idea, including a simple scheme
model. They elegantly modeled the stabbing problem as alin- to determine when the actions of multiple occluders can be
ear programming problem, and save in each cell the collection added together (see Fig. 14); and a fast technique for deter-
of potentially visible cells. Fig. 11 shows one of the results mining supporting and separating planes. Most importantly,
presented in their paper. Another technique that exploits cells they propose a simple metric for identifying the dynamic oc-
and portals in models is described in [32]. cluders which is based on approximating the solid angle the
object subtends:

Aocelndes B

5.1 Coorg and Teller [10, 11]

)

—AN-V)

—
DI
where A is the area of the occludé¥, the normalV the

viewing direction, and the vector from the viewpoint to the
center of the occluder.

Coorg and Teller have proposed two object-space techniques
for occlusion culling [10, 11]. The second one is most suitable
for use in the presence of large occluders in the scene. Their al-
gorithm explores the visibility relationships between two con-
vex objects as in Fig. 12. In a nutshell, while an observer is
between the two supporting planes to the left of A, it is never
possible to see B. Coorg and Teller technique uses simple con-
cepts such as this to develop a technique based on trackings 2 Hudson et al. [26]
visibility events among objects as the user moves, and the re-
lationships among objects change. The algorithm proposed in The work described in [26] is in several ways similar to the
[10] is conservative, and it explores temporal coherency as it work of Coorg and Teller [11]. Their scheme also works by
tracks the visibility events. dynamically choosing a set of occluders, then using those oc-
In [10], they give sufficiency conditions for computing the cluders as the basis for culling the rest of the scheme. The
visibility of two objects (that is, whether one occludes the differences between the two works lie primarily in details. In
other) based on tracking relationships among the silhouette [26], the authors proposes extra criteria for choosing the oc-
edges (see E on Fig. 13), supporting and separating planescluders. Instead of simply using the solid angle approxima-
of the different objects. They build an algorithm which in- tion, they also propose to take into account depth complexity
crementally tracks changes in those relationships. There, they and coherence of the occluders. They use a spatial partition of
also show how to use object hierarchies (based on octrees) tothe scene throughout their algorithm. For each cell, occluders



ever, it requires the computation of a special occupancy-based
dotecad tessellation, and the assignment to each cell of the tessellation

not detected

X # a solidity value, which is used to compute a special ordering

X LN
BN e on how primitives get projected.
V & The guts of the PLP algorithm consists of a space-traversal
~ algorithm, which prioritizes the projection of the geometric

primitives in such a way as to avoid (actually delay) project-
ing cells that have a small likelihood of being visible. Instead
of explicitly overestimating the algorithm works on a budget.
At each frame, the user can provide a maximum number of
primitives to be rendered, a polygon budget, and the algorithm
will deliver what it considers to be the set of primitives which
maximizes the image quality (using a solidity-based metric).
PLP is composed of two parts:

@ (b)

Figure 14: Figure illustrates that the algorithm described in
[11] can perform occlusion fusion if the occluders combine
to be a larger “convex” occluder. Courtesy of Satyan Coorg,
MIT.
Preprocessing.  First, PLP tessellates the space that con-
tains the original input geometry with convex cells. During
that will be used anytime the viewpoint is inside that cell are this one-time preprocessing, a collection of cells is generated
identified, and stored for later use. in such a way as to roughly keep an uniform density of primi-
The actual occlusion primitive is also different. For each tives per cell. The sampling leads to large cells in unpopulated
occluder, the authors build a shadow frustum using the view- areas, and small cells in areas that contain a lot of geometry.
point as the apex and passing through the occluder silhouette.Using the number of modeling primitives assigned to a given
Any cell that is inside this “pyramid” is considered occluded. cell (e.g, tetrahedron), aolidity valuep is defined. The ac-
By doing this for several occluders, a large portion of the scene cumulated solidity value used throughout the priority-driven

can be discarded. They use interference detection techniquegraversal algorithm can be larger than one. The traversal algo-
for speeding up the tests. rithm prioritizes cells based on their solidity value.

Preprocessing is fairly inexpensive, and can be done on
) large datasets (about one million triangles) in a couple of min-
5.3 BSP tree culling utes.

The method described in [26] can be improved using BSP ) . )
trees. Bittner et al. [6] combined the shadow frusta of the Reéndering Loop.  The rendering algorithm traverses the
occluders into amcclusion tree This was done in a way very  Cells in roughly front-to-back order. Starting from the seed
similar to the SVBSP tree of Chin and Feiner [7]. The tree Cell, whichin general contains the eye position, it keeps carv-
starts from a singléit (visible) leaf and each occluder is in-  ing cells out of the tessellation. The basic idea of the algo-
serted in turn into it. If the occluder reachetitdeaf then it rithm is to carve the tessellation alofayers of polygonswe
augments the tree with its shadow frustum, if it reachesaal- define the layering numbére [ of a modeling primitiveP in
owed(non-visible) leaf then it is just ignored since it means it~ the following intuitive way. If we order each modeling prim-
already lies in an occluded region. Once the tree is built the itive along each pixel by their positive (assume, without loss
scene hierarchy can be compared against it. The cube rep-Of generallty, _thaP is in the view frustum) distance to the eye
resenting the top of the scene hierarchy is inserted into the PoINt, we define(P) to be the smallest rank & over all of
tree. If it is found to be fully visible or fully occluded then ~ the pixels to which it contributes. Clearlg(P) = 1, if, and
we stop and act appropriately, otherwise its children are com- Only if, P is visible. Finding the rank 1 primitives is equiva-
pared with the occlusion tree recursively. This method has the |€nt to solving the visibility problem. Instead of solving this
benefit over [26] that instead of comparing the scene against hard problem, the PLP algorithm uses simple heuristics. The
each of theN shadow frusta, it is compared against one tree of traversal algorithnattemptso project the modeling primitives
depth (potentially) OY). by Iayers, that is, all primitives of rank_l, then 2 and so on. We
The above technique is conservative, an alternatiact do this by always projecting the cell in the froht (we call
method was proposed much earlier by Naylor [36]. That in- the from the coIIe_ctlon of cells_ that are immediate candlda_ltes
volved a merging of the occlusion tree with the BSP tree rep- fOr Projection) which is least likely to be occluded according
resenting the scene geometry. Although a much more elegantto their solidity values. Initially, the front is empty, and as
solution, it requires carefully engineered algorithms for build- cells are inserted, we estimate its accumulated solidity value

ing a good scene BSP tree and for the tree merging. to reflect its position during the traversal. Every time a cell
in the front is projected, all of the geometry assigned to it is

rendered.
5.4 Prioritized-Layer Projection [29, 28] PLP is very effective is finding the visible polygons. For

o L . ) more details about PLP, including detailed results, see [29, 28],
Prioritized-Layered Projectior{PLP) is a technique for fast  jhcluded in these course notes.

rendering of high depth complexity scenes. It worksesyi-

matingthe visible polygons of a scene from a given viewpoint

incrementally, one primitive at a time. By itself, PLPisnota 6 |mage-Space Occlusion Culling

conservative technique, instead PLP is suitable for the compu-

tation of partially correctimages for use as part of time-critical As the name suggests image-space algorithms perform the
rendering systems. From a very high level, PLP amounts to a culling in the viewing coordinates. The key feature in these
modification of a simple view-frustum culling algorithm, how-  algorithms is that during rendering of the scene the image gets
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Figure 15: The Prioritized-Layered Projection Algorithm. PLP attempts to prioritize the rendering of geometry along layers of
occlusion. Cells that have been projected by the PLP algorithm are highlighted in red wireframe and their associated geometry is
rendered, while cells that have not been projected are shown in green. Notice that the cells occluded by the desk are outlined in
green, indicating that they have not been projected.

@) (b)

Figure 16: The input geometry is a model of an office. (a) Snapshot of the PLP algorithm hightlights the spatial tessellation used.
The cells which have not been projected in the spatial tessellation are highlighted in green. (b) This figure illustrates the accuracy
of PLP. Shown in red are the pixels which PLP misses. In white, we show the pixels PLP renders correctly.



filled up and subsequent objects can be quickly culled away 6.2 Hierarchical Occlusion Map [50, 49]
by the already filled parts of the images. Since they operate _ . L . .
on a discrete array of finite resolution they also tend to be sim- 11iS method is similar in principle to the HZB, however, it
pler to implement and more robust than the object-space ones, Was designed to work with current graphics hardware and also
which tend to have numerical precision problems. supports approximate visibility culling - objects that are visi-
Testing each individual polygon against the image is too ble through only a feV\_/ p|>_<els can be cylled using an opacity
slow, so almost all of the algorithms that we will describe here threshold. The QCCIUS'Qn IS arrang_ed hierarchically in a struc-
use conservative tests. They place a hierarchy on the sceneUre C"?‘”ed thd—hera_rchlcal Occlusion Ma[(_HOM) and th_e .
with usually the lowest level being the bounding boxes of in- bounding volume hierarchy of the scene is tested against it.

dividual objects, and they perform the occlusion test on that hi- However, unlike the HZB, the HOM stores only opacity in-

h : formation while the distance of the occluders (Z-values) are
erarchy. Approximate solutions can also be produce by some . X
of the image-space algorithms by classifying as occluded ge- stored separately. The algorithm then needs to test objects for

ometry which is visible through an insignificant pixel count. gverlag W'ttlh occluded regions of the HOM and for depth in-
This invariably results in an increase in running speed. ependently. . .
When the scenes are composed of many small primitives At preprocessing a database of potential occluders is assem-
without well defined larae occluders then performing the bled. Then at run-time, for each frame the algorithm performs
ST g pe 9 two steps: construction of the HOM and occlusion culling of
culling in image space becomes more attractive. The pro-

jections of many small and individually insignificant occlud- the scene geometry using the HOM.

]ers can be accgmulated on the imal eyusing standard graphics To build the HOM, a set of occluders is selected from the
rasterizing hardware, to cover a sig%ificantgpart of thegimgge oc_cluder database an_d render_ed _into th? frame-buffer. At this
which can then be used for culling.Another advantage of these point only occupancy information is required therefore textur-

. ing, lighting and Z-buffering are all turned off. The occluders
methods is that the occluders do not have to be polyhedral, any .
object that can be rasterised can be used. are rendered as pure white on a black background. The result

. . is read from the buffer and it forms the highest resolution in
An early occlusion method was introduced by Naylor al- 9

; . - . the occlusion map hierarchy. The coarser levels are created
ready in 1992 [36]. His method uses occlusion culling on BSP veragin r f 2%2 pixel form a map which h
trees. His method can be thought of as somewhere betweenby averaging squares o Pixe’s to form a map ch has

h d obiect . X ithouah h 422D BSPhaIf the resolution on each dimension. Texturing hardware can
Image and object precision, Since aithough he used a provide some speed up for the averaging is the size of the map
tree in image-space for culling the 3D scene, this was done

: . o . . .~ is large enough to warrant the set-up cost of the hardware. As
using object precision operations rather than image-precision. ,, o go to coarser levels the pixels are not just black or white

(occluded or visible) anymore but they can be shades of grey.
The intensity of a pixel at such a level shows the opacity of the

6.1 Hierarchical Z-Buffer [21, 22] corresponding region.

The Hierarchical Z-Buffer (HZB) [21, 22] is an extension of
the popular HSR method, the Z-buffer. In this method, oc-
clusion is determined by testing against #wyramid The
Z-pyramid is a layered-buffer with different resolution at each
level. At the finest level it is just the contents of the Z-buffer,
each coarser level is created by halving the resolution in each
dimension and each element holding the farthest z-value in the
corresponding 2x2 window of the finer below. This is done all
the way to the top, where it is just one value corresponding
to the furthest z-value in the buffer. During scan-conversion
of the primitives, if the contents of the Z-buffer change then
the new Z-values are propagated up the pyramid to the coarser
levels. Figure 17: A hierarchy of occlusion maps created by recur-
In [21] the scene is arranged into an octree which is tra- sively averaging blocks of pixels. Courtesy of Hansong Zhang,
versed front-to-back and each node is tested for occlusion. If UNC.
at any point a node is found to be occluded then it is skipped,
otherwise any primitives associated with it are rendered and  An object is tested for occlusion, by first projecting its
the Z-pyramid is updated. To determine whether a node is bounding box onto the screen and finding the level in the hi-
visible, each of its faces are tested against the Z-pyramid in erarchy where the pixels have approximately the same size as
a hierarchical way. Starting from the coarsest level, the near- the extend of the projected box. If the box overlaps pixels of
est Z value of the face is compared against the value at the the HOM which are not opaque then it means that the box can-
Z-pyramid. If the face is found to be further away then itis oc- not be culled. If the pixels are opaque (or have opacity above
cluded otherwise it recursively descends down to finer levels the specified threshold when approximate visibility is enabled)
until its visibility can be determined. then the object projects on a region of the image that is cov-
To allow for real-time performance a modification to the ered. In this case a depth test is needed to determine whether
hardware Z-buffer was suggested that would allow for much the object is behind the occluders.
of the culling processing to be done in hardware. In the ab-  In the paper [49] a number of methods are proposed for
sence of the custom hardware the process can be somewhatesting the depth of the objects against that of the occluders.
accelerated, through the use of temporal coherence, by render-The simplest test makes use of a plane placed behind all the
ing first the geometry that was visible from the previous frame occluders, any object that passes the opacity test is compared
and building the Z-pyramid from their Z-buffer. against this. Although this is fast and simple it can be over-




conservative. An alternative is thgepth estimation buffer
where the screen space is partitioned into a set of regions and

a separate plane is used for each region of the partition. / A A \
6.3 Directional Discretized Occluders [5] / ; ! ,”/‘
The Directional Discretized Occluders (DDOs) approach is S | T~ L
similar to the HZB and HOM methods in that it also uses both - - A
object- and image-space hierarchies. In their preprocessing R AN B \

stage, Bernardini, et al [5] approximate the input model with
an octree and compute simple, view-dependent polygonal oc-
cluders to replace the complex input geometry in subsequent
visibility queries. Each face of every cell of the octree is re-
garded as a potential occluder and the solid angles spanning *
each of the two halfspaces on the two sides of the face are
partitioned into regions. For each region, they compute and
store a flag that records whether that face is a valid occluder
for any viewpoint contained in that region. Each square, axis-
aligned face is a view-dependent polygonal occluder that can
be used in place of the original geometry in subsequent visi-
bility queries.

The rendering algorithm visits the octree in a top-down,
front-to-back order. Valid occluders found during the traversal
are projected and added to a two-dimensional data structure,
such as a quadtree. Each octree node is first tested against
the current collection of projected occluders: if the node is
not visible, traversal of its subtree stops. Otherwise, recursion
continues and if a visible leaf node is reached, its geometry is
rendered.

The DDO preprocessing stage is not inexpensive, and may
take on the order of hours for models containing hundreds of
thousands of polygons. However, the method does have sev-
eral advantages if one can tolerate the cost of the preprocessin
step. The computed occluders are all axis-aligned squares,

Figure 18: lllustration of the DDO approach. The input geom-
etry,AandB, is drawn as dashed lines. The valid occluders for
the two viewpoints are shown as thick solid lines. Courtesy of
James Klosowski, IBM.

for visibility information. Both view-frustum and occlusion
culling are done in that way.

For view-frustum culling theOpenGL selection modis
used. The selection mode can track a certain region of the
screen and identify whether a given object is rendered onto it.
By setting the tracked region to be the entire screen and render-
ging hierarchically the bounding volumes of the objects, it can

. . . aquickly be decided on which intersect the view volume. Of
fact that can be exploited to design efficient data structures for course the rendering of the bounding volumes here is purely

visibility queries. The memory overhead of the DDOs is only . : . g
six bitmasks per octree node. The DDO approach also benefitsgﬁﬁseerlecung the objects and does not contribute to the frame

from occluder fusionand does not require any special or ad-
vanced graphics hardware. The DDO approach could be used
within the framework of other visibility culling methods as
well. Culling methods which need to pre-select large occlud-
ers,e.g. Coorg and Teller [11], or which pre-render occluders

To test for occlusion a separate buffer, thtual occlusion
buffer, is associated with the frame-buffer to detect possible
contribution of any object to the frame-buffer. This was imple-

- mented with a stencil buffer. The bounding boxes of the scene
to compute occlusion mape.g.Zhang et. al[S0], could ben- e higrarchically send down the graphics pipeline. As they are
efit from the DDO preprocessing step to reduce the overhead ragterised the corresponding pixels are set in the virtual occlu-
of visibility tests. sion buffer whenever the z-buffer test succeeds. The frame-

Figure 18 is a two-dimensional illustration of the DDO ap-  pyffer and the z-buffer remain unaltered through this process.
proach. The grid is a discretization of the space surrounding

the scene; it represents our octree nodes. The input geome-  The virtual occlusion buffer is then read and any bound-
try, AandB, is shown using dashed lines. For the purpose of jng hox that has a footprint in it is considered to be (at-least
occlusion culling, the geometri can be replaced by a sim-  partially) visible and the primitives within it can be rendered.
pler object, shown using thick solid lines, which is a subset The gperation of reading the virtual occlusion buffer can be
of the grid edgesi.e. the octree faces. The two figures show very expensive so it was proposed to sample it by reading only

the same scene from different viewpoints and view directions. gpans from it. The sampling inevitably makes the algorithm a
Note that the subset of grid edges that can act as occluders (inpgn-conservative test.

place of geometry) changes as the viewpoint changes.
As in the methods above, approximate culling can be imple-
6.4 OpenGL Assisted Occlusion Culling [4, 3] men_ted if we allow boxes_ that have asmall footprint in the oc-
' clusion buffer to be considered non-visible. The performance
Bartz et al. describe in [4, 3] a different way for image-space of the algorithm depends on the hardware being used. In low-
culling. The scene is arranged in a hierarchical representa- to mid-range graphics workstations where part of the render-
tion and tested against the occluded part of the image, which ing process is in software, the reduction in rendered objects
resembles the HZB and the HOM. However, in contrast to can provide significant speed-ups. On high-end machines the
these methods, there is no hierarchical representation of theset-up for reading the buffer becomes a more significant por-
occlusion, rather OpenGL calls are used to query the hardware tion of the overall time, reducing the usefulness of the method.



6.5 Hardware Assisted Occlusion Culling [39, One drawback of the techniques described in this section
33] is that they rely on being able to read information out of the
graphics hardware. Unfortunately, on most current architec-

In the graphics hardware section we mentioned the HP tures, using any sort of feedback from the graphics hardware
occlusion-culling test, a hardware feature available on HP ma- is quite slow and p|aces a limit on the achievable frame rate
chines which make it possible to determine the visibility of ob-  of such techniques. As Bartz et al [3] shows, these methods
jECtS as Compared to the current values in the z-buffer. Here, are usua”y on|y effective 0n|y when the scene Comp|exity is

we further discuss its properties, and explain a simple and ef- above a large threshold.

fective occlusion-culling algorithm based on it. There are actually other shortcomings of these techniques.
The actual hardware feature as implemented on the HP fX One of the main problems is the need for pre-selection of

series graphics accelerators is explained in [39] and [40]. One occluders. Some techniques, such as HOM, need to create
way to use the hardware is to query whether the bounding box different versions of the actual objects (through some sort of

of an object is visible. This can be done as follows: “occlusion-preserving” simplification algorithm) to be able to
generate the occlusion-maps. Another interesting issue is how
glEnable(GL_OCCLUSION_TEST_HP); to deal with dynamic scenes. The more preprocessing that is
giDepthMask(GL_FALSE); used, the more expensive it is to deal with dynamic environ-

glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);

DrawBoundingBoxOfObject();

bool isVisible;

glGetBooleanv(GL_OCCLUSION_RESULT_HP, &isVisible);

glDisable(GL_OCCLUSION_TEST_HP);

glDepthMask(GL_TRUE); ) e . . . .

glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE); In a typical visibility culling algorithm the occlusion is tested
from a point [11, 25]. Thus, these algorithms are applied

Clearly, if the bounding box of an object is not visible, the N each frame during the interactive walkthrough. A more

object itself, which potentially could contain a large amount of Promising strategy is to find the PVS from a region or view-
geometry, must not be visible. cell, rather than from a point. The computation cost of the PVS

This hardware feature is implemented in several of HP’s from a viewcell would then be amortized over all the frames

graphics accelerators, for instance, the HP x6 graphics accel- 9€nerated from the given viewcell. _
erator. Severson [40] estimates that performing an occlusion- __ Effective methods have been developed for indoor scenes
query with a bounding box of an object on the fx6 is equivalent [45, 18], but for general arbitrary scenes, the computation of
to rendering about 190 25-pixel triangles. This indicates that a the visibility set from a region is more involved than from a
naive approach where objects are constantly checked for beingP0int. Sampling the visibility from a number of view points
occluded might actually hurt performance, and not achieve the Within the region [20] yields an approximated PVS, which
full potential of the graphics board. In fact, it is possible to May then cause unacceptable flickering artifacts during the
slow down the x6 considerably if one is unlucky enough to Walkthrough. Conservative methods were introduced in [8, 37]
project the polygons in a back to front order (because none of which are based on the occlusion of individual large convex
the primitives would be occluded). objects. _ _ _ . _
Meissner et al. [33] propose an effective occlusion culling In these methods a given object or collection of obje_cts is
technique using this hardware test. In a preprocessing step,culled away if and only if they are fully occluded by a single
a hierarchical data structure is built which contains the input Convex occluder. [twas shown that a convex occluder is effec-
geometry. (In their paper, they propose several different data tive only if it is larger than the viewcell [35]. However, this

structures, and study their relative performance.) Their algo- condition is rarely met in real applications. For example the
rithm is as follows: objects in Fig. 19 are smaller than the viewcell, and their um-

bra (with respect to the viewcell) are rather small. Their union
does not occlude a significant portion of the scene (see in (a)),
while their aggregate umbra is large (see in (b)).
Recently, new techniques were developed in which the visi-
(2) Sort the leaf cells by the distance between the viewpoint bility culling from a region is based on the combined occlusion
and their centroids; of a collection of objects (occluder fusion). The collection or
cluster of objects that contributes to the aggregate occlusion
(3) For each sorted cell, render the geometry contained in has to be neither connected nor convex. The effective from-
the cell,only if the cell boundary is visible. region culling of these techniques is significantly larger than
previous from-region visibility methods. In the following four
techniques are described followed by a discussion.

ments.

7 From-region visibility

(1) Traverse the hierarchical data structure to find the leaves
which are inside the view frustum;

6.6 Discussion

There are several other algorithms which are targeted at partic-7.1  Conservative Volumetric Visibility - with

ular types of scenes. For example the occluder shadows pro- i

posed by Wonka and Schmalstieg [47] are specifically target- Occluder Fusion [38]

ing urban environments. Hong et al [24] use an image-based This paper introduces a new conservative technique for the
portal technique (similar in some respects to the cells- and- computation of viewcell visibility. The method operates on a
portals work of Luebke and Georges [32]) to be able to fly discrete representation of space and uses the opaque interior of
through a virtual human colon in real-time. The colon is parti- objects as occluders. This choice of occluders facilitates their
tioned into cells at pre-processing and these are used to accel-extension into adjacent opaque regions of space, in essence
erate the occlusion with the help of a Z-buffer at run-time. maximizing their size and impact.
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Figure 19: The union of the umbrae of the individual objects is insignificant, while their aggregate umbra is large and can be
represented by a single virtual occluder.

The method efficiently detects and represents the regions 7.2  Conservative Visibility Preprocessing us-
of space hidden by occluders and is the first one to use the ing Extended Projections [15]
property that occluders can also be extended into empty space
provided this space itself is occluded from viewcell. Thisis The paper [15] presents an extension of point-based image-
proved to be effective for computing the occlusion by a set of gpace methods such as the Hierarchical Occlusion Maps [50]
occluders, effectively realizing occluder fusion. or the Hierarchical Z-buffer [21] to volumetric visibility from
Initially, the boundary of objects is rasterized into the dis- a view-cell, in the context of preprocessing PVS computation.
cretization of space and the interior of these boundaries is Occluders and occludees are projected onto a plane, and an oc-
filled with opaque voxels. For each viewcell, the occlusion de- cludee is declared hidden if its projection is completely cov-
tection algorithm iterates over these opaque voxels and groupsered by the cumulative projection of occluders (and if it lies
them with adjacent opaque voxels into effective blockers. Sub- behind). The projection is however more involved in the case
sequently, a shaft is constructed around the viewcell and the of volumetric visibility: to ensure conservativeness, the Ex-
blocker to delimit the region of space hidden by the blocker. tended Projection of an occluder underestimates its projection
This classification of regions of space into visible and hidden from any pointin the view-cell, while the Extended Projection
is noted in the spatial data structure. As regions of space haveof an occludee is an overestimation (see Fig. 21(a)). A discrete
already been found to be hidden from the viewcell, extension (but conservative) pixel-based representation of extended pro-
of blockers into neighboring voxels can also proceed into these jections is used, called Extended Depth Map. Extended pro-
hidden regions realizing occluder fusion with all the occluders, jections of multiple occluders aggregate, allowing occluder-
which caused this region to be hidden. fusion, that is the cumulative occlusion caused by multiple oc-
cluders. For convex view-cells, the extended projection of a
convex occluder is the intersection of its projections from the
vertices of the cell. This can be computed efficiently using the
graphics hardware (stencil buffer) and a conservative rasteriza-
In order to recover the visibility status of objects in the orig-  tion. Concave occluders intersecting the projection plane are
inal scene description, the space they occupy is looked up in sliced (see [15] for details).
the spgtlal data structure an(_j, if all the vo_xels_ intersected by A single set of six projection planes can be used, as demon-
the c_)bject are classified as hidden, the object is guaranteed tOgtrated by an example involving a city database. The position
be hidden as well. of the projection plane is however crucial for the effectiveness
The authors present specialized versions for the cases of 2Dof Extended Projections. This is why a reprojection operator
and 2 1/2D visibility and motivate the ease of extension to 3D: was developed for hard-to-treat cases. It permits to project a
Because only two convex objects are considered in the visibil- group of occluders onto one plane where they aggregate, and
ity classification at a time (the viewcell and the occluder), the then re-project this aggregated representation onto a new pro-
usual difficulties of extending visibility algorithms from 2D to  jection plane (see Fig. 21(b)). This re-projection is used to
3D caused by triple-edge events are avoided. Example appli- define an occlusion-sweep where the scene is swept by paral-
cations described in the paper include visibility preprocessing lel planes leaving the cell. The cumulative occlusion obtained
for real-time walkthroughs and the reduction of the number of on the current plane is reprojected onto the next plane as well
shadow rays required by a ray-tracer (see [38] for details). as new occluders. This permits the handling of very hard cases

As an optimization, opaque voxels are used in the order
from large to small and from front to back. Occluded opaque
voxels are not considered further as blockers.



Figure 20: The individual umbrae (with respect to the yellow viewcell) of objects 1, 2 and 3 do not intersect, but yet their occlusion
can be aggregated into a larger umbra.)

such as the occlusion caused by leaves in a forest. the virtual occluders. Since only a very small number of them
are used, this test is extremely fast.
. The 3D problem is solved by a 2.5D implementation, which
7.3 Virtual Occluders [31] proves to be effective for most typical scenes, such as urban
The paper [31] introduces the notion of virtual occluders. and architectural walkthroughs. The 2.5D implementation per-
Given a scene and a viewcell, a virtual occluder is a view- forms a series of slices in the height dimension, and uses the
dependent (simple) convex object, which is guaranteed to be 2D algorithm to construct 2D virtual occluders in each slice.
fully occluded from any given point within the viewcell and ~ These occluders are then extended to 3D by giving them the
which serves as an effective occluder from the given viewcell. height of their respective slices.
Virtual occluders compactly represent the aggregate occlusion
for a given cell. The introduction of such view-dependent vir- 7.4 Occluder Fusion for Urban Walkthroughs
tual occluders enables applying an effective region-to-region [48]
or cell-to-cell culling technique and efficiently computing a
potential visibility set (PVS) from a region/cell. The paper This paper presents an approach based on the observation that
presents an object-space technique that synthesizes such virit is possible to compute a conservative approximation of the
tual occluders by aggregating the visibility of a set of individ- umbra for a viewcell from a set of discrete point samples
ual occluders. It is shown that only a small set of virtual oc- placed on the view cell's boundary. A necessary, though not
cluders is required to compute the PVS efficiently on-the-fly sufficient condition that an object is occluded is that it is com-
during the real-time walkthrough. pletely contained in the intersection of all sample points’ um-
In the preprocessing stage several objects are identified asbrae. Obviously, this condition is not sufficient as there may
seed objects. For each seed object, a cluster of nearby objectde viewing positions between the sample points where the con-
is constructed in such a way that a single virtual occluder faith- sidered object is visible.
fully represents the occlusion of this cluster of objects. At first, However, shrinking an occluder lyprovides a smaller um-
the cluster is defined to include only the seed object. Then it- bra with a unique property: An object classified as occluded by
eratively, at each step, more objects, which satisfy a geometric the shrunk occluder will remain occluded with respect to the
criterion, are added to the cluster of occluders. Thus augment- original larger occluder when moving the viewpoint no more
ing the aggregate umbra of the cluster. The virtual occluder thane from its original position.
is placed just behind the farthest object in the cluster, and is  Consequently, a point sample used together with a shrunk
the completely contained in the aggregate umbra of the cluster occluder is a conservative approximation for a small view cell
(see Figs. 19 and 22). with radiuse centered at the sample point. If the original view
One virtual occluder is stored at each step of the iteration. cell is covered with sample points so that every point on the
As aresult, at the end of the process there is a large and highly boundary is contained in an-neighborhood of at least one
redundant group of virtual occluders. This group can be well sample point, then an object lying in the intersection of the um-
represented by a small subset of the most effective virtual oc- brae from all sample points is occluded for the original view
cluders. cell.
In the real-time rendering stage, the PVS of a viewcell is Using this idea, multiple occluders can be considered si-
computed just before the walkthrough enters the viewcell. It multaneously. If the object is occluded by the joint umbra of
is done by hierarchically testing the scene-graph nodes againstthe shrunk occluders for every sample point of the view cell,
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Figure 21: (a) Principle of Extended Projections. The Extended Projection of the occluder is the intersection of its projections from
all the points in the viewing cell, while the Extended Projection of the occludee is the union of its projections. (b) If plane 2 is used
for projection, the occlusion of group 1 is not taken into account. The shadow cone of the cube shows that its Extended Projection
would be void, since it vanishes in front of the plane. The same constraint applies for group 2 and plane 1. We thus project group 1
onto plane 1, then re-project this aggregate projection onto plane 2. Courtesy of Fredo Durand, MIT.
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Figure 22: Growing the virtual occluders by intersecting objects with the active separating and supporting lines.
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preprocessing time.

The third method is an object-space analytical one in the
2D case. It treats the 3D cases as a 2.5D scene and solves it
by a series of 2D cases by discretizing the height dimension.
It is shown that on practice the visibility of 2.5D entities well
approximate the visibility of the original 3D models.

The forth method samples the visibility from a viewcell
from a discrete number of sample points. Although it un-
derestimates occlusion, it is also a conservative method. This
may be insignificant in case of close and large occluders, but

in cases, where the occlusion is created by a large number of
small occluders, the approximation might be too crude.

:I 7.6 Approximate from-region visibility

levels-of-detail (LOD) techniques is presented. The idea is to
identify partially occluded objects in addition to the fully oc-
cluded ones. The assumption is that partially occluded objects
take less space on the screen, and therefore can be rendered us-
ing a lower LOD. The authors use the term Hardly-Visible Set
(HVS) to describe a set consisting of both fully and partially
visible objects.

A set of occluders is selected and simplified to a collec-
tion of partially overlapping boxes. Occlusion culling is per-
formed from the viewcell using these boxes as occluders to
find the "fully-visible” part of the HVS. Occlusion culling
is performed considering only occlusion by individual boxes
[8, 37]. There is no occlusion fusion, but a single box may
represent several connected occluder objects.

To compute partially visible objects, all the occluders
(boxes) are enlarged by a certain small degree, and occlusion
culling is performed again using these magnified occluders.
When visibility from region is concerned, occlusion caused by The objects that are occluded by the enlarged occluders and
individual occluders in a general setting is insignificant. Thus, not by the original ones are considered to be partially occluded
it is essential to take advantage of aggregate occlusion causedrom the viewcell, and are thus candidates to be rendered at a
by groups of nearby objects. The above four papers addresslower LOD.
the problem of occlusion aggregation also referred to as oc-  Several parts of the HVS are computed by enlarging the
cluder fusion. occluders several times, each time by a different degree. Thus,

All the four techniques are conservative, they aggregate oc- classifying objects with a different degree of visibility. During
clusion in most cases, but not in all possible cases. In some of the real-time rendering, the LOD is selected with respect to
the techniques, the criterion to fuse two occluders or to aggre- degree of visibility of the objects.
gate their occlusions is based on the intersection of two um- It should be noted that this basic assumption of the degree
brae. However, in [31, 48], a more elaborate criterion is used, of visibility is solely a heuristic, since an object partially oc-
which permits to aggregate occlusions also in cases where thecluded from a region does not mean it is partially occluded
umbrae are not necessarily intersected. These cases are illusfrom any point within the region. It could be fully visible at
trated in Figure 20. one point and partially visible or occluded in another.

To cope with the complexity of the visibility in 3D scenes, In [20] another approximate from-region visibility tech-
all the techniques use some discretizations: nique is proposed. Casting rays from a five-dimensional space

The first method discretizes the space into voxels, and op- samples the visibility. The paper discusses how to minimize
erates only on voxels. This leads to underestimate occlusion the number of rays cast to achieve a reliable estimate of the
when the umbra of occluders is relatively small and partially Visibility from a region.
overlaps some large voxels, but does not completely contain
any._The advantage of this approach is its generality: it can b_e 7.7 The PVS storage space problem
applied to any representation of 3D scenes, and not necessarily
polygonal. Precomputing the PVS from a region requires solving a promi-

The second method discretizes the space in two ways. First, nent space problem. The scene is partitioned into viewcells
it projects all objects onto a discrete set of projection planes, and for each cell a PVS is precomputed and stored readily for
and second, the representation of objects in those planes is disthe online rendering stage. Since the number of viewcells is
crete as well. Moreover, 3D projections are replaced by two inherently large, the total size of all the visibility sets is much
2D projections (see Figure 5), to avoid performing analytical larger than the original size of the scene. Except few excep-
operations on objects in 3D space. The advantage of this al- tions this problem did not receive enough attention yet. Van
gorithm is that, since most operations are performed in image- de Panne and Stewart [46] presented a technique to compress
space, they can possibly be hardware-assisted to shorten thgprecomputed visibility sets by clustering objects and viewcells

1.
Sample
point 4 > Sample
point 5

Figure 23: Sampling of the occlusion from five sampling
points. Courtesy of Peter Wonka, Vienna University of Tech-
nology.

:I In[2] a scheme to combine approximate occlusion culling with

it is occluded for the whole view cell. In that way, occluder
fusion for an arbitrary number of occluders is implicitly per-
formed (see Figure 23 and Figure 24).

7.5 Discussion
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Figure 24: The fused umbra from the five points (in the figure
above) is the intersection of the individual umbrae. It is larger [4]
than the union of umbrae of the original viewcell. Courtesy of
Peter Wonka.

of similar behavior. Gotsman et al [20] presented a hierarchi- [5]
cal scheme to encode the visibility efficiently. Cohen-Or et
al.[9, 8] deal with the transmission of the visibility sets from
server to the client and [8, 35] discuss the selection of the best
viewcell size in terms of the size of the PVS.

A completely different approach was taken by Koltun et al. (6]
[31]. The PVS of each viewcell does not need to be stored
explicitly. An intermediate representation that requires much
less storage space than the PVS is created and used to generate
the PVS on-the-fly during rendering. 7]

8 Conclusion [8]

In this paper, we have surveyed most of the visibility literature
available in the context of walkthrough applications. We see
that a considerable amount of knowledge has been assembled
in the last decade, in particular the number of papers in the
area has increased substantially in the last couple of years. It
is hard to say exactly where the field is going, but there are
some interesting trends and open problems.

It seems further research is hecessary into techniques which
lower the amount of preprocessing required. Also, memory is
a big issue for large scenes, especially in the context of From-
region techniques. 11]

It is expected that more hardware features which can be
used to improve visibility computations will be available. At
this time, one of the major impediments is the fact that reading
back information from the graphics boards is very slow. It is
expected that this will get much faster, enabling improvements [12]
in hardware-based visibility culling algorithms.

The efficient handling of dynamic scenes is an open area of
research at this point.

[10]

[13]
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Visibility Determination

Given a collection of triangles:

Find the visible fragments: EB

Problem: .
N triangles might generate O(N”~2) fragments




Z-buffer Algorithm

By discretizing the domain, Z-buffer has essentially
linear in the number of primitives

High-Depth Complexity Scenes

For models with a large number of layers, the Z-buffer can
be inefficient, since not all primitives need to be touched




Approximate Visibility Determination

Develop algorithms that are output sensitive, that is, if out of
the N triangles, only K of them are visible, the algorithm
has complexity that depends more closely on K

Drop the exact visibility requirement, and instead attempt to
develop algorithms that estimate the triangles which have
visible fragments

In this talk, we will speak about algorithms that
overestimate the visible fragments, the so called
conservative visibility algorithms

Talk Summary

» Cells and portals
— Teller and Sequin, Siggraph 91
— Luebke and Georges, 13D 95
* Visibility culling with large occluders
— Coorg and Teller, SoCG 96 and 13D 97
— Hudson et al, SoCG 97
 Prioritized-Layer Projection Algorithm
— Klosowski and Silva 1999 and 2000
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The Cells-and-Portals Aproach

(1) Decompose space into convex cells

(2) For each cell, identify its boundary edges into
two sets: opaque or portal

(3) Precompute visibility among cells

(4) During viewing (eg, walkthrough phase), use
the precomputed potentially visible polygon set
(PVS) of each cell to speed-up rendering




Space Subdivision

Input Scene:

Convex subdivision: Gl s | ke

Generated by computing a k-d tree of the input faces

Determining Adjacent Information




Computing the PVS of a cell

Linear programming problem: _

Eye-to-Cell Visibility

The eye-to-cell visibility of any observer is
a subset of the cell-to-cell visibility for the cell
containing the observer




Results
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Luebke and Georges, 13D 95

Instead of pre-processing
all the PVS calculation,
it is possible to use
Image-space portals to
make the computation
easier

Can be used in a dynamic
setting
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When does A occludes B ?

Possible because visibility changes
little from frame to frame




Events to care about...

Coorg and Teller, SoCG 96

To reduce the number of events to (2) and a hierarchy of objects
be tracked:

(1) use a sphere

eye —

Illil'h_!-
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Hierarchical Tests

Hierarchical Tests
/
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Hierarchical Tests
/

Coorg and Teller, I3D 97

Added the capability to

join the effect of connected
occluders, that is, a form ,
of occluder fusion ol T

. O
)

g -—““‘(gnore
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Occluder Fusion

nid dedecied

Because this computation is fast,
it is no longer necessary to keep
fine-grain visibility events
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Use Temporal Coherence to Cache
Relevant Events

Detail Occluders

14



Metric for Comparing Occluder Quality

Occluder quality: (-A (N *V))/||D|p
A : the occluder’s area
N : normal
V : viewing direction
D : the distance between the viewpoint and the occluder
center
Large polygon have large area-angle.

Results
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Results

The percentage of polygons draw

Scene Polygons| Frustum QOcclusion
Soda 134,832 19.7 26
City 108,841 36.9 56

The culling and drawing times (in milliseconds)

Scene Frustum QOcclusion I

Cull | Draw [Total | Culll Draw] Totall

Onyx - workstation times

Soda [ 12 [ B[ J27 [0 [ &
City 1 | 102] 113 20 | 26 | 45

Elan - workstation times
Soda | 13 | 435 | 448 32 | 57 | 80
City 12 | 482 | 494 | 34 77 | 101

Hudson et al, SoCG 97

Occluder

Viewpoint /A/
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Occluder Quality

» Solid Angle (similar to Coorg and Teller)

* Depth Complexity

Talk Summary

» Cells and portals
— Teller and Sequin, Siggraph 91
— Luebke and Georges, 13D 95

* Visibility culling with large occluders
— Coorg and Teller, SoCG 96 and 13D 97
— Hudson et al, SoCG 97

 Prioritized-Layer Projection Algorithm
— Klosowski and Silva 1999 and 2000
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Aggressive Occlusion Cullirg

* In many complex scenes, only a small fraction
of polygons contribute to the final image. Often
only 1-2%

» Aggressive algorithm which attempts to render
as few polygons as possible while rendering a
large fraction of the visible ones

e Quality vs. Speed

(-1

[ L]

How to Combine Occluders ?

Occluders

Occludee
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Prioritized-Layered Projection

view direction

Prioritized-Layered Projection
NN IS AN

NN
Layers of
Geometry AN\

[r view direction
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Prioritized-Layered Projection
NN IS AN

NN
Layers of
Geometry AN\

[r view direction

Prioritized-Layered Projection
NN IS AN

NN
Layers of
Geometry AN\

[r view direction
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Prioritized-Layered Projection
NN IS AN

NN
Layers of
Geometry AN\

[r view direction

PLP Overview
» Occupancy-based spatial tessellation

* Prioritized cell traversal algorithm

21



Spatial Tessellation Algorithm

* Insert original vertices into octree

» Use centers of leaf nodes as sample points

* Build Delaunay Triang. (with ghull) using sample
points

* Insert geometry into mesh cells

Priorit y-Based Traversal Agorithm

while (PQ is not empty) B
project cell with minimum
opacity;
if (budget rgached) stop;
for each adjacent cell ¢ view direction C

if (c not projected)
update opacity value o;
enqueue c;

22



AOC 2D Prototype

AOC 2D Prototype

23



AOC 2D Prototype

AOC 2D Prototype

DEMO!

24



AOC 3D Prototype

PLP Highlights

Rendering within a budget (I.e., time-critical)
Low-complexity preprocessing

No pre-selection of occluders

Object-space occluder fusion

Simple to implement

Main idea: add weights to visibility-order arcs

25



5 Car/Body -- Accuracy
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City Model -- Accuracy
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City Model -- Efficiency

Some Quantitative Results

e With 1% budget PLP finds over 50% of visible
set on average

» For the 500K-triangle city model, it takes 2
minutes of preprocessing.
For this model, a 5% budget, PLP finds about
80% of the visible set.
At most 4% of the pixels in a given image are
wrong!

27



Get related papers at:

http://www.research.att.com/~csilva
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The Prioritized-Layered Projection Algorithm for

Visible Set Estimation

James T. Klosowski*  Claudio T. Silva'

March 15th, 2000

Abstract

Prioritized-Layered Projection (PLP) is a technique for fast rendering of high depth com-
plexity scenes. It works by estimating the visible polygons of a scene from a given viewpoint
incrementally, one primitive at a time. It is not a conservative technique, instead PLP is suit-
able for the computation of partially correct images for use as part of time-critical rendering
systems. From a very high level, PLP amounts to a modification of a simple view-frustum
culling algorithm, however, it requires the computation of a special occupancy-based tessel-
lation, and the assignment to each cell of the tessellation a solidity value, which is used to
compute a special ordering on how primitives get projected.

In this paper, we detail the PLP algorithm, its main components and implementation. We
also provide experimental evidence of its performance, including results on two types of spatial
tessellation (using octree- and Delaunay-based tessellations), and several datasets. We also

discuss several extensions of our technique.

1 Introduction

Recent advances in graphics hardware have not been able to keep up with the increase in scene

complexity. In order to support a new set of demanding applications, a multitude of rendering

*IBM T. J. Watson Research Center, PO Box 704, Yorktown Heights, NY 10598; jklosow@us.ibm.com.
TAT&T Labs-Research, 180 Park Ave., PO Box 971, Florham Park, NJ 07932; csilva@research.att.com.




algorithms have been developed to both augment and optimize the use of the hardware. An effec-
tive way to speed up rendering is to avoid rendering geometry that cannot be seen from the given
viewpoint, such as geometry that is outside the view frustum, faces away from the viewer, or is
obscured by geometry closer to the viewer. Quite possibly, the hardest part of the visibility-culling
problem is to avoid rendering geometry that can not be seen due to its being obscured by closer
geometry. In this paper, we propose a new algorithm for solving the visibility culling problem.
Our technique is an effective way to cull geometry with a very simple and general algorithm.

Our technique optimizes for rendering by estimating the visible set for a given frame, and only
rendering those polygons. It is based on computing on demand a priority order for the polygons that
maximizes the likelihood of projecting visible polygons before occluded ones for any given scene.
It does so in two steps: (1) as a preprocessing step, it computes an occupancy-based tessellation
of space, which tends to have smaller spatial cells where there are more geometric primitives, e.g.,
polygons; (2) in real-time, rendering is performed by traversing the cells in an order determined by
their intrinsic solidity (likelihood of being occluded) and some other view-dependent information.
As cells are projected, their geometry is scheduled for rendering (see Fig. 1). Actual rendering is
constrained by a user-defined budget, e.g. time or number of triangles.

Some highlights of our technique:

— Budget-based rendering. Our algorithm generates a projection ordering for the geometric
primitives that mimics a depth-layered projection ordering, where primitives directly visible
from the viewpoint are projected earlier in the rendering process. The ordering and rendering

algorithms strictly adhere to a user-defined budget, making the PLP approach time-critical.

— Low-complexity preprocessing. Our algorithm requires inexpensive preprocessing, that
basically amounts to computing an Octree and a Delaunay triangulation on a subset of the

vertices of the original geometry.

— No need to choose occluder s beforehand. Contrary to other techniques, we do not require

that occluders be found before geometry is rendered.

— Object-space occluder fusion. All of the occluders are found automatically during a space
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Figure 1: The Prioritized-Layered Projection Algorithm. PLP attempts to prioritize the rendering
of geometry along layers of occlusion. Cells that have been projected by the PLP algorithm are
highlighted in red wireframe and their associated geometry is rendered, while cells that have not
been projected are shown in green. Notice that the cells occluded by the desk are outlined in green,

indicating that they have not been projected.

traversal that is part of the normal rendering loop without resorting to image-space represen-

tation.

— Simple and fast to implement. Our technique amounts to a small modification of a well-
known rendering loop used in volume rendering of unstructured grids. It only requires neg-

ligible overhead on top of view-frustum culling techniques.

Our paper is organized as follows. In Section 2, we give some preliminary definitions, and
briefly discuss relevant related work. In Section 3, we propose our novel visibility-culling algo-
rithm. In Section 4, we give some details on our prototype implementation. In Section 5, we
provide experimental evidence of the effectiveness of our algorithm. In Section 6, we describe a
few extensions and other avenues for future work. In Section 7, we conclude the paper with some

final remarks.



2 Preiminariesand Related Wor k

The visibility problem is defined in [9] as follows. Let the scene, S, be composed of modeling
primitives (e.g., triangles or spheres) S = {Po,P1, ..., Pn}, and a viewing frustum defining an
eye position, a view direction, and a field of view. The visibility problem encompasses finding
the points or fragments within the scene that are visible, that is, connected to the eye point by a
line segment that meets the closure of no other primitive. For a scene with n= O(|S|) primitives,
the complexity of the set of visible fragments might be as high as O(n?), but by exploiting the
discrete nature of the screen, the Z-buffer algorithm [2] solves the visibility problem in time O(n),
since it only touches each primitive once. The Z-buffer algorithm solves the visibility problem by
keeping a depth value for each pixel, and only updating the pixels when geometry closer to the eye
point is rendered. In the case of high depth-complexity scenes, the Z-buffer might overdraw each
pixel a considerable number of times. Despite this potential inefficiency, the Z-buffer is a popular
algorithm, widely implemented in hardware.

In light of the Z-buffer being widely available, and exact visibility computations being po-
tentially too costly, one idea is to use the Z-buffer as filter, and design algorithms that lower the
amount of overdraw by computing an approximation of the visible set. In more precise terms,
define the visible set V C S to be the set of modeling primitives which contribute to at least one
pixel of the screen.

In computer graphics, visibility-culling research mainly focussed on algorithms for computing
conservative (hopefully tight) estimations of V, then using the Z-buffer to obtain correct images.
The simplest example of visibility-culling algorithms are backface and view-frustum culling [11].
Backface-culling algorithms avoid rendering geometry that face away from the viewer, while
viewing-frustum culling algorithms avoid rendering geometry that is outside of the viewing frus-
tum. Even though both of these techniques are very effective at culling geometry, more complex
techniques can lead to substantial improvements in rendering time. These techniques for tighter
estimation of V do not come easily. In fact, most techniques proposed are quite involved and in-
genious, and usually require the computation of complex object hierarchies in both 3- and 2-space.

Here again the discrete nature of the screen, and screen-space coverage tests, play a central

role in literally all occlusion-culling algorithms, since it paves the way for the use of screen occu-



pancy to cull 3D geometry that projects into already occupied areas. In general, algorithms exploit
this fact by (1) projecting P; in front-to-back order, and (2) keeping screen coverage information.

Several efficiency issues are important for occlusion-culling algorithms:

(@) They must operate under great time and space constraints, since large amounts of geometry

must be rendered in fractions of a second for real-time display.

(b) Itisimperative that primitives that will not be rendered be discarded as early as possible, and
(hopefully) not be touched at all. Global operations, such as computing a full front-to-back

ordering of Pj, should be avoided.

(c) The more geometry that gets projected, the less likely the Z-buffer gets changed. In order to
effectively use this fact, it must be possible to merge the effect of multiple occluders. That
is, it must be possible to account for the case that neither Py nor P; obscures P, by itself, but
together they do cover P,. Algorithms that do not exploit occluder-fusion are likely to rely

on the presence of large occluders in the scene.

A great amount of work has been done in visibility culling in both computer graphics and
computational geometry. For those interested in the computational geometry literature, see [8, 9,
10]. For a survey of computer graphics work, see [28].

We very briefly survey some of the recent work more directly related to our technique. Hierar-
chical occlusion maps [29] solve the visibility problem by using two hierarchies, an object-space
bounding volume hierarchy and another hierarchy of image-space occlusion maps. For each frame,
objects from a pre-computed database are chosen to be occluders and used to cull geometry that
cannot be seen. A closely related technique is the hierarchical Z-buffer [13].

A simple and effective hardware technique for improving the performance of the visibility
computations with a Z-buffer has been proposed in [23]. The idea is to add a feedback loop in
the hardware which is able to check if changes would have been made to the Z-buffer when scan-
converting a given primitive.* This hardware makes it possible to check if a complex model is

visible by first querying whether an enveloping primitive (often the bounding box of the object,

*In OpenGL the technique is implemented by adding a proprietary extension that can be enabled when queries are

being performed.



but in general one can use any enclosing object, e.g. k-dop [16]), is visible, and only rendering the
complex object if the enclosing object is actually visible. Using this hardware, simple hierarchical
techniques can be used to optimize rendering (see [17]). In [1], another extension of graphics
hardware for occlusion-culling queries is proposed.

It is also possible to perform object-space visibility culling. One such technique, described in
[26], divides space into cells, which are then preprocessed for potential visibility. This technique
works particularly well for architectural models. Additional object-space techniques are described
in [6, 7]. These techniques mostly exploit the presence of large occluders, and keep track of spatial
extents over time. In [4], a technique that precomputes visibility in densely occluded scenes is
proposed. They show it is possible to achieve very high-occlusion rates in dense environments by
pre-computing simple ray-shooting checks.

In [12], a constant-frame rendering system is described. This work uses the visibility-culling
from [26]. It is related to our approach in the sense that it also uses a (polygon) budget for limiting
the overall rendering time. Other notable references include [3], for its level-of-detail management

ideas, and [21], where a scalable rendering architecture is proposed.

3 ThePLP Algorithm

In this paper we propose the Prioritized-Layered Projection algorithm, a simple and effective tech-
nigue for optimizing the rendering of geometric primitives. The guts of our algorithm consists of
a space-traversal algorithm, which prioritizes the projection of the geometric primitives in such
a way as to avoid (actually delay) projecting cells that have a small likelihood of being visible.
Instead of conservatively overestimating V, our algorithm works on a budget. At each frame, the
user can provide a maximum number of primitives to be rendered, i.e., a polygon budget, and our
algorithm, in its single-pass traversal over the data, will deliver what it considers to be the set of
primitives which maximizes the image quality, using a solidity-based metric.

Our projection strategy is completely object-space based, and resembles™ cell-projection algo-

TOur cell-projection algorithm is different than the ones used in volume rendering in the following ways: (1) in
volume rendering cells are usually projected in back-to-front order, while in our case, we project cells in roughly

front-to-back order; (2) more importantly, we do not keep a strict depth-ordering of the cells during projection. This



rithms used in volume rendering unstructured grids.

In a nutshell, our algorithm is composed of two parts:

Preprocessing. Here, we tessellate the space that contains the original input geometry with con-
vex cells in the way specified in Section 3.1. During this one-time preprocessing, a collection of
cells is generated in such a way as to roughly keep a uniform density of primitives per cell. Our
sampling leads to large cells in unpopulated areas, and small cell in areas that contain a lot of
geometry.

In another similarity to volume rendering, using the number of modeling primitives assigned
to a given cell (e.g., tetrahedron) we define its solidity value p, which is similar to the opacity used
in volume rendering. In fact, we use a different name to avoid confusion since the accumulated
solidity value used throughout our priority-driven traversal algorithm can be larger than one. Our
traversal algorithm prioritizes cells based on their solidity value.

Generating such a space tessellation is not a very expensive step, e.g. taking only a minute
or two minutes for a scene composed of one million triangles, and for several large datasets can
even be performed as part of the data input process. Of course, for truly large datasets, we highly
recommend generating this view-independent data structure beforehand, and saving it with the

original data.

Rendering Loop. Our rendering algorithm traverses the cells in roughly front-to-back order.
Starting from the seed cell, which in general contains the eye position, it keeps carving cells out of
the tessellation. The basic idea of our algorithm is to carve the tessellation along layers of polygons.
We define the layering number { € & of a modeling primitive P in the following intuitive way. If
we order each modeling primitive along each pixel by their positive* distance to the eye point, we
define (P ) to be the smallest rank of P over all of the pixels to which it contributes. Clearly,
¢(P)=1,if, and only if, P is visible.

Finding the rank 1 primitives is equivalent to solving the visibility problem. Instead of solving

this hard problem, the PLP algorithm uses simple heuristics. Our traversal algorithm attempts to

would be too restrictive, and expensive, for our purposes.
*without loss of generality, assume P is in the view frustum.
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Figure 2: The input geometry is a model of an office. Snapshots of the PLP algorithm highlight
the spatial tessellations that are used. The cells which have not been projected in the Delaunay
triangulation (a) and the octree (b) are highlighted in blue and green, respectively. At this point in

the algorithm, the geometry associated with the projected cells has been rendered.

project the modeling primitives by layers, that is, all primitives of rank 1, then 2 and so on. We do
this by always projecting the cell in the front F (we call the front, the collection of cells that are
immediate candidates for projection) which is least likely to be occluded according to its solidity
values. Initially, the front is empty, and as cells are inserted, we estimate its accumulated solidity
value to reflect its position during the traversal. (Cell solidity is defined below in Section 3.2).
Every time a cell in the front is projected, all of the geometry assigned to it is rendered. In Fig. 2,
we see a snapshot of our algorithm for each of the spatial tessellations that we have implemented.
The cells which have not been projected in the Delaunay triangulation (a) and the octree (b) are
highlighted in blue and green, respectively.

There are several types of budgeting that can be applied to our technique, for example, a
triangle-count budget can be used to make it time-critical. For a given budget of k modeling
primitives, let T be the set of primitives our traversal algorithm projects. This set, together with S,
the set of all primitives, and V , the set of visible primitives, can be used to define several statistics

that measure the overall effectiveness of our technique. One relevant statistic is the visible cover-
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Figure 3: Occupancy-based spatial tessellation algorithm. The input geometry, a car with an engine
composed of over 160K triangles, is shown in (a). Using the vertices of the input geometry, we
build an error-bounded octree, shown in (b). The centers of the leaf-nodes of the octree, shown in

yellow in (c), are used as the vertices of our Delaunay triangulation.

age ratio for a budget of k primitives, ex. This is the number of primitives in the visible set that we

|V ﬂTk|
V]

PLP does not attempt to compute the visible set exactly. Instead, it combines a budget with

actually render, that is, ex = . If & < 1, we missed rendering some visible primitives.
its solidity-based polygon ordering. For a polygon budget of k, the best case scenario would be to
have g, = 1. Of course, this would mean that PLP finds all of the visible polygons.

In addition to the visible coverage ratio €, another important statistic is the number of incorrect
pixels in the image produced by the PLP technique. This provides a measure as to how closely the

PLP image represents the exact image produced by rendering all of the primitives.

3.1 Occupancy-Based Spatial Tessellations

The underlying data structure used in our technique is a decomposition of the 3-space covered by

the scene into disjoint cells. The characteristics we required in our spatial decomposition were:

() Smpletraversal characteristics - must be easy and computationally inexpensive to walk

from cell to cell.



(b) Good projection properties - depth-orderable from any viewpoint (with efficient, hopefully

linear-time projection algorithms available); easy to estimate screen-space coverage.

(c) Efficient spacefiller - given an arbitrary set of geometry, it should be possible to sample the

geometry adaptively, that is, with large cells in sparse areas, and smaller cells in dense areas.

(d) Easy tobuild and efficient to store.

Itis possible to use any of a number of different spatial data structures, such as kd-trees, octrees,
or Delaunay triangulations. The particular use of one kind of spatial tessellation may be related to
the specific dataset characteristics, although our experiments have shown that the technique works
with at least two types of tessellations (octrees and Delaunay triangulations).

Overall it seems that using low-stabbing triangulations, such as those used by Held et al. [14]
(see also Mitchell et al. [18, 19] for theoretical properties of such triangulations), which are also
depth-sortable (see [27, 25, 5]) are a good choice for occupancy-based tessellations. The main
reason for this is that given any path in space, these triangulations tend to minimize the traversal
cost allowing PLP to efficiently find the visible surfaces.

In order to actually compute a spatial decomposition M which adaptively samples the scene,
we use a very simple procedure, explained in Section 4. After M is built, we use a naive assignment
of the primitives in S to M, by basically scan-converting the geometry into the mesh. Each cell ¢; €
M, has a list of the primitives from S assigned to it. Each of these primitives is either completely
contained in ¢;, or it intersects one of its boundary faces. We use |c;|, the number of primitives in
cell ¢;, in the algorithm that determines the solidity values of c;’s neighboring cells. In a final pass
over the data during preprocessing, we compute the maximum number of primitives in any cell,

Pmax = MaX;cr1 M |Cil, to be used later as a scaling factor.

3.2 Priority-Based Traversal Algorithm

Cell-projection algorithms [27, 25, 5] are implemented using queues or stacks, depending on the
type of traversal (e.g., depth-first versus breadth-first), and use some form of restrictive dependency

among cells to ensure properties of the order of projection (e.g., strict back-to-front).

10



Unfortunately such limited and strict projection strategies do not seem general enough to cap-
ture the notion of polygon layering, which we are using for visibility culling. In order for this
to be feasible, we must be able to selectively stop (or at least delay) cell-projection around some
areas, while continuing in others. In effect, we would like to project cells from M using a layering
defined by the primitives in S. The intuitive notion we are trying to capture is as follows: if a cell
Ci has been projected, and |ci| = pmax, then the cells behind should wait until (at least) a corre-
sponding layer of polygons in all other cells have been projected. Furthermore, in order to avoid
any expensive image-based tests, we would prefer to achieve such a goal using only object-space
tests.

In order to achieve this goal of capturing global solidity, we extend the cell-projection frame-
work by replacing the fixed insertion/deletion strategy queue, with a metric-based queue (i.e., a
priority queue), so that we can control how elements get pushed and popped based on a metric we
can define. We call this priority queue, F, the front. The complete traversal algorithm is shown
in Fig. 4. In order to completely describe it, we need to provide details on solidity metrics and its

update strategies.

Solidity.  The notion of a cell’s solidity is at the heart of our rendering algorithm shown in Fig. 4.
At any given moment, cells are removed from the front (i.e., priority queue F) in solidity order,
that is, the cells with the smallest solidity are projected before the ones with larger solidity. The
solidity of a cell B used in the rendering algorithm is not an intrinsic property of the cell by itself.
Instead we use a set of conditions to roughly estimate the visibility likelihood of the cell, and make
sure that cells more likely to be visible get projected before cells that are less likely to be visible.

The notion of solidity is related to how difficult it is for the viewer to see a particular cell. The
actual solidity value of a cell B is defined in terms of the solidity of the cells that intersect the
closure of a segment from the cell B to the eye point. The heuristic we have chosen to define the
solidity value of our cells is shown in Fig. 5.

We use several parameters in computing the solidity value.

— The normalized number of primitives inside cell A, the neighboring cell (of cell B) that was
just projected. This number, which is necessarily between 0 and 1, is p‘imix. The rationale is

that the more primitives cell A contains, the more likely it is to obscure the cells behind it.
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Algorithm RenderingLoop()
1. while (empty(F ) != true)
2. c=min(F)

3. project(c)

4. if ((reached_budget() == true)

5. break;

6. for each n; n = cell_adjacent_to(c)
7. if ((projected(n) == true)

8. continue;

9. p = update_solidity(n, c)

10. enqueue(n, p)

Figure 4: Skeleton of the RenderingLoop algorithm. Function min(F ) returns the minimum ele-
ment in the priority queue F . Function project(c) renders all the elements assigned to cell c; it
also counts the number of primitives actually rendered. Function reached_budget() returns true if
the we have already rendered k primitives. Function cell _adjacent_to(c) lists the cells adjacent to c.
Function projected(n) returns true if cell n has already been projected. Function update_solidity(n,
c) computes the updated solidity of cell n, based on the fact that c is one of its neighbors, and has
just been projected. Function enqueue(n, p) places n in the queue with a solidity p. If nwas already
in the queue, this function will first remove it and re-insert it with the updated solidity value. See

text for more details on update_solidity().
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float function update_solidity(B, A)

/* refer to Fig. 6 */

pe = Ll + (V1) * pa

if ((star _shaped(V, B) == false)
ps = apply_penalty factor (pg)

return pg

M L poe

Figure 5: Function update_solidity(). This function works as if transferring accumulated solidity
from cell A into cell B. pg is the solidity value to be computed for cell B. |A| is the number of
primitives in cell A. pmax IS the maximum number of primitives in any cell. ng is the normal of the
face shared by cells Aand B. pa is the accumulated solidity value for cell A. The maximum transfer
happens if the new cell is well-aligned with the view direction V, and in star-shaped position. If

this is not the case, penalties will be incurred to the transfer.

— Its position with respect to the viewpoint. We transfer a cell’s solidity to a neighboring cell
based on how orthogonal the face that is shared between cells is to the view direction V (see
Fig. 6).

We also give preference to neighboring cells that are star-shaped [8] with respect to the view-
point and the shared face. That is, we attempt to force the cells in the front to have their interior,
e.g. their center point, visible from the viewpoint along a ray that passes through the face shared
by the two cells. The reason for this is to avoid projecting cells (with low solidity values) that are
occluded by cells in the front (with high solidity values) which have not been projected yet. This is
likely to happen as the front expands away from an area in the scene where two densely occupied
regions are nearby; we refer to such an area as a bottleneck. Examples of such areas can easily be
seen in Fig. 7, which highlights our 2D prototype implementation. Actually, forcing the front to be
star-shaped at every step of the way is too limiting a rule. This would basically produce a visibility
ordering for the cells (such as the one computed in [25, 5]). Instead, we simply penalize the cells

in the front that do not maintain this star-shaped quality.
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Figure 6: Solidity Transfer. After projecting cell A, the traversal algorithm will add cells B and
C to the front. Based upon the current viewing direction v, cell B will accumulate more solidity
from A than will cell C, however, C will likely incur the non-star-shaped penalty. ng and nc are the
(respective) normals of the faces shared by the cell A’s neighboring cells. Refer to Fig. 5 for the

transfer calculation.

4 Implementation Details

We have implemented a system to experiment with the ideas presented in this paper. The code is
written in C++, with a mixture of Tcl/Tk and OpenGL for visualization. In order to access OpenGL
functionality in a Tcl/Tk application, we use Togl [20]. In all, we have about to 10,000 lines of
code. The code is very portable, and the exact same source code compiles and runs under IBM
AlLX, SGI IRIX, Linux, and Microsoft Windows NT. See Fig. 8 for a screen shot of our graphical
user interface.

One of the reasons for the large amount of code actually comes from our flexible benchmark-
ing capabilities. Among other functionality, our system is able to record and replay scene paths;
automatically compute several different statistics about each frame as they are rendered (e.g., num-
ber of visible triangles, incorrect pixels); compute PLP traversals step by step, and “freeze” in the
middle of a traversal to allow for the study of the traversal properties from different viewpoints.

Here is a brief discussion of some of the important aspects of our implementation:

Rendering Data Structures. At this time, the main rendering primitive in our system is the

triangle. In general, we accept and use “triangle soups” as our input. For each triangle, we save
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(a) (b)

(c) (d)

Figure 7: Priority-based traversal algorithm. In (a), the first cell, shown in green, gets projected.
The algorithm continues to project cells based upon the solidity values. Note that the traversal,
in going from (b) to (c), has delayed projecting those cells with a higher solidity value (i.e. those
cells less likely to be visible) in the lower-left region of the view frustum. In (d), as the traversal
continues, a higher priority is given to cells likely to have visible geometry, instead of projecting the
ones inside of high-depth complexity regions. Note that the star-shaped criterion was not included

in our 2D implementation.
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Figure 8: Snapshot of our Tcl/Tk graphical user interface.

pointers to its vertices (which include color information), and a few flags, one of which is used to
mark whether it has been rendered in the current traversal. At this point, we do not make any use of
the fact that triangles are part of larger objects. Triangles are assigned to cells, and their rendering
are triggered by the actual rendering of a cell. Although triangles can (in general) be assigned to
more than one cell, they will only be rendered once per frame. A cell might get partially rendered,

in case the triangle budget is reached while attempting to render that particular cell.

Traversal Data Structures and Rendering Loop. During rendering, cells need to be kept in
a priority queue. In our current implementation, we use an STL set to actually implement this
data structure. We use an object-oriented design, which makes it easy for the traversal rendering
code to support different underlying spatial tessellations. For instance, at this time, we support
both octree and Delaunay-based tessellations. Since we are using C++, it is quite simple to do
this. The following methods need to be supported by any cell data structure (this list only include
methods needed for the rendering traversal; other methods are needed for initialization and triangle

assignment, and also for benchmarking):

— calculateInitialSolidityValues (int pmax) — USes the techniques presented in

Section 3.2 for computing the initial solidity.
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— getSolidity (), setSolidity (), getOriginalSolidity () — uses the tech-
niques presented in Section 3.2 for updating the solidity values during traversal. Solidity

updates need to be adjusted for different kinds of spatial tessellations.

We use these functions to define a comparator class (1ess< =) that can be used by the STL
set to sort the different cells. Each cell also has an internal time stamp, which is used to

guarantee a first-in first-out behavior when there are ties with respect to the solidity values.

— findCell (float vp[3]) —Findthe cell that contains the viewpoint, or returns that the
viewpoint is outside the convex hull of the tessellation. (In order to jump start the traversal
algorithm when the viewpoint is outside the tessellation, we use the cell that is closest to the

viewpoint.)
— getGeometry_VEC () —returns a reference to the list of primitives inside this cell.

— getNeighbors_VEC () —returns a reference to the list of neighbors of this cell. (We also
save the direction which identifies the face the two cells share. This is used to perform the

solidity update on the neighboring cells.)

Although simple and general, STL can add considerable overhead to an implementation. In
our case, the number of cells in the front has been kept relatively small, and we have not noticed
substantial slowdown due to STL.

The rendering loop is basically a straightforward translation of the code in Fig. 4 into C++.
Triangles are rendered very naively, one by one. We mark triangles as they are rendered, in order
to avoid overdrawing triangles that get mapped to multiple cells. We also perform simple backface
culling as well as view-frustum culling. We take no advantage of triangle-strips, vertex arrays, or

other sophisticated OpenGL features.

Space Tessellation Code.  This is quite possibly the most complicated part of our implementa-
tion, and it consists of two parts, one for each of the two spatial tessellations we support. There is
a certain amount of shared code, since it is always necessary to first compute an adaptive sampling

from the scene, for which we use a simple octree.
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In more detail, in order to compute a spatial decomposition M, which adaptively samples the
scene S, we use a very simple procedure that in effect just samples S with points, then (optionally)
constructs M as the Delaunay triangulation of the sample points, and finally assigns individual
primitives in S to M. Fig. 3 shows our overall triangulation algorithm. Instead of accurately
sampling the actual primitives (Fig. 3a), such as is done in [15], we simply construct an octree
using only the original vertices (Fig. 3b); we limit the size of the octree leaves, which gives us a
bound on the maximum complexity of our mesh®. Note that at this point, we do not have a space
partitioning where we can run PLP, instead the octree provides a hierarchical representation of
space (i.e, the nodes of the octree overlap and are nested).

Once the octree has been computed with the vertex samples, we can generate two different

types of subdivisions:

— Delaunay triangulation — We can use the (randomly perturbed) center of the octree leaves

as the vertices of our Delaunay triangulation (Fig. 3c).

For this, we used ghul1, software written at the Geometry Center, University of Minnesota.
Our highly constrained input is bound to have several degeneracies as all the points come
from nodes of an octree, therefore we randomly perturbed these points and ghull had no

problems handling them.

After M is built, we use a naive assignment of the primitives in S to M , by basically scan-
converting the geometry into the mesh. Each cell ¢c; € M, has a list of the primitives from S
assigned to it. Each of these primitives is either completely contained in c;, or it intersects

one of its boundary faces.
Each tetrahedron is represented by pointers to its vertices. Adjacency information is also

required, as are a few flags for rendering purposes.

— Octree— Since we have already built an octree, it is obvious that we can use the same octree

to compute a subdivision of space for PLP. Conceptually, this is quite simple, since the leaves

8(1) The resolution of the octree we use is very modest. By default, once an octree node has a side shorter than 5%
of the length of the bounding box of S, it is considered a leaf node. This has shown to be quite satisfactory for all the
experiments we have performed thus far. (2) Even though primitives might be assigned to multiple cells of M (we use

pointers to the actual primitives), the memory overhead has been negligible. See Section 5.1.
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Figure 9: Finding neighbors within the octree.

of the octree are guaranteed to form a subdivision of space. All that is really needed is to
compute neighborhood information in the octree, for instance, looking at Fig. 9, we need to

find that node A is a “face” neighbor of node I and J, and vice-versa.

Samet [22] describes several techniques for neighbor finding. The basic idea in finding the
“face” neighbor of a node is to ascend the octree until the nearest common ancestor is found,
and to descend the octree in search of the neighbor node. In descending the octree, one needs

to reflect the path taken while going up (for details, see Table 3.11 in [22]).

One shortcoming with the technique as described in [22] is that it is only possible to find a
neighbor at the same level or above (that is, it is possible to find that A is the “right” neighbor
of I, but it is not possible to go the other way). A simple fix is to traverse the tree from the
bottom to the top, and allow the deeper nodes (e.g., I) to complete the neighborhood lists of

nodes up in the tree (e.g., A).

Regardless of the technique used for subdivision, for the solidity calculations, we use |ci,

the number of primitives in cell ¢;, in the algorithm that determines the solidity values of ¢;’s

neighboring cells. In a final pass over the data during preprocessing, we compute the maximum

number of primitives in any cell, pmax = maxjc;1._m; [Ci|, to be used later as a scaling factor.

Computing the Exact Visible Set. A number of benchmarking features are currently included

in our implementation. One of the most useful is the computation of the actual exact visible

set. We estimate V by using the well-know item buffer technique. In a nutshell, we color all

the triangles with different colors, render them, and read the frame buffer back, recording which
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triangles contributed to the image rendered. After rendering, all the rank-1 triangles have their

colors imprinted into the frame buffer.

Centroid-Ordered Rendering. In order to have a basis for comparison, we implemented a sim-
ple ordering scheme based on sorting the polygons with respect to their centroid, and rendering
them in that order up to the specified budget. Our implementation of this feature tends to be slow

for large datasets, as it needs to sort all of the triangles in S at each frame.

5 Experimental Results

We performed a series of experiments in order to determine the effectiveness of PLP’s visibility
estimation. Our experiments typically consist of recording a flight path consisting of several frames
for a given dataset, then playing back the path while varying the rendering algorithm used. We
have four different strategies for rendering: (1) rendering every triangle in the scene at each frame,
(2) centroid-based budgeting, (3) PLP with octree-based tessellation, and (4) PLP with Delaunay
triangulation. During path playback, we also change the parameters when appropriate (e.g., varying
the polygon budget for PLP). Our primary benchmark machine is an IBM RS/6000 595 with a
GXT800 graphics adapter. In all our experiments, rendering was performed using OpenGL with
Z-buffer and lighting calculations turned on. In addition, all three algorithms perform view-frustum
and backface culling to avoid rendering those triangles that clearly will not contribute to the final
image. Thus, any benefits provided by PLP will be on top of the benefits provided by traditional
culling techniques.

We report experimental results on three datasets:

Room 306 of the Berkeley SODA Hall (ROOM) This model has approximately 45K triangles
(see Figs. 13 and 14), and consists of a number of chairs in what appears to be a reasonably
large seminar room. This is a difficult model to perform visibility culling on, since the
number of visible triangles along a path varies quite a bit with respect to the total size of the
dataset, in fact, in the path we use, this number ranged from 1% to 20% of the total number

of triangles.
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City Model (CITY) The city model is composed of over 500K triangles (Fig. 10c). Each house
has furniture inside, and while the number of triangles is large, the actual number of visible

triangles per frame is quite small.

5 Car Body/Engine Model (5CBEM) This model has over 810K triangles (Fig. 11c). It is

composed of five copies of an automobile body and engine.

5.1 Preprocessing

Preprocessing involves computing an octree of the model, then (optionally) computing a Delaunay
triangulation of points defined by the octree (which is performed by calling ghul1l), and finally
assigning the model geometric primitives to the spatial tessellation generated by ghul1l.

For the CITY model, preprocessing took 70 seconds, and generated 25K tetrahedra. Represent-
ing each tetrahedron requires less than 100 bytes (assuming the cost of representing the vertices
is amortized among several tetrahedra), leading to a memory overhead for the spatial tessellation
on the order of 2.5MB. Another source of overhead comes from the fact that some triangles might
be multiply assigned to tetrahedra. The average number of times a triangle is referenced is 1.80,
costing 3.6 MB of memory (used for triangle pointers). The total memory overhead (on top of
the original triangle lists) is 6.1 MB, while storing all the triangles alone (the minimal amount of
memory necessary to render them) already costs 50 MB. So, PLP costs an extra 12% in memory
overhead.

For the 5CBEM model, preprocessing took 135 seconds (also including the ghull time),
and generated 60K tetrahedra. The average number of tetrahedra that points to a triangle is 2.13,
costing 14.7 MB of memory. The total memory overhead is 20 MB, and storing the triangles takes
approximately 82 MB. So, PLP costs an extra 24% in memory overhead.

Since PLP’s preprocessing only takes a few minutes, the preprocessing is performed online,
when the user requests a given dataset. We also support offline preprocessing, by simply writing

the spatial tessellation and the triangle assignment to a file.
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Figure 10: CITY results. (a) The top curve, labelled Exact, is the number of visible triangles for
each given frame. The next four curves are the number of the visible triangles PLP finds with a
given budget. From top to bottom, budgets of 10%, 5%, 2%, and 1% are reported. The bottom
curve is the number of visible triangles that the centroid sorting algorithm finds. (b) Rendering
times in seconds for each curve shown in (a), with the exception of the centroid sorting algorithm,
which required 4-5 seconds per frame. (c) Image of all the visible triangles. (d) Image of the 10%
PLP visible set.
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Figure 11: 5CBEM results. (a) The top curve, labelled Exact, is the number of visible triangles
for each given frame. The next four curves are the number of the visible triangles PLP finds with
a given budget. From top to bottom, budgets of 10%, 5%, 2%, and 1% are reported. The bottom
curve is the number of visible triangles that the centroid sorting algorithm finds. (b) Rendering
times in seconds for each curve shown in (a), with the exception of the centroid sorting algorithm,

which required 6-7 seconds per frame. (c) Image of all the visible triangles. (d) Image of the 10%

PLP visible set.

23

(d)



5.2 Rendering

We performed several rendering experiments. During these experiments, the flight path used for
the 5CBEM is composed of 200 frames. The flight path for the CITY has 160 frames. The flight
path for the ROOM has 235 frames. For each frame of the flight path, we computed the following

statistics:

(1) the exact number of visible triangles in the frame, estimated using the item-buffer technique.

(2) the number of visible triangles PLP was able to find for a given triangle budget. We varied

the budget as follows: 1%, 2%, 5% and 10% of the number of triangles in the dataset.

(3) the number of visible triangles the centroid-based budgeting was able to find under a 10%

budget.
(4) the number of wrong pixels generated by PLP.
(5) time (all times are reported in seconds) to render the whole scene.
(6) time PLP took to render a given frame.

(7) time the centroid-based budgeting took to render a given frame.

Several of the results (in particular, (1), (2), (3), (5), and (6)) are shown in Table 1, and Figs. 10,
11, which show PLP’s overall performance, and how it compares to the centroid-sorting based ap-
proach. The centroid rendering time (7) is mostly frame-independent, since the time is dominated
by the sorting, which takes 6—7 seconds for the 5CBEM model, and 4-5 seconds for the CITY
model. We collected the number of wrong pixels (4) on a frame-by-frame basis. We report worst-
case numbers. For the CITY model, PLP gets as many as 4% of the pixels wrong; for the 5SCBEM
model, this number goes up, and PLP misses as many as 12% of the pixels, in any given frame.

The other figures focus on highlighting specific features of our technique, and compare the

octree and Delaunay-based tessellations.
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(a) Visible triangles. (b) Incorrect pixels.

rrrrrrrrrrr

(c) Rendering speed.

Figure 12: This figure illustrates the quantitative differences among the different rendering tech-
niques for each frame of the CITY path. In each plot, we report results for with each rendering
technique (centroid, octree-based PLP, and Delaunay-based PLP respectively). In (a), we show
the percentage of the visible polygons that each technique was able to find. In (b), we show the

number of incorrect pixels in the images computed with each technique.

Speed and accuracy comparisonson the CITY model. Fig. 12c shows the rendering times of
the different algorithms, and compares them with the rendering of the entire model geometry. For
a budget of 10%, the Delaunay triangulation was over two times faster, while the octree approach,

was about four times faster. We have not included the timings for the centroid-sorting method,
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as our implementation was straight-forward and naively sorted all of the triangles for each of the
frames. Fig. 12a highlights the effectiveness of our various methods, for a budget of 10% of the
total number of triangles, showing the number of visible triangles that were found. The magenta
curve shows the exact number of visible triangles for each frame of this path. In comparison,
the Delaunay triangulation was very successful, finding an average of over 90% of the visible
triangles. The octree was not as good in this case, and averaged only 64%. However, this was
still considerably better than the centroid-sorting approach which averaged only 30%. Fig. 12b
highlights the effectiveness of the PLP approaches. In the worst case, the Delaunay triangulation
version produced an image with 4% of the pixels incorrect, with respect to the actual image. The
octree version of PLP was a little less effective, generating images with at most 9% of the pixels
incorrect. However, in comparison with the centroid-sorting method, which rendered images with

between 7% - 40% of the pixels incorrect, PLP has done very well.

Visual and quantitative quality on the ROOM model. Figs. 13 and 14 show one of the view-
points for the path in the Seminar Room dataset. Most of the geometry is made up of the large
number of chairs, with relatively few triangles being contributed by the walls and floor. From a
viewpoint on the outside of this room, the walls would be very good occluders and would help
make visibility culling much easier. However, once the viewpoint is in the interior sections of this
room, all of these occluders are invalidated (except with respect to geometry outside of the room),
and the problem becomes much more complicated. For a budget of 10% of the triangles, we pro-
vide figures to illustrate the effectiveness of our PLP approaches, as well as the centroid-sorting
algorithm. Fig. 13 shows the images rendered by the centroid method, the octree method, and the
Delaunay triangulation method, respectively. The image produced by the octree in this case is the
best overall, while the centroid-sorting image clearly demonstrates the drawback of using such an
approach. To better illustrate where the algorithms are failing, Fig. 14 shows exactly the pixels
which were drawn correctly, in white, and those drawn incorrectly, in red. Further quantitative
information can be seen in Fig. 15. In fact, it is quite interesting that in terms of the overall number
of visible primitives, the centroid technique actually does quite well. On the other hand, it keeps

rendering a large number of incorrect pixels.
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(@) Visible — Centroid. (b) Visible — Octree-based PLP.

(c) Visible — Delaunay-based PLP.

Figure 13: This figure illustrates the qualitative differences among the different rendering tech-
nigues on each frame of the ROOM path. The three images show the actual rendered picture
achieved with each rendering technique (centroid, octree-based PLP, and Delaunay-based PLP re-

spectively).

Summary of Results. PLP seems to do quite a good job at finding visible triangles. In fact,
looking at Figs. 10a, and 11a, we see a remarkable resemblance between the shape of the curve
plotting the exact visible set, and PLP’s estimations. In fact, as the budget increases, the PLP

curves seem to smoothly converge to the exact visible set curve. It is important to see that this
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(@) Missed — Centroid. (b) Missed — Octree-based PLP.

(c) Missed — Delaunay-based PLP.

Figure 14: This figure illustrates the qualitative differences among the different rendering tech-
nigues on a single frame of the ROOM. The three images show the missed polygons rendered in

red, to highlight which portion of the image a given technique was wrong.

is not a random phenomena. Notice how the centroid-based budgeting curve does not resemble
the visible set curves. Clearly, there seems to be some relation between our heuristic visibility
measure (captured by the solidity-based traversal), and actual visibility, which can not be captured
by a technique that relies on distance alone.

Still, we would like PLP to do a better job at approximating the visible set. For this, it is
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(b) Incorrect pixels.

number of incorrect pixels in the images computed with each technique.

interesting to see where it fails. In Figs 10d and 11d, we have 10%-budget images. Notice how

PLP loses triangles in the back of the cars, (in Fig. 11d) since it estimates them to be occluded.
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Dataset/Budget || 1% | 2% | 5% | 10%

City Model || 51% | 66% | 80% | 90%
5 Car Body/Engine Model || 44% | 55% | 67% | 76%

Table 1: Visible Coverage Ratio. The table summarizes gy for several budgets on two large models.
The city model has 500K polygons, and the five car body/engine model has 810K polygons. For a
budget of 1%, PLP is able to find over 40% of the visible polygons in either model.

With respect to speed, PLP has very low overhead. For 5CBEM, at 1% we can render useful
images at over 10 times the rate of the completely correct image, and for CITY, at 5% we can get
80% of the visible set, and still have four times faster rendering times.

Overall our experiments have shown that: (1) PLP can be applied to large data, without requir-
ing large amounts of preprocessing; (2) PLP is able to find a large amount of visible geometry with
a very low budget; (3) PLP is useful in practice, making it easier to inspect large objects, and in

culling geometry that cannot be seen.

6 Algorithm Extensionsand Future Work
In this section, we mention some of the possible extensions of this work:

(1) Occlusion-culling techniques which rely on being able to use the z-buffer values to cull
geometry, e.g. HOM [29], HP’s occlusion-culling hardware [23], can potentially be sped up
considerably with PLP.

Take for instance the HP fx6 graphics accelerator. Severson [24] estimates that performing
an occlusion-query with a bounding box of an object on the fx6 is equivalent to rendering
about 190 25-pixel triangles. This indicates that a naive approach where objects are con-
stantly checked for being occluded might actually hurt performance, and not achieve the full
potential of the graphics board. In fact, it is possible to slow down the fx6 considerably if
one is unlucky enough to project the polygons in a back to front order (because none of the

primitives would be occluded).
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Since PLP is able to determine a large number of the visible polygons at low cost in terms of
projected triangles (e.g., PLP can find over 40% of the visible polygons while only project-
ing 1% of the original geometry). An obvious approach would be to use PLP’s traversal for
rendering a first “chunk” of geometry, then use the hardware to cull away unprojected ge-
ometry. Assuming PLP does its job, the z-buffer should be relatively complete, and a much

larger percentage of the tests should lead to culling.

A similar argument is valid for using PLP with HOM [29]. In this case, PLP can be used to
replace the occluder selection piece of the algorithm, which is time consuming, and involves

a non-trivial “occlusion preserving simplification” procedure.

(2) Another potential use of the PLP technique is in level-of-detail (LOD) selection. The PLP
traversal algorithm can estimate the proportion of a model that is currently visible, which
would allow us to couple visibility with the LOD selection process, as opposed to relying

onIy on screen-space coverage tests.

(3) Related to (1) and (2), it would be interesting to explore techniques which automatically can
adjust the PLP budget to the optimum amount to increase the quality of the images, and at
the same time decrease the rendering cost. Possibly, ideas from [12] could be adapted to our

framework.

Besides the extensions cited above, we would like to better understand the relation of the solid-
ity measure to the actual set of rendered polygons. Changing our solidity value computation could
possibly lead to even better performance. For example, accounting for front facing triangles in a
given cell by considering their normals with respect to the view direction. The same is true for
the mesh generation. Another class of open problems are related to further extensions in the front-
update strategies. At this time, a single cell is placed in the front, after which the PLP traversal
generates an ordering for all cells. We cut this tree by using a budget. It would be interesting to
exploit the use of multiple initial seeds. Clearly, the best initial guess of what’s visible, the easier

it is to continue projecting visible polygons.
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7 Conclusions

In this paper, we proposed the Prioritized-Layered Projection algorithm. PLP renders geometry by
carving out space along layers, while keeping track of the solidity of these layers as it goes along.
PLP is very simple, requiring only a suitable tessellation of space where solidity can be computed
(and is meaningful). The PLP rendering loop is a priority-based extension of the traversal used in
depth-ordering cell projection algorithms developed originally for volume rendering.

As shown in this paper, PLP can be used with many different spatial tessellations, for example,
octrees or Delaunay triangulations. In our experiments, we have found that the octree method is
typically faster than the Delaunay method due to its simple structure. However, it does not appear
to perform as well as the Delaunay triangulation in terms of capturing our notion of polygon
layering.

We use PLP as our primary visibility-culling algorithm. Two things are most important to us.
First, there is no offline preprocessing involved, that is, no need to simplify objects, pre-generate
occluders, and so on. Second, its flexibility to adapt to multiple machines with varying rendering
capabilities. In essence, in our application we were mostly interested in obtaining good image
accuracy across a large number of machines with minimal time and space overheads. For several
datasets, we can use PLP to render only 5% of a scene, and still be able to visualize over 80% of the
visible polygons. If this is not accurate enough, it is simple to adjust the budget for the desirable
accuracy. A nice feature of PLP is that the visible set is stable, that is, the algorithm does not have

major popping artifacts as it estimates the visible set from nearby viewpoints.
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Efficient Conservative Visibility Culling Using The
Prioritized-Layered Projection Algorithm

James T. Klosowski

IBM

Abstract

We propose a novel conservative visibility culling technique.
Our technique builds on the recently developed Prioritized-
Layered Projection (PLP) algorithm for time-critical render-
ing of high-depth complexity scenes. PLP is not a conserva-
tive technique, instead it computes partially correct images by
rendering only a subset of the primitives in any given frame
that PLP determines to be “potentially visible.” Our new algo-
rithm builds on PLP, and provides an efficient way to find the
remaining visible primitives.

From a very high level, PLP amounts to a modification of
a simple view-frustum culling algorithm, and it works by pro-
jecting cells, one by one, in an order that tends to prioritize
the projection of visible geometry. At any point in time, PLP
maintains a “front” which determines the cells that will be pro-
jected next. Itis by scheduling the projection of cells as they
are inserted in the front that PLP is able to perform effective
visibility estimation. A sufficient condition for conservative
visibility is that the cells in the front are no longer visible. Itis
this exact condition that we explore in our new algorithm.

In this paper, we show how to efficiently implement our
new algorithm using the HP occlusion-culling test. In doing
so, we improve on the performance of this hardware capabil-
ity. We also use a new implementation of PLP, which uses an
octree spatial tessellation (instead of the Delaunay triangula-
tion used in the original PLP). A nice feature of the new im-
plementation is that it avoids the costly Delaunay triangulation

phase, and leads to faster rendering. It also makes it easier to

implement traditional view-frustum culling and an alternative
occlusion-culling algorithm based on the HP occlusion-culling
test. We discuss the tradeoffs of using the different techniques,

and also propose extensions on how to implement conserva-

tive PLP on graphics hardware that does not support the HP
occlusion-culling extension.

1 Introduction

In this paper, we describe a novel conservative occlusion-
culling algorithm.  Our new algorithm builds on our
Prioritized-Layered  Projection (PLP) algorithm [6].
Prioritized-Layered Projection is a technique for fast
rendering of high depth complexity scenes. It works by
estimating the visible polygons of a scene from a given
viewpoint incrementally, one primitive at a time. It is not
a conservative technique, instead PLP is suitable for the

*IBM T. J. Watson Research Center, PO Box 704, Yorktown
Heights, NY 10598; jklosow@us.ibm.com.

TAT&T Labs-Research, 180 Park Ave., PO Box 971, Florham
Park, NJ 07932; csilva@research.att.com.

Claudio T. Silvd
AT&T

@) (b)

©

(d)

Figure 1: This set of pictures shows several images computed
from the same viewpoint. (a) Image computed by PLP with
a few missing triangles. (b) Correct image showing all the
visible triangles rendered with cPLP. (c) Image showing the
missed visible triangles. Most of them are partially occluded,
leading to PLP only generating a few wrong pixels. (d) Shows
the projected cells in red, and the unprojected cells in green.

computation of partially correct images for use as part of
time-critical rendering systems. From a very high level, PLP
amounts to a modification of a simple view-frustum culling
algorithm, however, it requires the computation of a special
occupancy-based tessellation, and the assignment to each cell
of the tessellation a solidity value, which is used to compute a
special ordering on how primitives get projected.

Essentially, our new algorithm works by “filling-up the
holes” where PLP made the mistake of not rendering the com-
plete set of visible geometry. In Fig. 1, we show a few images
that highlight the issues involved. Fig. 1(a) shows the frame as
rendered by PLP. In Fig. 1(b) we show what would be the cor-
rect picture, where all the visible primitives are present. A few
pieces of geometry were missed by PLP for the given budget,
we render them in Fig. 1(c). The number of wrong pixels is



actually much lower, since several of these primitives barely
contribute to the image. In our new algorithm, we propose a

geometry, more complex techniques can lead to substantial im-
provements in rendering time. IRIS Performer [9] has support

way to find them. There are several reasons why this can be for both of these culling techniques.

performed efficiently:

(@) PLP finds a large portion of the visibility set, which
tends to minimize the amount of “patching work” that
is needed to find the remaining visible polygons;

(b) Itis relatively simple and inexpensive to identify the ar-

eas of the screen that PLP missed the visible primitives.

Essentially, this amount to finding the cells in the cur-

rent front which are still visible. In fact, more is true: if

there are no remaining visible cells in the front, PLP is
guaranteed to have projected all the visible primitives.

(c) Finally, the patching work can focus on the remaining

visible cells, and cells which can be reached from a visi-

ble cell through a visible path. (See Fig. 1(d).)

The ideas in this paper developed out of our work in try-
ing to exploit HP’s hardware-based occlusion-culling test [10].
We started with a naive solution, which only exploited condi-
tion (a) above. That is, we essentially used HP’s occlusion-
culling capabilities in a standard front-to-back traversal of all
the leaf cells in an octree which were in the view frustum (this
algorithm is developed in Meissner et al. [8]). Later in the

There are many types of visibility culling algorithms, in
fact, too many for us to completely review here. We point
the interested reader to the recent survey by Cohen et al. [2].
We briefly survey a few techniques more closely related to our
work.

The Hierarchical Occlusion Maps [13] solve the visibility
problem by using two hierarchies, an object-space bounding
volume hierarchy and another hierarchy of image-space oc-
clusion maps. For each frame, objects from a pre-computed
database are chosen to be occluders and used to cull geometry
that cannot be seen. A closely related technique is the hierar-
chical Z-buffer [4].

A simple and effective hardware technique for improving
the performance of the visibility computations with a Z-buffer
has been proposed in [10]. The idea is to add a feedback loop
in the hardware which is able to check if changes would have
been made to the Z-buffer when scan-converting a given prim-
itive.* This hardware makes it possible to check if a complex
model is visible by first querying whether an enveloping prim-
itive (often the bounding box of the object, but in general one
can use any enclosing objeetg. k-dop [5]), is visible, and
only rendering the complex object if the enclosing object is
actually visible.

By using this hardware feature, and a front-to-back projec-

paper, we discuss in more detail why this should be (and is) . IS | ! X ¢ |

the case, but essentially the more the z-buffer is complete with tion scheme, it is possible to implement a simple occlusion-

the visible primitives, the more leaf cells will be flagged as culling scheme. Meissner et al. [8] exploit this idea, and in

not visible. As we discovered conditions (b) and (c), we also fact show that by using different hierarchical techniques it is

noticed that the techniques we are actually exploiting in PLP Possible to optimize the culling.

are not closely coupled with the HP occlusion-culling test,and ~ Bartz et al. [1] propose another extension of graphics hard-

in fact, can be implemented by using other hardware features, ware for occlusion-culling queries.

such as a stencil buffer. In any case, the HP occlusion testis The technique by Luebke and Georges [7] describe a

still the simplest, and quite possibly one of the most efficient screen-based technique for exploiting “visibility portals”, that

ways to exploit these properties of PLP. is, regions between cells which can potentially limit visibility
The structure of our paper is as follows. In Section 2, we from one region of space to another. Their technique can be

give a brief overview of related work. Then in Section 3 after seen as a dynamic way to compute similar information to the

a brief overview of PLP and some aspects of its implementa- one in [12].

tion, we detail our new algorithm, and its relation to (a)—(c)

explained above. In Sections 4 and 5, we describe our im-

plementation of the front-to-back occlusion-culling technique 3 The Conservative PLP Algorithm

using the HP occlusion-culling test (which we call “the HP al-

gOI’ithm" - although the first reference of it that we are aware Before we can go into our new conservative PLP (CPLP) algo_

of is given in Meissner et al. [8]), several aspects of PLP, and rithm, it helps to understand the original algorithm (for more
its current implementation as well as its performance. We also details, see Klosowski and Silva [6]).

provide results comparing the speed achieved by comparing

our new conservative technique with PLP and the HP algo-

rithm. We end the paper with some final remarks and areas for 3.1 Overview of PLP

future work.

Prioritized-Layered Projection (PLP) is a technique for fast
rendering of high depth complexity scenes. It worksdsy
timating the visible polygons of a scene from a given view-
point incrementally, one primitive at a time. The guts of the
PLP algorithm consists of a space-traversal algorithm, which
prioritizes the projection of the geometric primitives in such
a way as to avoid (actually delay) projecting cells that have a
small likelihood of being visible. Instead of explicitly overes-
timating the set of visible primitives, the algorithm works on a
budget. At each frame, the user can provide a maximum num-
ber of primitives to be renderete., a polygon budget, and the

2 Related Work

Most visibility-culling research is focussed mainly on algo-
rithms for computing conservative estimations of the visible
primitives, that is, algorithms that render a superset of the vis-
ible primitives.

The simplest example of visibility-culling algorithms are
backface and view-frustum culling [3]. Backface-culling al-
gorithms avoid rendering geometry that face away from the
viewer, while viewing-frustum culling algorithms avoid ren-
dering geometry that is outside of the viewing frustum. Even
though both of these techniques are very effective at culling

*In OpenGL the technique is implemented by adding a proprietary
extension that can be enabled when queries are being performed.



Figure 2: This figure illustrates the pixels PLP finds and misses
for one frame of a flight sequence inside a seminar room of
the Berkeley SODA Hall model. The image shows the missed
polygons rendered in red. In white, we show the visible poly-

gons PLP finds.

algorithm will deliver what it considers to be the set of prim-
itives which maximizes the image quality (using a solidity-
based metric).

PLP is composed of two parts:

e Preprocessing. PLP tessellates the space that contains
the original input geometry with convex cells. During
this one-time preprocessing, a collection of cells is gen-
erated in such a way as to roughly keep a uniform density
of primitives per cell. The sampling leads to large cells
in unpopulated areas, and small cells in areas that contain
a lot of geometry. Using the number of modeling primi-
tives assigned to a given cedl.g, tetrahedron), aolidity
valuep is defined. The accumulated solidity value used
throughout the priority-driven traversal algorithm can be
larger than one. The traversal algorithm prioritizes cells
based on their solidity value. Preprocessing is fairly in-

expensive, and can be done on large datasets (about one

million triangles) in a couple of minutes.

Rendering Loop. The rendering algorithm traverses the
cells in roughly front-to-back order. Starting from the
seed cell, which in general contains the eye position, it
keeps carving cells out of the tessellation. The basic idea
of the algorithm is to carve the tessellation aldagers

of polygons We define the layering numbére O of a
modeling primitiveP in the following intuitive way. If

we order each modeling primitive along each pixel by
their positive (assume, without loss of generality, fRat

is in the view frustum) distance to the eye point, we de-
fine {(P) to be the smallest rank & over all of the pix-

els to which it contributes. Clearlg(P ) = 1, if, and only

if, P is visible. Finding the rank 1 primitives is equiva-
lent to solving the visibility problem. Instead of solving
this hard problem, the PLP algorithm uses simple heuris-
tics. The traversal algorithmttemptgo project the mod-
eling primitives by layers, that is, all primitives of rank 1,
then 2 and so on. We do this by always projecting the cell
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Figure 3: This figure shows the number of incorrect pixels in
each frame of a flight sequence inside a seminar room of the
Berkeley SODA Hall model. Three curves are shown. The
blue curve shows the percentage of incorrect pixels found by
rendering the first 10% of the triangles inside the view frus-
tum along a front-to-back order. The other two curves show
two different implementations of PLP. The green one which
uses a Delaunay triangulation (this is the original technique
as reported in [6]). The red one uses an alternative technique
which avoids the extra Delaunay triangulation step, and uses
a modified octree-based spatial tessellation. In this paper, we
use the octree-based PLP. In both curves, a budget of 10% for
PLP was used.

in the frontF (we callthe front the collection of cells

that are immediate candidates for projection) which is
least likely to be occluded according to its solidity value.
Initially, the front is empty, and as cells are inserted, we
estimate its accumulated solidity value to reflect its posi-
tion during the traversal. Every time a cell in the front is
projected, all of the geometry assigned to it is rendered.

3.2 cPLP Components

As we mentioned in the introduction, there are primarily three
components of PLP that make cPLP possible. Next, we go
through each one of them in turn.

PLP’s accuracy in finding visible triangles, and miss-

ing few pixels.  PLP is very effective at finding the visible
polygons [6]. Fig. 2 shows one of the viewpoints for a path
through an example dataset. This model has approximately
45K triangles and consists of a number of chairs in what ap-
pears to be a reasonably large seminar room. This is a difficult
model to perform visibility culling on, since the number of
visible triangles along a path varies quite a bit with respect to
the total size of the dataset, in fact, in the path we use, this
number ranged from 1% to 20% of the total number of trian-
gles. Most of the geometry is made up of the large number of
chairs, with relatively few triangles being contributed by the
walls and floor. From a viewpoint on the outside of this room,
the walls would be very good occluders and would help make
visibility culling much easier. However, once the viewpoint
is in the interior sections of this room, all of these occluders
are invalidated (except with respect to geometry outside of the
room), and the problem becomes much more complicated.
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Figure 4: The front has been highlighted in green. By deter- Figure 5: This figure highlights the technique used in finding

mining where the front is still visible, it is possible to localize  the remaining visible cells in cPLP. The remaining visible cells

further work by our rendering algorithm. are found by limiting the algorithm to work in the remaining
visible regions.

As we can see in Fig. 3, PLP generates very few incorrect ]
pixels. This feature alone can be used to potentially speed up idea. See Fig. 5.
occlusion-culling techniques which rely on being able to use
the z-buffer values to cull geometrg,g. HOM [13], HP’s 3.3 cPLP and Its Implementation
occlusion-culling hardware [10].
Building cPLP out of the ideas from the previous section is
straightforward. Especially if we assume a version of PLP,
and a machine that implements the HP occlusion-culling test.
The cPLP algorithm is as follows:

Finding the areas of the screen where PLP missed

the visible primitives. As PLP projects cells, and renders
the geometry inside these cells, it keeps the front in a priority
queue, that is, the collection of cells that are immediate can- (1) Run the original PLP algorithm for the given budget.
didates for projection. Clearly, as the primitives in the scene )

are rendered, parts of the front get obscured by the rendered (2) Given the current front, separate the occluded cells from

geometry. In Fig. 4, we show this exact effect. If no “green” the ones that are still visible. Since we only need the vis-

(the color that we used for the front) was present, the image ible ones, we can simply delete the occluded cells from

would be complete. the front. After this point until the image is completed,
In general, the image will be completed, and rendering can only visible cells will be permitted in the front.

be stopped after all the cells in the front are “behind” the ren-
dered primitives. It is not trivial to actually determine that the

front cells are no longer visible. There are a few ways to de-
termine this, possibly one of the most efficient would use the ] i o )
OpenGL stencil buffer. Another method, and the one that we The image will be finished when the front is empty.
currently use, is to use the HP occlusion-culling test. Note that

these are expensive tests, since we need to check all the CelIswhgféePtl?stclcr)]n?itnelfegst)c’J agrsrt% tetfgﬁrr]r?i?élc)i/ \Illirglxl?r%st&emirsvaes
in the front for visibility.

discussed in the previous section.

As far as the implementation of cPLP is concerted, there
Finding the remaining visible cells. The final piece are two main steps, which are similar but are different in gran-
that we need to build cPLP is how to complete the render- ularity. In step (2), we need to determine among all the cells
ing once we know what parts of the front are still visible. For in the front which ones are still visible. By using the stencil
this, it is easier to first consider the obscured part of the cur- buffer, an item buffer technique can be used to implement this
rent front. Basically, we can think of this obscured front as a feature. In step (3), it is necessary to limit the cells that PLP
single occluder, which has a few holes (corresponding to the further considers to the limited view frustums that emanate
green patches in Fig. 4). Thinking analogous to the work of from the visible cells that were found in step (2).

Luebke and Georges [7], the holes are “portals”. At each one  As we mentioned before, a very simple and elegant way to
of these portals, we should only be able to see anything that is implement all these things is to simply use the HP occlusion-
in a limited view-frustum. An equivalent formulation is to in-  culling test, first to delete the occluded cells from the front in
crementally determine what cells belong to these smaller view step (2), then to limit the insertion of cells into the front to only
frustums by essentially making sure they can be seen by usingvisible cells. This solution makes the code clean, and avoids
the HP occlusion-culling test. This is somewhat more expen- many of the complications related to keeping multiple view
sive than it needs to be, but is the easiest way to implement the frustums, etc.

(3) Run a“modified” PLP, which before each cell is inserted
in the front test, whether it is visible. Occluded cells will
not be inserted into the front.



4 The HP algorithm In Fig. 6(b)—(e) we show a few representative frames of the
path. The number of visible polygons in each frame varies
In Section 2 we mentioned the HP occlusion-culling test, a from room to room, especially as we approach the walls.
hardware feature available on HP machines which make it  There are only two parameters that we can adjust in the ex-
possible to determine the visibility of objects as compared to periments. One parameter changes the resolution of the octree
the current values in the z-buffer. Here, we further discuss used to generate the spatial tessellation used for bucketing the
its properties, and explain a simple and effective occlusion- geometry into octree cells. This tessellation is used in all three
culling algorithm based on it. algorithms (PLP, HP, and view-frustum culling). The param-
The actual hardware feature as implemented on the HP fx eter that we can set is the maximum number of vertices that
series graphics accelerators is explained in [10] and [11]. One can be in one octree leaf cell. Obviously, the larger this num-
way to use the hardware is to query whether the bounding box ber, the larger the leaf cells will be, and the smaller the octree

of an object is visible. This can be done as follows:

glEnable(GL_OCCLUSION_TEST_HP);
glDepthMask(GL_FALSE);

glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);
DrawBoundingBoxOfObject();

bool isVisible;

glGetBooleanv(GL_OCCLUSION_RESULT_HP, &isVisible);
glDisable(GL_OCCLUSION_TEST_HP);
glDepthMask(GL_TRUE);

glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);

will be. The other parameter is the PLP budget used in cPLP.
Table 1 and Fig. 8 summarize our experiments.

Fig. 8 has the time each of the 500 frames took to com-
pute with the following algorithms: non-conservative PLP
with a 10K triangle budget (PLP), conservative PLP with 10K,
25K and 50K budgets (cPLP 10K, cPLP 20K, cPLP 50K), the
HP algorithm (HP), and view-frustum culling (VF). Fig. 8(a)
shows the results for a spatial tessellation where the maximum
number of vertices in one leaf of the octree is 1,000 vertices,
Fig. 8(b) for a maximum of 5,000 vertices, and finally Fig. 8(c)

uses a maximum of 10,000 vertices per leaf. There is a lot

Clearly, if the bounding box of an object is not visible, the  of information that can be obtained from these plots. For in-
object itself, which potentially could contain a large amount of stance, it is easy to see which frames correspond to the final
geometry, must not be visible. frame before going through a wall in the model.

This hardware feature is implemented in several of HP's  Qverall, we see that cPLP is considerably faster than HP
graphics accelerators, for instance, the HP fx6 graphics accel- and VF for all the budgets and spatial tessellations used. In
erator. Severson [11] estimates that performing an occlusion- fact, the average frame rate that cPLP achieved in all exper-
query with a bounding box of an object on the fx6 is equivalent iments was higher than 10Hz, which is over 10 times faster
to rendering about 190 25-pixel triangles. This indicates that a than VF. Comparisons with HP get a bit more interesting since
naive approach where objects are constantly checked for beingthe performance of HP seems highly depended on the resolu-
occluded might actually hurt performance, and not achieve the tion of the spatial tessellation. For the 1K octree, HP was very
full potential of the graphics board. In fact, it is possible to  sjow, in fact, it was slower than VF. The reason for this is that
slow down the fx6 considerably if one is unlucky enough to HP needs to perform a large number of visibility tests, where
project the polygons in a back to front order (because none of each of them might cost close to 200 triangles per test. This
the primitives would be occluded). way, HP is in fact doing more work than VF. For the 5K and

Meissner et al. [8] propose an effective occlusion culling 10K octree, HP is faster, still it is considerably slower than
technique using this hardware test. In a preprocessing step,cPLP.

a hierarchical data structure is built which contains the input Table 1 shows the average number of triangles rendered per
geometry. (In their paper, they propose several different data frame for each technique. It is interesting to see that HP does
structures, and study their relative performance.) Their algo- a good job in determining a tight set of triangles to render,
rithm is as follows: beating cPLP in all cases. One reason for this is that cPLP
) ] ] starts by rendering its budget, then completing the picture as
(1) Traverse the hierarchical data structure to find the leaves needed, while HP works hard to determine the visible cells
which are inside the view frustum; right from the beginning. On the flip side, HP is actually much
slower, because it needs to perform a much larger number of
visibility tests as can be seen in the third column of the table.

One interesting statistic is that the average number of visi-
(3) For each sorted cell, render the geometry contained in Dility tests increases for cPLP as the budget increases. That is,

the cell,only if the cell boundary is visible. for the 10K, 25K, 50K bl_Jd_g_e_ts, we do (f_o_r 1K octree vertlce_s)
124, 155, and 195 HP visibility tests. Initially, we thought this
was surprising since by using PLP to search longer we would
find more of the visible geometry and then fewer visibility tests
would be needed. However, this happens because in step (2)
We performed a series of experiments comparing cPLP and of the cPLP algorithm we need to check each cell in the front

(2) Sortthe leaf cells by the distance between the viewpoint
and their centroids;

5 Experimental Results

the HP algorithm. As a basis of comparison, we also report
results for view-frustum culling. The model for which we re-
port results is shown in Fig. 6(a). It consists of three copies of
the third floor of the Berkeley SODA Hall, placed end to end.
Doing this helps us to understand the way the different tech-
nigues operate in a high-depth complexity environment. This
whole model has about 1.5 million triangles, where each room
has different pieces of furniture. We generate a 500-frame
path that travels left starting from the top right of Fig. 6(a).

for visibility before we go into part (3). The more cells in the
front, the more we need to check, but they are more likely to
be occluded. Itis easy to see that in fact the cells get less likely
to be visible, since the actual number of visible cells does go
down as the budget for cPLP increases. One of the reasons
that HP needs to do a very large number of visibility tests is
in fact, because it can not identify anything as a “virtual oc-
cluder”, which is in essence what cPLP does in step (2).

We would like to point out that the reason the VF culling



average number of rendered triangles increases as the maxi-and a sample implementation that showed us how to use the

mum octree vertex count increases is the fact that fewer of the HP occlusion test.

larger leaf nodes will be culled. Many thanks to Prof. Carloe®juin and his students at the
Fig. 7 has a pseudo color rendering of the depth complex- University of California, Berkeley for the SODA Hall model

ity of the triangles rendered by (a) view-frustum culling, (b) used in our experiments.

HP culling, and (c) cPLP. In this figure, the depth complexity

ranges from low, indicated by light green areas, to high, indi-

cated by bright red areas. Note that the depth complexity of Re€ferences

the triangles rendered by HP and cPLP is considerably lower

than the one present in the actual scene, as rendered by the [1] Dirk Bartz, Michael Messner, and Tobias Huettner.
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Figure 6: (a) A top view of our dataset. (b)—(e) Sample views of the flight path.
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Figure 7: Depth complexity of the scene as rendered by (a) view-frustum culling, (b) HP, and (c) cPLP. The depth complexity
ranges from light green (low) to bright red (high).



| 1000 Vertices Maximum in Octree Leaf Cells |

Method Avg Tri Rendered| Avg Vis Tests| Avg Vis Cells
cPLP 10K 14,318 124 28
cPLP 25K 27,108 155 17
cPLP 50K 51,038 195 10
HP 10,428 5,824 55
VF 784,311

| 5000 Vertices Maximum in Octree Leaf Cells
Method Avg Tri Rendered| Avg Vis Tests| Avg Vis Cells

cPLP 10K 21,855 50 15
cPLP 25K 31,391 52 10
cPLP 50K 52,542 65 5
HP 17,839 1,093 19
VF 812,331

| 10000 Vertices Maximum in Octree Leaf Cells
Method Avg Tri Rendered| Avg Vis Tests| Avg Vis Cells

cPLP 10K 25,515 28 9
cPLP 25K 31,690 28 5
cPLP 50K 53,782 35 3
HP 25,560 493 13
VF 833,984

Table 1: Tables showing the average number of triangles rendered, the average number of visibility tests performed, and the average
number of visible cells for each technique. Each table correspond to a different octree resolution.
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Figure 8: The plots report the rendering time of each one of 500 frames for view-frustum culling (VF), conservative PLP (cPLP), the
HP occlusion-culling algorithm (HP), and the original PLP algorithm (PLP). Each plot correspond to a different octree resolution.
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Introduction

O Occluders are rendered into the image

OFilled part of the image represents the
occlusion

OThe scene is usually compared
hierarchical for visibility determination

OThe determination is performed in
discreet space

SIGGRAPH 2000, New Orleans

Hierarchical Z-Buffer (HZB)

(Ned Greene, Michael Kass)

[1An extension of the Z-buffer VSD
algorithm

[0Scene is arranged into an octree

O Z-pyramid is constructed from contents of
the Z-Buffer

OOctree is compared against Z-pyramid

O Previously visible occluders can be used
for Z-pyramid

SIGGRAPH 2000, New Orleans 4




HZB: The Octree

OIf the cube representing a node is not
visible then nothing in it is either

[JScan-convert the faces of an octree cube,
if each visited pixel is hidden then the
octree is occluded

OOctree can be traversed top-to-bottom
and front-to-back

SIGGRAPH 2000, New Orleans

HZB: The Z-Pyramid

O Used for reducing the cost of cube
visibility

O Contents of the Z-buffer is the finest level
in the pyramid

O Coarser levels are created by grouping
together four neighbouring pixels and
keeping the largest z-value

O Coarsest level is just one value
corresponding to max z

SIGGRAPH 2000, New Orleans 6




HZB: Maintaining the Z-
Pyramid

O Every time an object is rendered causing
a change in the Z-buffer, this change is
propagated through the pyramid

SIGGRAPH 2000, New Orleans 7

HZB: Using the Z-Pyramid

OTo determine whether a polygon is
occluded:

Ofind the finest-level of the pyramid whose pixel
covers the image-space box of the polygon

Ocompare their z-values
Oif polygon z > pyramid z then stop => occluded
Oelse descent down the z-pyramid and repeat

SIGGRAPH 2000, New Orleans 8




HZB: discussion

01t provides great acceleration

[ Getting the necessary information from
the Z-buffer is costly and thus does not
run real-time

OA hardware modification was proposed for
making it real-time

SIGGRAPH 2000, New Orleans 9

Hierarchical Occlusion
Maps (Hansong Zhang et.al)

OOverview
[JRepresenting cumulative projection
OOverlap tests

ORepresenting depth
ODepth tests

OOccluder Selection

SIGGRAPH 2000, New Orleans 10




HOM: Algorithm Outline

[ Select occluders until the set is large
enough

O Update (build) occlusion representation
O Occlusion culling & final rendering

SIGGRAPH 2000, New Orleans 11

HOM: Main features

O Generality

OOccluders of any type (anything that can be
rendered), no restrictions on camera position

O Interactivity

ODynamic scenes, unrestricted object movement
O Significant culling

OFusion of unrelated occluders
O Approximate culling

OThe degree of approximation can be changed by

varying an appropriate parameter
SIGGRAPH 2000, New Orleans 12




HOM: Occlusion Map
Pyramid

O Analyzing cumulative projection
OA hierarchy of occlusion maps (HOM)
OMade by recursive averaging (low-pass filtering)
ORecord average opacities for blocks of pixels
ORepresent occlusion at multiple resolutions

OConstruction accelerated by hardware - bilinear
interpolation or texture maps / mipmaps

SIGGRAPH 2000, New Orleans 13

HOM: Occlusion Map
Pyramid

64 x 64 32x32 16 x 16
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HOM: Occlusion Map
Pyramid

O Analyzing cumulative projection
OA hierarchy of occlusion maps (HOM)
OMade by recursive averaging (low-pass filtering)
ORecord average opacities for blocks of pixels
ORepresent occlusion at multiple resolutions

OConstruction accelerated by hardware - bilinear
interpolation or texture maps / mipmaps

SIGGRAPH 2000, New Orleans 15

HOM: Occlusion Map
Pyramid

SIGGRAPH 2000, New Orleans 16




HOM: Overlap Tests

OProblem: is the projection of tested object
inside the cumulative projection of the
occluders?

OCumulative projection of occluders: the
pyramid
OProjection of the tested object

OConservative overestimation
¢ Bounding boxes (BB)
¢ Bounding rectangles (BR) of BB's

SIGGRAPH 2000, New Orleans 17

HOM: Overlap Tests

[0The basic algorithm
Given: HOM pyramid; the object to be tested

» Compute BR and the initial level in the pyramid
* for each pixel touched by the BR

if pixel is fully opaque
continue

else
if level =0

return FALSE
else

descend...
SIGGRAPH 2000, New Orleans 18




HOM: Overlap Tests

O High-level opacity evaluation

CEarly termination
(OConservative rejection
OAggressive approximate culling
OPredictive rejection

SIGGRAPH 2000, New Orleans 19

HOM: Aggressive
Approximate Culling

O Ignoring barely-visible objects
OSmall holes in or among objects

[OTo ignore the small holes
OLPF suppresses noise — holes “dissolve”
OThresholding: regard “very high” opacity as
fully opaque
OThe opacity threshold: the opacity above
which a pixel is considered to be fully
opaque

SIGGRAPH 2000, New Orleans 20




HOM: Aggressive
Approximate culling

SIGGRAPH 2000, New Orleans 21

HOM: Resolving Depth

[ Depth representations
[ODefine a boundary beyond which...

OConservative estimation
DA single plane
ODepth estimation buffer

ONo-background z-buffer

SIGGRAPH 2000, New Orleans 22




HOM: A single plane

[1... at the farthest vertex of the occluders

Image
plane

Viewing
direction

/The plane
Occluders 0: The point with

N

/—_ii nearest depth
<§ \This object
passes the

depth test

SIGGRAPH 2000, New Orleans 23

HOM: Depth Estimation

Buffer

OUniform subdivision of the screen
A plane for each partition
ODefines the far boundary

OUpdates (i.e. computing depth
representation)
OOccluder bounding rectangle at farthest depth

[ Depth tests
OOccudee bounding rectangle at nearest depth

SIGGRAPH 2000, New Orleans 24




HOM: Depth Estimation
Buffer

Transformed view-frustum

Image] D.E.B.
plane \ Bounding rectangle
/ at farthest depth
: > Boundin
PO I

E—
= rectangle at
Viewing nearest depth
direction Occluders :

SIGGRAPH 2000, New Orleans
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HOM: Depth Estimation
Buffer

[ Trade-off

OAdvantages
OORemoves need for strict depth sorting
OSpeed
OPortability
ODisadvantages
OConservative far boundary
ORequires good bounding volumes

SIGGRAPH 2000, New Orleans
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HOM: No-Background Z-
Buffer

OThe z-buffer from occluder rendering...
Ois by itself an full occlusion representation
Ohas to be modified to support our depth tests

[O“Removing” background depth values
OReplace them the “foreground” depth values

OCaptures the near boundary

SIGGRAPH 2000, New Orleans 27

HOM: No-Background Z-
Buffer

Transformed view-frustum

Image
plane D.E. B
Occluders v
—_—> N.B.Z
Viewing
direction i

Objects passing
the depth tests
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HOM: No-Background Z-
Buffer

[ Trade-off

OAdvantages
OCaptures the near boundary
OLess sensitive to bounding boxes
OLess sensitive to redundant(far) occluders
ODisadvantages
OAssumes quickly accessible z-buffer
OJResolution same as occlusion maps

SIGGRAPH 2000, New Orleans 29

HOM: Occluder selection

O Occluder data-base -- selection criterions
[1Size
ORedundancy
ORendering Complexity

[Size of bounding boxes (when depth-
estimation buffer is used)

SIGGRAPH 2000, New Orleans 30




HOM: Occluder selection

(JAt run time

ODistance-based selection with a polygon
budget

O Objects inside the view volume

[ Objects closer then occluders may become
occluders

SIGGRAPH 2000, New Orleans 31

HP Hardware implementation

[0 Before rendering an object, scan-convert
its bounding box

[0Special purpose hardware are used to
determine if any of the covered pixels
passed the z-test

OIf not the object is occluded

SIGGRAPH 2000, New Orleans 32




Conclusion

OAll of these methods make use of
discretisation and graphics hardware for
fast culling

0One drawback is that often accessing the
information from the hardware carries an
overhead
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Using Binary Space Partitioning
Trees for Visibility

Yiorgos Chrysanthou

University College London

Outline

Visibility ordering

BSP trees as a hierarchy of volumes
Hierarchical visibility culling

Tree merging

Visibility culling using merging

Conclusion
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Visibility (Priority) Ordering

* Given a set of polygons S and a viewpoint vp, find
an ordering on S st for any 2 polygons intersected
by a ray through vp P; has higher priority than P,

SIGGRAPH 2000, New Orleans

Schumacker 69
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» A polygon/object on the same side as the
viewpoint has higher priority than one on the
opposite site
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Schumacker 69
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 If we have more than one object on one side then
repeat the same reasoning and add more
partitioning planes between these objects

SIGGRAPH 2000, New Orleans 5

Binary Space Partitioning Trees
(Fuchs, Kedem and Naylor "80)

» More general, can deal with inseparable
objects

» Automatic, uses as partitions planes defined
by the scene polygons

* Method has two steps:
— building of the tree independently of viewpoint

— traversing the tree from a given viewpoint to
get visibility ordering

SIGGRAPH 2000, New Orleans 6




Building a BSP Tree (Recursive)

A set of polygons

SIGGRAPH 2000, New Orleans

{1,2,3,4,5, 6}

The tree

Building a BSP Tree (Recursive)

4~ co—planar with root

{2a,5} {1, 2b, 4}
front set back set

Select one polygon and partition the space and the polygons

SIGGRAPH 2000, New Orleans




Building a BSP Tree (Recursive)

‘h\ 3/4 | )5/ 5/ 2.h/ \1

Recursively partition each sub-tree until all polygons are used up

SIGGRAPH 2000, New Orleans 9

Building a BSP Tree (Incremental)

» The tree can also be built incrementally:
— start with a set of polygons and an empty tree
— insert the polygons into the tree one at a time

— insertion of a polygon is done by comparing it
against the plane at each node and propagating
it to the right side, splitting if necessary

— when the polygon reaches an empty cell, make
a node with its supporting plane

SIGGRAPH 2000, New Orleans 10




Back-to-Front Traversal

void traverse_btf(Tree *t, Point vp)

if (t = NULL) return;
endif

if (vp in-front of plane at root of t)
traverse_btf(t->back, vp);
draw polygons on node of t;
traverse_btf;(t->front, vp);

else
traverse_btf(t->front, vp);
draw polygons on node of t;
__ traverse_btf(t->back, vp);
endif

SIGGRAPH 2000, New Orleans

The BSP as a Hierarchy of
Spaces

NA Ty N

2]
" AP 7\
d b e £ g

» Each node corresponds to a region of space
— the root is the whole of R®
— the leaves are homogeneous regions
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BSP Representation of Polyhedra

out in (occluded)

SIGGRAPH 2000, New Orleans 13

Occlusion BSP tree (similar to
SVBSP tree)

o 02/
View

point
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Create shadow volume of

occluder 1
Tree
1
/" \
out 2
/ N\
out O1
/ N\
out
SIGGRAPH 2000, New Orleans 15

Insert occluder 2 and augment tree
with its shadow volume

Tree
1
/ \
2

out
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And so on until we add all

occluders
Tree
4 1
f N \
2\
View
point 3 3/ /01
/ \ out \
5 out 4
t/ \ / \O
ou out
AN A
out O3 .
Y, N ou
out
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Example of using BSP trees for
Visibility
» Extended Hudson method

— instead of constructing a shadow volume for
each occluder, construct an occlusion BSP tree
and compare the objects against the aggregate
occlusion.

— If we have N occluders then we need O (logN)
comparisons for each object

SIGGRAPH 2000, New Orleans 18




Check occlusion of objects T,
and T, by inserting them 1n tree

Tree

4 1
t - \
Vi \
l-ew 3 / /Ol

\
02
/ \
ut

out 6 out

/ N\
t O3

N
out
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Hierarchical occlusion culling using
the occlusion tree (Bittner 98)

» Scene is represented by a k-d tree
» For a given viewpoint:
— select a set of potential occluders
— build an occlusion tree from these occluders

— hierarchically compare the k-d nodes against
the occlusion tree

SIGGRAPH 2000, New Orleans 20
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Hierarchical Visibility Algorithm

INVISIBLE -—: ______ /\
* Viewpoint-to-region \
visibility -
— visible e
— invisible \
— partially visible =
e ——a==g=al
\ ——
CULLED
» Refinement of partially visible regions
SIGGRAPH 2000, New Orleans 21

Tree Merging, Motivation

» Given two objects, or collections of objects,
represented as BSP trees, tree merging can
be used to solve a number of geometric
problems, for example:

— set operations like union or intersection (eg for
CSQG)

— collision detection

— view volume and visibility culling

SIGGRAPH 2000, New Orleans 22
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Tree Merging, Main Idea

* Merging T, and T, can be seen as inserting
T, into T:

— starting at root of T, partition T, using the
plane of T; into T," and T, and insert the two

pieces recursively into the front and back sub-
tree of T,

— when a fragment of T, reaches a cell then an
external routine is called depending on the
application

SIGGRAPH 2000, New Orleans 23

Tree Merging, Pseudocode

Tree *merge_bspts(Tree *t1, Tree *t2)

if (leaf(t1) or leaf(t2))
return merge_tree_cell(t1, t2);

else
{t2*, t2-} = partition_tree(t2, shp(tl));
tl->front = merge_bspts(t1->front, t27);
tl->back = merge_bspts(t1->back, t27);
return t1;

endif

SIGGRAPH 2000, New Orleans 24
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Partitioning a Tree with a Plane

* Partitioning T, with a plane of T, (Hy,) is a
recursive procedure that involves inserting the
plane of T, into T,

—if T, is a single cell then T,* and T, are copies of
T,
— else find T,* and T, with the following 3 steps:

* find relation of plane Hy, and plane at root of T, (HTZ)
* partition the sub-tree(s) of T, in which Hrq lies
* combine resulting sub-trees above to form T, and T,

SIGGRAPH 2000, New Orleans 25

Find Relation of Hr, and Hr,

» Note that we are interested only in the relation of
the two planes within the space that T2 is defined
(we should be talking of sub-hyperplanes)

» There are seven possible classifications which can
be grouped into 3 sets: in one sub-tree, in both,
coplanar

» For each classification we do two comparisons

SIGGRAPH 2000, New Orleans 26
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The seven classifications

Infront/Inback Infront/Infront Inback/Inback Inback/Infront
Inboth/Inboth On/Parallel On/Anti-Parallel
SIGGRAPH 2000, New Orleans 27

The case Infront/Inback

T2f nt™

jraa %\m

— h
T2b i “ T2 “back

T,->front = (T,->front) T,* = (T,->front)*
T,->root = T,->root
T,->back = T,->back

SIGGRAPH 2000, New Orleans 28




The case Inboth/Inboth

Partition T2—>fr0nt e

Partition T,->back

SIGGRAPH 2000, New Orleans 29

The case Inboth/Inboth (cont.)

2" T2 *
<2 +fr()nt
T ~ s .
T2 .front T2. front
s
h’rz N hT2+
T2.back~ T2 back -
. bacl T2. back
p—— S s S *

T,*->front = (T,->front)* T,->front = (T,->front)-

T,"->root = T,->root T,->root = T,->root
T,*->back = (T,->back)* T,->back = (T,->back)
SIGGRAPH 2000, New Orleans 30
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Example Uses of Tree Merging

Constructive Solid Geometry (CSG) [Naylor
90, SSGGRAPH]

Collision detection [Naylor 92, Graphics
Interface]

Shadows from area light sources [Campbell
91, TR Univ of Texas, Austin]

Discontinuity meshing [Chrysanthou 96, Phd
Thesis]

SIGGRAPH 2000, New Orleans 31

Visibility Acceleration with
Merging

* View volume culling

— view volume as a BSP tree and merge with
scene BSP tree (Naylor 92)

* Visibility culling
— Beam tracing (Naylor 92)
» The two above can be done in one go

SIGGRAPH 2000, New Orleans 32
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Merging the occlusion tree with
the scene k-d tree (Chrysanthou 00)

* Build scene k-d tree

 set the merge cell tree() to render the sub-
tree if the cell is visible

« at each frame do
— build occlusion/view volume bsp tree

— merge trees by inserting occlusion tree into
scene k-d tree

SIGGRAPH 2000, New Orleans 33

Culling using tree merging

» Results in a very efficient occlusion/view
volume comparison of the scene

» The traversal is done in order (this can be
used to help with the LOD selection or
image based rendering)

* The occluders are selected in the same
traversal

SIGGRAPH 2000, New Orleans 34
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Conclusion

» What was covered today

— visibility ordering

— tree merging

— view volume and occlusion culling
» Other essentials

— building good trees

— dynamic changes

SIGGRAPH 2000, New Orleans

35

18



Virtual Occluders. An Efficient I nter mediate
PV S Representation

Vladlen Koltun Yiorgos Chrysanthou Daniel Cohen-Or
Tel Aviv University University College London Tel Aviv University

Fig. 1. A virtual occluder (the red and white rectangle) represents aggregate occlusion from a
region.

Abstract. In this paper we introduce the notion of virtual occluders. Given a
scene and aviewcell, avirtual occluder is a view-dependent (simple) convex ob-
ject, which is guaranteed to be fully occluded from any given point within the
viewcell and which serves as an effective occluder from the given viewcell. Vir-
tual occluders are a compact intermediate representation of the aggregate occlu-
sion for a given cell. The introduction of such view-dependent virtual occlud-
ersenables applying an effective region-to-region or cell-to-cell culling technique
and efficiently computing a potential visibility set (PVS) from aregion/cell. We
present atechniquethat synthesizes such virtual occluders by aggregating thevis-
ibility of a set of individual occluders and we show the technique's effectiveness.

1 Introduction

Visibility algorithms have recently regained attention in computer graphics as atool to
handle large and complex scenes, which consist of millions of polygons. Twenty years
ago hidden surface removal (HSR) a gorithmswere devel oped to solve the fundamental
problem of determining the visible portions of the polygonsin the image. Today, since
the z-buffer hardware is the de-facto standard HSR technique, the focusis on visibility
culling algorithmsthat quickly reject those parts of the scene which do not contribute to
the final image.

Conventional graphics pipelines include two simple visibility culling techniques:
view-frustum culling and backface culling. These visibility techniques are local in the
sense that they are applied to each polygon independently of the other polygonsin the
scene. Occlusion culling isanother visibility techniquein which apolygonisculledif it



is fully occluded by some other part of the scene. Thistechniqueis global and thus far
more complex than the above local techniques.

Apparently, occlusion culling techniques and hidden surfaceremoval techniquesare
conceptually alike and have a similar asymptotic complexity. However, to apply an oc-
clusion culling technique as a quick rejection process, it must be significantly more ef-
ficient than the hidden surface removal process. The answer is the use of conservative
methods in which for a given scene and view point the conservative occlusion culling
algorithm determines a superset of the visible set of polygons[3, 14, 8]. These meth-
odsyield apotentia visibility set (PVS) which includes all the visible polygons, plus a
small number of occluded polygons. Then the HSR processes the (hopefully small) ex-
cess of polygonsincluded in the PVS. Conservative occlusion culling techniques have
the potential to be significantly more efficient than the HSR algorithms. 1t should be
emphasized that the conservative culling algorithm can a so be integrated into the HSR
algorithm, aiming towards an output sensitivealgorithm [13]. A good overview of most
recent culling techniques can befound in [16].

To reducethe computational cost, the conservativeocclusion culling algorithmsusu-
ally useahierarchical datastructurewherethe sceneistraversed top-down and tested for
occlusion against a small number of selected occluders[8, 14]. In these algorithms the
selection of the candidate occludersis donebeforethe onlinevisibility calculations. The
efficiency of these methods is directly dependent on the number of occluders and their
effectiveness. Since the occlusionistested from a point, these algorithms are applied in
each frame during the interactive wal kthrough.

A more promising strategy isto find the PV Sfrom aregion or viewcell, rather than
from apoint. The computation cost of the PV Sfrom aviewcell would then be amortized
over al the frames generated from the given viewcell. Effective methods have been de-
veloped for indoor scenes[2, 19, 11, 1], but for general arbitrary scenes, the computa-
tion of the visibility set from aregion is more involved than from a point. Sampling the
visibility from a number of view points within the region [12] yields an approximated
PV S, which may then cause unacceptabl e flickering temporal artifacts during the walk-
through. Conservative methodswereintroduced in[6, 17] which are based onthe occlu-
sion of individual large convex objects. In these methods a given object or collection of
objectsisculled away if and only if they are fully occluded by a single convex occluder.
It was shown that a convex occluder is effective only if it islarger than the viewcell [6].
However, this condition is rarely met in real applications. For example the objectsin
Figure 2 are smaller than the viewcell, and their umbra (with respect to the viewcell) are
rather small. Their union does not occlude a significant portion of the scene (seein (a)),
while their aggregate umbrais large (seein (b)). Recently, new conservative methods
are emerging [18, 10, 20] which apply occlusion fusion based on the intersection of the
umbrae of individual occluders.

In this paper we present a novel way of representing and computing the visibility
from aviewcell. For that purpose, we introduce the notion of virtual occluders. Given
a scene and aviewcell, avirtual occluder is a view-dependent (simple) convex object,
which is guaranteed to be fully occluded from any given point within the viewcell and
which serves as an effective occluder from that viewcell. Virtual occluders compactly
represent the occlusioninformation for agiven cell. Each virtual occluder representsthe
aggregate occlusion of acluster of occluders. Theintroduction of such view-dependent
virtual occludersenables oneto apply an effective region-to-regionor cell-to-cell culling
technique and to efficiently compute the PVS from aregion or a cell. Figure 1 depicts
avirtual occluder that aggregates occlusion of four columns in the Freedman Museum
model. On theright, the sceneis shown from above. Thevirtual occluder isthe vertical



rectangle placed behind the furthest column. Ontheleft, aview isshownfrominsidethe
region for which thisvirtual occluder was computed. Thevirtual occluder iscompletely
occluded behind the columns (which are rendered transparent, for the sake of demonstra-
tion). We present atechnique that synthesizes such virtual occluders by aggregating the
occlusion of aset of individual occluders and show its effectiveness.

Therest of the paper is organized asfollows: We give an overview of the method in
Section 2, as well as summarizing its main contributions. In Section 3 we describe the
algorithm for constructing the set of virtual occluders. The resultsand their analysisare
presented in Section 4, and we conclude in Section 5.

2 Overview

The virtual occluders are constructed in preprocessing. For ssimplicity in the discussion
we assume regular partitioning of the scene into axis-aligned box-shaped cells. How-
ever, thisisnot inherent to our algorithm, which may handleany partitioning of the scene
into cells of arbitrary non-convex shape. This algorithm is applied to a given viewcell
and constructs a set of virtual occluders that effectively represents the occlusion from
thiscell. It yields alarge, dense set of potential virtual occluders. From this set, an ef-
fective small sorted subset is selected and stored for the on-line stage. Since the virtual
occluders are large, convex and few, the PV S of the associated viewcell can be quickly
constructed by applying a simple and effective culling mechanism similar to [6, 17].

The PVS of aviewcell is constructed only once before the walkthrough enters the
cell, by cullingthe sceneagainst thevirtual occluders. Theframe-rate of thewal kthrough
isnot significantly interrupted by thevisibility determination, sincethe cost of construct-
ing the viewcell’s PVS is amortized over the large number of frames during the walk
through the cell. Note that one of the advantages of our method isthat it generateslarge
effective occluders and thus enables the use of alarger viewcell, which further reduces
the relative cost of computing the PV S.

The main advantages of the presented method can be summarized as follows:

Aggregateocclusion. Eachvirtual occluder encapsulatesthe combined contribution
of acluster of occluders. Thisresultsintheability of culling larger portions of the scene-
graph using just a single virtual occluder. Moreover, a small set of virtual occluders
faithfully represents the occlusion from aviewcell.

Accuracy. The presented method for constructing virtual occluders is an object-
space continuous method. Their shape and location are not constrained by a space par-
tition of the scene (e.g., quadtree or kd-tree). The placement of the virtual occluders
adapts to the scene and not to an independent fixed subdivision. This leadsto accuracy
and thus a stronger conservative visibility set.

Speed. Since the number of per-viewcell virtual occluders is small, the visibility
culling processisfaster. Thevirtual occludersocclude morethan theindividual objects,
and arethus ableto cull larger cells of the scene-graph. Thisresultsin ahighly reduced
amount of computation at run-time for each viewcell.

Storage size. Given aviewcell and a small set of virtual occluders, the PVS can be
computed on-the-fly during the walkthrough. This avoids storing the PV'S but rather a
small set of virtual occluders, which requiresless space. Thisisvita since the potential
visibility sets of al viewcells of a complex scene tend to be too large for storage (see
Section 4).

There are various applications that can benefit from virtual occluders. All of them
exploit thefact that the cost of computing the conservativevisibility set can beamortized
over severa frames. Rendering the scene consists of three processes:
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Fig. 2. The union of the umbrae of the individual objects is insignificant, while their aggregate
umbrais large and can be represented by a single virtual occluder.

1. computing the viewcell virtual occluders;
2. computing the viewcell PVS;
3. rendering the PVS.

The first process is computed offline, while the other two online. We can consider
a rendering system, which is conceptually partitioned into a client and a server. The
server can compute the virtual occludersin apreprocess and store them in aspatial data
structure. During the walkthrough, the client uses the virtual occluders to compute the
PVS. The PVS must be readily available for the real-time rendering of the scene. This
requires the system to precompute the PV S of nearby viewcells before the walkthrough
enters those viewcells. As mentioned in the introduction, a remote walkthrough appli-
cation necessarily requires the computation of afrom-region PV S to avoid the latency
problem [7].

3 Constructing the Virtual Occluders

In this section we show how to construct aset of virtual occludersthat representsthe ag-
gregate occlusion from a given viewcell. The algorithm description is visualized with
aset of illustrations: Figure 2 shows the viewcell in yellow and a set of occluders. The
umbrae of the individual occludersisillustrated in 2 (a), showing that the occlusion of
the individual objects is insignificant. Nevertheless, the aggregate occlusion of these
objectsismuch larger, as can be seenin 2 (b). To construct virtual occludersthat effec-
tively capture the aggregate occlusion we use the following algorithm: (1) select a set of
seed objects, (2) build aset of virtual occludersfrom a given seed and the cluster of ob-
jects around this seed and (3) decimatetheinitial dense set of virtual occludersto acost
effective smaller set. The exact definitions and details as applied for a given viewcell
are elaborated below.

The set of seed objectsis defined according to the solid-angle criterion [14] defined
from the viewcell center. Objects with alarge solid-angle are likely to be effective oc-
cludersfrom the given viewcell and thusincluded in acluster of occludersthat buildsup
larger occlusion. The seed object in Figure 3is colored in light blue. 1t should be noted
that the algorithm is not sensitive to the accuracy of the definition of the set of seed ob-



jects. However, the more seeds used, the better the set of virtual occludersisin terms of
its effectiveness (less conservative).

For a given seed object we now construct an aggregate umbra starting from its own
umbra and augmenting it with the occlusion of its surrounding objects. First, the two
supporting lines that connect the viewcell and object extentsbuild theinitial umbra. An
initial virtual occluder is placed behind the object in its umbra (see Figure 3 (a)). Now,
let us first assume that during this process one of the supporting lines is defined as the
active supporting line while the other remains static (the active supporting lineis drawn
in purple). If the active line intersects an object, then this object is a candidate to aug-
ment the umbra. If the candidate object intersects the umbra of the seed object, then it
augments the umbra and the active line shifts to the extent of the inserted object (see
Figure 3 (b)). By iteratively adding more and more objects the umbra extends, and gets
larger and larger. There are cases where a candidate object does not intersect the current
umbra, but can still augment it. To treat these cases we define and maintain the active
separating line(polyline) (colored in red).

Initially, the active separating line is defined between the seed object and the view-
cell (in the standard way [8]). Then objects which intersect the active separating line
redefineit to include the new objects and the separating line becomes apolyline. InFig-
ure 3 (b) we can see that object 2, which intersects the active supporting line, but not
the active separating line, cannot contribute its occlusion to the augmented umbra be-
fore the contribution of object 3 is considered. Asillustrated in Figure 3 (b), object 3
intersects the active separating line and thus redefines it to the polyline shownin Figure
3 (c). Then, object 2 intersects both active lines, augmentsthe aggregate umbra and ex-
tends the virtual occluder further (3 (d)). Formally, let us define the evolving aggregate
umbra U/, the active supporting line P, and the active separating polyline (). Given an
object B:

1. If BintersectsU then B updates U, () and P, and anew virtual occluder isplaced
behind B.

2. If B intersectsonly @ then @ is updated to include B.

3. If B intersectsboth () and P then B updatesU, @ and P, and the furthest virtual
occluder is extended to the new location of P.

Once no more objects intersect the active lines, the static line on the other side is
activated, the processis repeated for the other side aiming to further augment the umbra
by adding objects from the other side of the seed object. In our implementation both
left and right separating lines are maintained active and the insertion of objects can be
on either side of the umbra. Thus, the initial active supporting and separating lines are
as shown in Figure 4. Note that in case 2 above, B hasto be above the opposite active
polyline. Sinceavirtual occluder is placed behind all theindividual objectsthat makeit
up, asit grows bigger it also grows further away from the viewcell. For this reason we
periodicaly "dump’ some of the intermediate virtual occludersinto the dense set.

Thisaggregate umbra a gorithm bears some conceptual similarity to algorithmsthat
compute shadow volumesfrom an arealight source[4, 5], or even to discontinuity mesh-
ing methods[9, 15]. However, here we have two important advantages. First, theaggre-
gate umbra does not necessarily have to be accurate, but conservative, and can thus be
calculated significantly faster than area shadow algorithms. The other advantageliesin
the effectiveness of the aggregation. While shadow al gorithms detect additional objects
that intersect an umbra and expand it, they don’t make full use of the separating lines.
See the example in Figure 5, even if the polygons are processed in front-to-back order,
none of the shadow methods successfully merge the umbrae into one, in contrast to the
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Fig. 3. Growing the virtual occluders by intersecting objects with the active separating and sup-
porting lines.

method presented here.

After adenseset of virtual occludersiscomputed, itissufficient to select only asmall
subset of them for theon-line stage. Thissavesthe per-cell storage space and accel erates
the process of computing the cell visibility set. Theideaisthat the subset can represent
the occlusion faithfully, since there is alarge amount of redundancy in the dense set. In
practice, we have found that just less than ten virtual occluders per cell are sufficient to
represent the occlusion effectively.

S B
Fig. 4. The active lines are processed on both Fig. 5. Current shadow algorithmsdo not
sides simultaneously. necessarily aggregate the occlusion.

The greedy algorithm that is used to select this subset is described in Figure 6. Fig-
ure 8 showsasubset of virtual occluders selected by the algorithm. The key observation
behind this algorithm is that the addition of a virtual occluder to the subset is a tradeoff
- the additional virtual occluder improvesthe PV Sby occluding some part of the scene,
but the down-sideis that the process of computing the PV Swill take longer. Therefore
the algorithm selects the most effective occluders one by one, until the addition of an-
other occluder isnot cost effective since the occlusion contributed by it is not significant
enough to justify the enlargement of the subset. A beneficial consequence of this algo-
rithmisthat the final subset is sorted, i.e. the most effective occluders appear first. This
will accelerate the PV S construction process. This algorithm of course is non-optimal,
but practically, thereisno significant difference since conservative occlusion is not sen-
sitive to small details.



for each virtual occluder O in the dense set D do
initialize weight of O
to the size of the area it occl udes.
endfor
repeat
let V be the virtual occluder with |argest weight in D
if V contributes effectively to occlusion
then
add it to the final sorted set
renove it fromD
for every occluder O in D do
reduce the weight of O by the size of the
area occluded both by O and V
endfor
else
output the final set, and exit
endif
endrepeat

Fig. 6. Algorithm for selecting a sorted effective subset from a dense set of virtual occluders.

3.1 Treating 3D Problems Using a 2.5D Visibility Solution

Above we have described the algorithm in 2D. It is possible to extend the algorithm to
3D by extending the supporting and separating active linesto their counterpart planesin
3D. Then objects intersecting one of the active planes update these planes similarly to
the 2D case. However, in 3D the complexity and running time of the processincreases
considerably. Fortunately, in practice, full 3D visibility culling is not always necessary.
When dealing with typical (outdoor and indoor) walkthroughs, a2.5D visibility culling
is almost as effective but much faster. Moreover, in these cases a ssimpler implemen-
tation of the technique significantly accelerates the process, while losing insignificant
conservativeness.

The 2.5D visibility problem is reduced to a set of 2D problems by discretizing the
scene at numerous heights, while considering the perspective adjustment from the view-
cell. For each height werunthe 2D algorithm that constructsvirtual occludersusing only
the parts of the objects that extend from the ground up to and above the given height.
These virtual occluders extend from the ground to the associated height. Thisyields a
dense set of virtual occluders of different heights. The degree to which this representa-
tion is conservative, depends on the discretization resolution. This approach is conser-
vative, becausein 2.5D, if avertical object (e.g. virtual occluder) iscompletely occluded
by other objects at agiven height, it is guaranteed to be occluded by them at al smaller
heights aswell.

The discretization does not necessarily lead to aloss of precision. In practiceit is
enough to construct virtual occluders at only a small number of “interesting” heights.
There is a tradeoff between the precision and the processing time. As a heuristic strat-
egy, a height-histogram of the sceneis quantized and analyzed to select an appropriate
number of heightsfor slicing the scene. The histogram of heightsis constructed by con-
sidering the perspective-adjusted heights of the scene, as seen fromthecell. In practice,
five or less slices provide sufficiently good results, as shown in Section 4. In should be
emphasized that the virtual occluders are conservative by nature and the effectiveness
of the method is not sensitive to small details of the occluders.



4 Resaults

We have implemented the described algorithms in C-language using the OpenGL li-
braries. The tests described below were carried out on an SGI InfiniteReality, with a
196Mhz R10000 processor. We have tested the method on two highly complex scenes.
One is amodel of London, accurately depicting an area of 160 sg. kilometers (some
parts are shown in Figures 8 and 10). The model was created from detailed maps and
consists of over 250K objects having more than 4M vertices. The other model is the
Freedman virtual museum, which spans an area of approximately 50,000 sq. feet, and
consists of about a thousand objects having altogether 85K vertices (see Figure 9).

L ondon model

#VO | % of occ. ) PV'S (#vertices)
1 43.73 43.73 2607241
2 72.05 28.31 1295049
3 86.93 14.88 605592
4 93.92 6.98 281713
5 95.91 1.99 189508
6 96.52 0.61 161244
7 96.77 0.25 149660
8 96.95 0.18 141320
Freedman Museum model
#VO | % of occ. ) PV'S (#vertices)
1 2341 2341 65353
2 33.17 9.75 57025
3 41.95 8.78 49533
4 47.80 5.85 44541
5 49.75 194 42877
6 51.55 1.80 41341
7 53.26 171 39882
8 54.73 1.46 38628

Table 1. The magnitude of occlusion as a function of the number of virtual occluders saved for
real-time use. A small number of virtual occluders represent most of the occlusion.

Figure 7 shows how the aggregate umbra of the virtual occludersimprovesthe per-
formance compared to an occlusion culling based on individual objects, for three differ-
ent cell sizes. Each line showsthe percent of occlusion along along path around thecity.
We see that asthe viewcells get larger the relative effectiveness of using virtual occlud-
ersincreases, while the effectiveness of the individual occluders sharply decreases. We
seethat for large viewcells the occlusion of individual buildingsis on average less than
two percent of the scene, while virtual occluders occlude more than 85%. For smaller
cellsthe occlusion by virtual occludersis on average morethan 98%. An exampleof the
effectiveness of virtual occluders can be seen in Figure 8. Note that the vast majority of
the occluded objectsare culled by the eight virtual occluders, while only aninsignificant
fraction of the scene can be culled by individual objects.

The London model is partitioned into 16x10 regions of one squared kilometer, and
each region is partitioned by a kd-tree into cells (typically hundreds of cells). Without
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Fig. 7. A comparison between the occlusion of individual occluders and virtual occluders. The
graph displaysthe percentage of occlusion for all viewcellsalong apath acrossthe London model.
Different colors correspond to different cell sizes. Red correspondsto cells of size 160x100 me-
ters; green for 320x200 meters; blue for 640x400.

#dices | % of occlusion
5 97.27
4 96.91
3 96.21
2 94.52
1 72.07

Table 2. The occlusion as a function of the number of height slices.

occlusion culling the system cannot render the entire scene, but rather few regions only
(seein the attached video). The size of the PVS of atypical viewcell isonly few thou-
sands of kd-tree cells or thousands of buildings. Figure 11 showsaview of London with
avirtual occluder (coloredin red) with respect to aviewcell (markedinlight green). The
buildings that are occluded by this virtual occluder are colored in blue.

The Museum model isan exampleof asparse model, wherelessocclusion is present
from any given region. In our tests, we have found that no object occludes other ob-
jects in the scene single-handedly. Nevertheless, more than 50% of the scene are usu-
ally found occluded, when virtual occludersare used. In this case, the virtual occluders
faithfully represent the little occlusion present, despite the sparse nature of the sceneand
the ineffectiveness of its individual objects.

Table 1 shows the effectiveness of a small set of virtual occludersin terms of their
occlusion. We can see that using just fivevirtual occluders already providesan effective
occlusion of 95% of the London model. The use of more than ten virtual occluders does
not contribute much to the occlusion. This means that in terms of per-viewcell storage
spacethe virtual occludersareby far more economical than naive storage of the viewcell
PVSlist. A virtual occluder is avertical quadrilateral, represented by opposite corners,
which can be represented by only five values (the 2D endpoints and its height). These
coordinate val ues can be quantized to one byte each, since the effective occlusion of the
virtual occluder is not sensitive to its fine sizes. Thus, storing ten virtual occluders per
viewcell requires just fifty bytes.



Fig. 8. A top view of central London. Virtual occluders (in red) are placed around the viewcell
(red square). Theblue buildingsare those occluded by the virtual occluders and the green onesare
those occluded by individual buildings. Only asmall set of buildings remains potentially visible
(colored in black) after using just eight virtual occluders.

Table 2 shows how the dlicing resolution affects the conservativeness of the virtua
occluders. Thetable showsthesize of the PV Sasafunction of the number of slices. We
see that the size of the PV Sisimproved greatly by taking only two slices. Using more
than five slices does not yield a significant reduction in the size of the PV S,

For an average viewcell, it takes about a minute to produce the dense set of virtual
occluders and their decimation into an effective small set. Considering the typical size
of the viewcell in the London model, e.g., 200x200 to 600x600 meters, it may take a
user lesstimeto crossaviewcell at walking-speed. However, once thevirtual occluders
are given, the time spent on the compuitation of the PV Sisnegligible provided the scene
istraversed hierarchically in a standard top-down fashion.

5 Conclusion

We have presented the new concept of virtual occluders as ameansfor representing the
aggregate occlusion of groups of objects. They can have forms other than the one pre-
sented, but the idea is that they are an effective intermediate representation of the oc-
clusion from a cell. One of their important featuresis that they are ordered in terms of
importance. This providesan efficient culling mechanism sincethevisibility test of each
object is applied first with the most effective occluders. Only those few objectsthat are
not culled by the first most effective virtual occluders are tested against the rest of the
occluders down the ordered list.

It isimportant to note that in the London model the buildings are fairly simple and
consist of arelatively small number of polygons. This means that level-of-detail tech-
nigues (L OD) cannot help muchin rendering such ahugemodel. Thus, occlusionculling



is avital tool for such walkthrough application. In other cases a scene can consist of
some very detailed geometric models. Thiswould requireincorporating dynamic LOD
techniques, image-based rendering and modeling, and other acceleration techniques to
handle rendering the potential visibility sets.
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Fig. 9. A ray-traced view over the Freedman virtual museum with the ceiling removed. The yel-
low square in the bottom is the viewcell and the red and white rectangle is one of the virtual oc-
cluders.

Fig. 10. A view over apart of the London model.

Fig. 11. A viewcell (marked in light green) and one of the corresponding virtual occluders (the
long red rectangle piercing through the buildings). The buildings that are occluded by this virtual
occluder are colored in blue.
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CHAPTER 1

Introduction

Il déduisit que la bibliothéque est totale, et que ses
étageéres consignent toutes les combinaisons possibles
des vingt et quelques symboles orthographiques (nom-
bre quoique trés vaste, non infini), c’est & dire tout ce
qu’il est possible d’exprimer dans toutes les langues.

Jorge Luis BORGES, La hibliothéque de Babel

VAST AMOUNT OF WORK has been published about visibility in many different domains. In-
spiration has sometimes traveled from one community to another, but work and publications
have mainly remained restricted to their specific field. The differences of terminology and
interest together with the obvious difficulty of reading and remaining informed of the cu-
mulative literature of different fields have obstructed the transmission of knowledge between
communities. This is unfortunate because the different points of view adopted by different
domains offer a wide range of solutions to visibility problems. Though some surveys exist about certain spe-
cific aspects of visibility, no global overview has gathered and compared the answers found in those domains.
The second part of this thesis is an attempt to fill this vacuum. We hope that it will be useful to students begin-
ning work on visibility, as well as to researchers in one field who are interested in solutions offered by other
domains. We also hope that this survey will be an opportunity to consider visibility questions under a new
perspective.

1 Spirit of the survey

This survey is more a “horizontal” survey than a “vertical” survey. Our purpose is not to precisely compare the
methods developed in a very specific field; our aim is to give an overview which is as wide as possible.

We also want to avoid a catalogue of visibility methods developed in each domain: Synthesis and compar-
ison are sought. However, we believe that it is important to understand the specificities of visibility problems
as encountered in each field. This is why we begin this survey with an overview of the visibility questions as
they arise field by field. We will then present the solutions proposed, using a classification which is not based
on the field in which they have been published.
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Our classification is only an analysis and organisation tool; as any classification, it does not offer infallible
nor strict categories. A method can gather techniques from different categories, requiring the presentation of a
single paper in several chapters. We however attempt to avoid this, but when necessary it will be indicated with
cross-references.

We have chosen to develop certain techniques with more details not to remain too abstract. A section in
general presents a paradigmatic method which illustrates a category. It is then followed by a shorter description
of related methods, focusing on their differences with the first one.

We have chosen to mix low-level visibility acceleration schemes as well as high-level methods which make
use of visibility. We have also chosen not to separate exact and approximate methods, because in many cases
approximate methods are “degraded” or simplified versions of exact algorithms.

In the footnotes, we propose some thoughts or references which are slightly beyond the scope of this survey.
They can be skipped without missing crucial information.

2 Flaws and bias

This survey is obviously far from complete. A strong bias towards computer graphics is clearly apparent, both
in the terminology and number of references.

Computational geometry is insufficiently treated. In particular, the relations between visibility queries and
range-searching would deserve a large exposition. 2D visibility graph construction is also treated very briefly.

Similarly, few complexity bounds are given in this survey. One reason is that theoretical bounds are not
always relevant to the analysis of the practical behaviour of algorithms with “typical” scenes. Practical timings
and memory storage would be an interesting information to complete theoretical bounds. This is however
tedious and involved since different machines and scenes or objects are used, making the comparison intricate,
and practical results are not always given. Nevertheless, this survey could undoubtedly be augmented with
some theoretical bounds and statistics.

Terrain (or height field) visibility is nearly absent of our overview, even though it is an important topic,
especially for Geographical Information Systems (GIS) where visibility is used for display, but also to optimize
the placement of fire towers. We refer the interested reader to the survey by de Floriani et al. [FPM98].

The work in computer vision dedicated to the acquisition or recognition of shapes from shadows is also
absent from this survey. See e.g. [Wal75, KB98].

The problem of aliasing is crucial in many computer graphics situations. It is a large subject by itself, and
would deserve an entire survey. It is however not strictly a visibility problem, but we attempt to give some
references.

Neither practical answers nor advice are directly provided. The reader who reads this survey with the
question “what should | use to solve my problem” in mind will not find a direct answer. A practical guide
to visibility calculation would unquestionably be a very valuable contribution. We nonetheless hope that the
reader will find some hints and introductions to relevant techniques.

3 Structure

This survey is organised as follows. Chapter 2 introduces the problems in which visibility computations occur,
field by field. In chapter 3 we introduce some preliminary notions which will we use to analyze and classify the
methods in the following chapters. In chapter 4 we survey the classics of hidden-part removal. The following
chapters present visibility methods according to the space in which the computations are performed: chapter
5 deals with object space, chapter 6 with image-space, chapter 7 with viewpoint-space and finally chapter 8
treats line-space methods. Chapter 9 presents advanced issues: managing precision and dealing with moving
objects. Chapter 10 concludes with a discussion..

In appendix 12 we also give a short list of resources related to visibility which are available on the web. An
index of the important terms used in this survey can be found at the end of this thesis. Finally, the references
are annotated with the pages at which they are cited.



CHAPTER 2

Visibility problems

S’il n’y a pas de solution, c’est qu’il n’y a pas de
probléme

LES SHADOKS

ISIBILITY PROBLEMS arise in many different contexts in various fields. In this section we

review the situations in which visibility computations are involved. The algorithms and data-

structures which have been developed will be surveyed later to distinguish the classification

of the methods from the context in which they have been developed. We review visibility in

computer graphics, then computer vision, robotics and computational geometry. We conclude
this chapter with a summary of the visibility queries involved.

1 Computer Graphics

For a good introduction on standard computer graphics techniques, we refer the reader to the excellent book by
Foley et al. [FYvDFH90] or the one by Rogers [Rog97]. More advanced topics are covered in [WW92].

1.1 Hidden surface removal

View computation has been the major focus of early computer graphics research. Visibility was a synonym for
the determination of the parts/polygons/lines of the scene visible from a viewpoint. It is beyond the scope of
this survey to review the huge number of techniques which have been developed over the years. We however
review the great classics in section 4. The interested reader will find a comprehensive introduction to most of
the algorithms in [FYDFH90, Rog97]. The classical survey by Sutherland et al. [SSS74] still provides a good
classification of the techniques of the mid seventies, a more modern version being the thesis of Grant [Gra92].
More theoretical and computational geometry methods are surveyed in [Dor94, Ber93]. Some aspects are also
covered in section 4.1. For the specific topic of real time display for flight simulators, see the overview by
Mueller [Mue95].

The interest in hidden-part removal algorithms has been renewed by the recent domain of non-photorealistic
rendering, that is the generation of images which do not attempt to mimic reality, such as cartoons, technical

7
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illustrations or paintings [MKT 797, WS94]. Some information which are more topological are required such
as the visible silhouette of the objects or its connected visible areas.
View computation will be covered in chapter 4 and section 1.4 of chapter 5.

1.2 Shadow computation

The efficient and robust computation of shadows is still one of the challenges of computer graphics. Shadows
are essential for any realistic rendering of a 3D scene and provide important clues about the relative positions
of objects®. The drawings by da Vinci in his project of a treatise on painting or the construction by Lambert
in Freye Perspective give evidence of the old interest in shadow computation (Fig. 2.1). See also the book
by Baxandall [Bax95] which presents very interesting insights on shadows in painting, physics and computer
science.
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Figure 2.1: (a) Study of shadows by Leonardo da Vinci (Manuscript Codex Urbinas). (a) Shadow construction
by Johann Heinrich Lambert (Freye Perspective).

Hard shadows are caused by point or directional light sources. They are easier to compute because a point
of the scene is either in full light or is completely hidden from the source. The computation of hard shadows
is conceptually similar to the computation of a view from the light source, followed by a reprojection. It is
however both simpler and much more involved. Simpler because a point is in shadow if it is hidden from the
source by any object of the scene, no matter which is the closest. Much more involved because if reprojection
is actually used, it is not trivial by itself, and intricate sampling or field of view problems appear.

Soft shadows are caused by line or area light sources. A point can see all, part, or nothing of such a source,
defining the regions of total lighting, penumbra and umbra. The size of the zone of penumbra varies depending
on the relative distances between the source, the blocker and the receiver (see Fig. 2.2). A single view from the
light is not sufficient for their computation, explaining its difficulty.

An extensive article exists [WPF90] which surveys all the standard shadows computation techniques up to
1990.

Shadow computations will be treated in chapter 5 (section 4.1, 4.2, 4.4 and 5), chapter 6 (section 2.1, 6 and
7) and chapter 7 (section 2.3 and 2.4).

The inverse problem has received little attention: a user imposes a shadow location, and a light position
is deduced. It will be treated in section 5.6 of chapter 5. This problem can be thought as the dual of sensor
placement or good viewpoint computation that we will introduce in section 2.3.

1.3 Occlusion culling

The complexity of 3D scenes to display becomes larger and larger, and can not be rendered at interactive
rates, even on high-end workstations. This is particularly true for applications such as CAD/CAM where the

1 The influence of the quality of shadows on the perception of the spatial relationships is however still a controversial topic. see e.g.
[Wan92, KKMB96]
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Figure 2.2: (a) Example of a soft shadow. Notice that the size of the zone of penumbra depends on the mutual
distances (the penumbrais wider on the | eft). (b) Part of the source seen from a point in penumbra.

databases are often composed of millions of primitives, and also in driving/flight simulators, and in walk-
throughs where a users want to walk through virtual buildings or even cities.

Occlusion culling (also called visibility culling) attempts to quickly discard the hidden geometry, by com-
puting a superset of the visible geometry which will be sent to the graphics hardware. For example, in a city,
the objects behind the nearby facades can be “obviously” rejected.

An occlusion culling algorithm has to be conservative. It may declare potentially visible an object which
isin fact actually hidden, since a standard view computation method will be used to finally display the image
(typically a z-buffer [FYvDFH9Q]).

A distinction can be made between online and offline techniques. In an online occlusion culling method,
for each frame the objects which are obviously hidden are rejected on the fly. While offline Occlusion culling
precomputations consist in subdividing the scene into cells and computing for each cell the objects which may
bevisible frominsidethe cell. Thisset of visible object is often called the potentially visible sets of the cell. At
display time, only the objectsin the potentially visible set of the current cell are sent to the graphics hardware 2.

The landmark paper on the subject is by Clark in 1976 [Cla76] where he introduces most of the concepts
for efficient rendering. The more recent paper by Heckbert and Garland [HG94] gives a good introduction to
the different approaches for fast rendering. Occlusion culling techniques are treated in chapter 5 (section 4.4,
6.3 and 7), chapter 6 (section 3 and 4), chapter 7 (section 4) and chapter 8 (section 1.5).

1.4 Global lllumination

Globa illumination deals with the simulation of light based on the laws of physics, and particularly with the
interactions between objects. Light may be blocked by objects causing shadows. Mirrorsreflect light along the
symmetric direction with respect to the surface normal (Fig. 2.3(a)). Light arriving at a diffuse (or lambertian)
object isreflected equally in al directions (Fig. 2.3(b)). More generally, afunction called BRDF (Bidirectional
Reflection Distribution Function) models the way light arriving at a surface is reflected (Fig. 2.3(c)). Fig 2.4
illustrates some bounces of light through a scene.

Kagjiya has formalised global illumination with the rendering equation [Kgj86]. Light traveling through a
point in a given direction depends on all the incident light, that is, it depends on the light coming from al the
points which are visible. Its solution thus involves massive visibility computations which can be seen as the
equivalent of computing aview from each point of the scene with respect to every other.

Theinterested reader will find a complete presentation in the books on the subject [CW93b, SP94, Glag5].

Global illumination method can aso be applied to the simulation of sound propagation. See the book by
Kutruff [Kut91] or [Dal96, FCE " 98]. See section 4.3 of chapter 5. Sound however differs from light because

20cclusion-culling techniques are also used to decrease the amount of communication in multi-user virtual environments: messages
and updates are sent between users only if they can see each other [Fun95, Fun96a, CT97a, MGBY99]. If the scene is too big to fit in
memory, or if it is downloaded from the network, occlusion culling can be used to load into memory (or from the network) only the part of
the geometry which may be visible [Fun96c, COZ98].
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Figure 2.3: Light reflection for a given incidence angle. (a) Perfect mirror reflection. (b) Diffuse reflection. (c)
General bidirectional reflectance distribution function (BRDF).

Figure 2.4: Global illumination. We show some paths of light: light emanating from light sources bounces on
the surfaces of the scene (We show only one outgoing ray at each bounce, but light is generally reflected in al
direction as modeled by a BRDF).

the involved wavelength are longer. Diffraction effects have to be taken into account and binary straight-line
visihbility isatoo simplistic model. Thistopic will be covered in section 2.4 of chapter 6.

In the two sections below we introduce the global illumination methods based on ray-tracing and finite
elements.

1.5 Ray-tracing and Monte-Carlo techniques

Whitted [Whi80] has extended the ray-casting developed by Appel [App68] and introduced recursive ray-
tracing to compute the effect of reflecting and refracting objects as well as shadows. A ray is simulated from
the viewpoint to each of the pixels of the image. It is intersected with the objects of the scene to compute
the closest point. From this point, shadow rays can be sent to the sources to detect shadows, and reflecting
or refracting rays can be sent in the appropriate direction in a recursive manner (see Fig. 2.5). A complete
presentation of ray-tracing can be found on the book by Glassner [Gla89] and an electronic publication is
dedicated to the subject [Hai]. A comprehensiveindex of related paper has been written by Speer [ Spe92a]

More complete global illumination simulations have been devel oped based on the Monte-Carlo integration
framework and the aforementioned rendering equation. They are based on a probabilistic sampling of the
illumination, requiring to send even morerays. At each intersection point some rays are stochastically sent to
sampletheillumination, not only in the mirror and refraction directions. The processthen continuesrecursively.
It can model any BRDF and any lighting effect, but may be noisy because of the sampling.

Those techniques are called view dependent because the computations are done for a unique viewpoint.
Veach’s thesis [Vea97] presents a very good introduction to Monte-Carlo techniques.

The atomic and most costly operation in ray-tracing and Monte-Carlo techniques consistsin computing the
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viewpoint

Figure 2.5: Principle of recursive ray-tracing. Primary rays are sent from the viewpoint to detect the visible
object. Shadow rays are sent to the source to detect occlusion (shadow). Reflection rays can be sent in the
mirror direction.

first object hit by aray, or in the case of rays cast for shadows, to determineif the ray intersects an object. Many
accel eration schemes have thus been devel oped over the two last decades. A very good introduction to most of
these techniques has been written by Arvo and Kirk [AK89].

Ray-shooting will be treated in chapter 5 (section 1 and 4.3), chapter 6 (section 2.2), chapter 8 (section 1.4
and 3) and chapter 9 (section 2.2).

1.6 Radiosity

Radiosity methods have first been developed in the heat transfer community (see e.g. [Bre92]) and then adapted
and extended for light simulation purposes. They assume that the objects of the scene are completely diffuse
(incoming light is reflected equally in al directions of the hemisphere), which may be reasonable for archi-
tectural scene. The geometry of the sceneis subdivided into patches, over which radiosity is usually assumed
constant (Fig. 2.6). The light exchanges between all pairs of patches are simulated. The form factor between
patches A and B is the proportion of light leaving A which reaches B, taking occlusions into account. The
radiosity problem then resumes to a huge system of linear equations, which can be solved iteratively. Formally,
radiosity is a finite element method. Since lighting is assumed directionally invariant, radiosity methods pro-
vide view independent solutions, and a user can interactively walk through a scene with global illumination
effects. A couple of books are dedicated to radiosity methods [ SP94, CW93b, Ash94].

Figure 2.6: Radiosity methods simulate diffuse interreflexions. Note how the subdivision of the geometry is
apparent. Smoothing is usually used to alleviate most of these artifacts.

Form factor computation is the costliest part of radiosity methods, because of the intensive visibility com-
putations they require [HSD94]. An intricate formula has been derived by Schroeder and Hanrahan [SH93]
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for the form factor between two polygonsin full visibility, but no analytical solutionis known for the partially
occluded case.

Form factor computation will be treated in chapter 4 (section 2.2), chapter 5 (section 6.1 and 7), in chapter
6 (section 2.3), chapter 7 (section 2.3), chapter 8 (section 2.1) and chapter 9 (section 2.1).

Radiosity needs a subdivision of the scene, whichisusually grid-like: aquadtreeis adaptively refinedin the
regions where lighting varies, typically the limits of shadows. To obtain a better representation, discontinuity
meshing has been introduced. It tries to subdivides the geometry of the scene aong the discontinuities of the
lighting function, that is, the limits of shadows.

Discontinuity meshing methods are presented in chapter 5 (section 5.3), chapter 7 (section 2.3 and 2.4),
chapter 8 (section 2.1) and chapter 9 (section 1.3, 1.5 and 2.4) S.

1.7 Image-based modeling and rendering

3D models are hard and slow to produce, and if realism is sought the number of required primitivesis so huge
that the model s become very costly to render. The recent domain of image-based rendering and modeling copes
with this through the use of image complexity which replaces geometric complexity. It uses some techniques
from computer vision and computer graphics. Texture-mapping can be seen as a precursor of image-based
techniques, since it improves the appearance of 3D scenes by projecting some images on the objects.

View warping [CW934] permitsthe reprojection of an image with depth values from a given viewpoint to a
new one. Each pixel of theimageis reprojected using its depth and the two camerageometries as shown in Fig.
2.7. It permits re-rendering of images at a cost which is independent of the 3D scene complexity. However,
sampling questions arise, and above all, gaps appear where objects which were hidden in the original view
become visible. The use of multiple base images can help solve this problem, but imposes a decision on how
to combine the images, and especially to detect where visibility problems occur.

initial image

pixels with depth

reprojected image

\qnew viewpoint

Figure 2.7: View warping. The pixels from the initial image are reprojected using the depth information.
However, some gaps due to indeterminate visibility may appear (represented as “?” in the reprojected image)

I mage-based modeling techniques take as input a set of photographs, and allow the scene to be seen from
new viewpoints. Some authors use the photographsto help the construction of a textured 3D model [DTM96].

SRecent approaches have improved radiosity methods through the use of non constant bases and hierarchical representations, but the
cost of form factor computation and the meshing artifact remain. Some non-diffuse radiosity computations have also been proposed at a
usually very high cost. For ashort discussion of the usability of radiosity, see thetalk by Sillion [Sil99].



2. COMPUTER VISION 13

Other try to recover the depth or disparity using stereo vision [LF94, MB95]. Image warping then allows the
computation of images from new viewpoints. The quality of the new images depends on the relevance of the
base images. A good set of cameras should be chosen to sampl e the scene accurately, and especially to avoid
that some parts of the scene are not acquired because of occlusion.

Some image-based rendering methods have al so been proposed to speedup rendering. They do not require
the whole 3D sceneto be redrawn for each frame. Instead, the 2D images of some parts of the scene are cached
and reused for a number of frames with simple transformation (2D rotation and trangation [LS97], or texture
mapping on flat [SLSD96, SS96&] or simplified [SDB97] geometry). These image-caches can be organised
as layers, and for proper occlusion and parallax effects, these layers have to be wisely organised, which has
reintroduced the problem of depth ordering.

These topics will be covered in chapter 4 (section 4.3), chapter 5 (section 4.5), chapter 6 (section 5) and
chapter 8 (section 1.5).

1.8 Good viewpoint selection

In production animation, the camera is placed by skilled artists. For others applications such as games, tele-
conference or 3D manipulation, its position is also very important to permit a good view of the scene and the
understanding of the spatial positions of the objects.

This requires the development of methods which automatically optimize the viewpoint. Visibility is one
of the criteria, but one can also devise other requirements to convey a particular ambiance [PBG92, DZ95,
HCS96].

The visual representation of a graph (graph drawing) in 3D raises similar issues, the number of visual
alignments should be minimized. See section 1.5 of chapter 7.

Wewill seein section 2.3 that the placement of computer vision offerssimilar problems. The corresponding
techniques are surveyed in chapter 5 (section 4.5 and 5.5) and chapter 7 (section 3).

2 Computer Vision

An introduction and case study of many computer vision topics can be found in the book by Faugeras [Fau93]
or the survey by Guerra [Gue98]. The classic by Ballard and Brown [BB82] is more oriented towards image
processing techniques for vision.

2.1 Model-based object recognition

The task of object recognition assumes a database of objects is known, and given an image, it reports if the
objects are present and in which position. We are interested in model-based recognition of 3D objects, where
the knowledge of the object is composed of an explicit model of its shape. It first involves|low-level computer
vision techniques for the extraction of features such as edges. Then these features have to be compared with
corresponding features of the objects. The most convenient representations of the objects for thistask represent
the possible views of the object (viewer centered representation) rather than its 3D shape (object-centered
representation). These views can be compared with the image more easily (2D to 2D matching as opposed to
3D to 2D matching). Fig. 2.8 illustrates a model -based recognition process.

One thus needs a data-structure which is able to efficiently represent al the possible views of an object.
Occlusion has to be taken into account, and views have to be grouped according to their similarities. A class
of similar viewsis usually called an aspect . A good viewer-centered representation should be able to a priori
identify all the possible different views of an object, detecting “where” the similarity between nearby viewsis
broken.

Psychological studies have shown evidencesthat the human visual system possesses such a viewer-centered
representation, since objects are more easily recognised when viewed under specific viewpoints[UI189, EB92].

A recent survey exists [Pop94] which reviews results on all the aspects of object recognition. See also the
book by Jain and Flynn [JF93] and the survey by Crevier and Lepage [CL97]
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Figure 2.8: Model-based object recognition. Features are extracted from the input image and matched against
the viewer-centered representation of an L-shaped object.

Object recognition has led to the development of one of the mgjor visibility data structures, the aspect
graph* which will be treated in sections 1 of chapter 7 and section 1.4 and 2.4 of chapter 9.

2.2 Object reconstruction by contour intersection

Object reconstruction takes as input a set of images to compute a 3D model. We do not treat here the recon-
struction of volumetric datafrom slices obtained with medical equipment since it does not involve visibility.

We are interested in the reconstruction process based on contour intersection. Consider aview, from which
the contour of the object has been extracted. The object is constrained to lie inside the cone defined by the
viewpoint and this contour. If many images are considered, the cones can be intersected and a model of the
object is estimated [SLH89]. The process isillustrated in Fig. 2.9. This method is very robust and easy to
implement especidly if the intersections are computed using a volumetric model by removing voxels in an
octree [Pot87].

@ (b)

Figure 2.9: Object reconstruction by contour intersection. The contour in each view defines a general conein
which the object is constrained. A model of the object is built using the intersection of the cones. (a) Cone
resulting from one image. (b) Intersection of cones from two images.

However, how close is this model to the actual object? Which class of objects can be reconstructed using
this technique? If an object can be reconstructed, how many views are needed? This of course depends on
self-occlusion. For example, the cavity in abowl can never be reconstructed using this techniqueif the camera
is constrained outside the object. The analysis of these questionsimposes involved visibility considerations, as
will be shownin section 3 of chapter 5.

4However viewer centered representation now seem superseded by the use of geometric properties which are invariant by some geo-
metric transformation (affine or perspective). These geometric invariants can be used to guide the recognition of objects [MZ92, Wei93].
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2.3 Sensor placement for known geometry

Computer vision tasks imply the acquisition of data using any sort of sensor. The position of the sensor can
have dramatic effects on the quality and efficiency of the vision task which is then processed. Active vision
deals with the computation of efficient placement of the sensors. It is aso referred to as viewpoint planning.

In some cases, the geometry of the environment is known and the sensor position(s) can be preprocessed.
It is particularly the case for robotics applications where the same task has to be performed on many avatars of
the same object for which a CAD geometrical model is known.

The sensor(s) can be mobile, for example placed on arobot arm, it is the so called “camerain hand”. One
can also want to design a fixed system which will be used to inspect alot of similar objects.

An example of sensor planning is the monitoring of arobot task like assembly. Precise absolute positioning
israrely possible, because registration can not always be performed, the controllers used drift over time and the
object on which the task is performed may not be accurately modeled or may be slightly misplaced [HKL98,
MI198]. Uncertainties and tolerances impose the use of sensors to monitor the robot Fig. 2.10 and 2.11 show
examples of sensor controlled task. It has to be placed such that the task to be performed is visible. This
principally requires the computation of the regions of space from which a particular region is not hidden. The
tutorial by Hutchinson et al. [HH96] gives a comprehensive introduction to the visual control of robots.

Figure 2.10: The screwdriver must be placed very precisely in front of the screw. The task is thus controlled by a camera.

n
=

Figure 2.11: Theinsertion of this peg into the hole has to be performed very precisely, under the control of a
sensor which hasto be carefully placed.

Another example is the inspection of a manufactured part for quality verification. Measurements can for
example be performed by triangulation using multiple sensors. If the geometry of the sensors is known, the
position of a feature projecting on a point in the image from a given sensor is constrained on the line going
through the sensor center and the point in the image. With multiple images, the 3D position of the feature
is computed by intersecting the corresponding lines. Better precision is obtained for 3 views with orthogonal
directions. The sensors have to be placed such that each feature to be measuredisvisiblein at least two images.
Visihility isacrucia criterion, but surface orientation and image resolution are also very important.

Theillumination of the object can aso be optimized. One can require that the part to be inspected be well
illuminated. One can maximize the contrast to make important features easily recognisable. The optimization
of viewpoint and illumination together of course leads to the best results but has a higher complexity.
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See the survey by Roberts and Marshall [RM97] and by Tarabanis et al. [TAT95]. Section 5.5 of chapter 5
and section 3 of chapter 7 deal with the computation of good viewpoints for known environment.

2.4 Good viewpoints for object exploration

Computer vision methods have been developed to acquire a 3D model of an unknown object. The choice of
the sequence of sensing operations greatly affects the quality of the results, and active vision techniques are
required.

We have already reviewed the contour intersection method. We have evoked only the theoretical limits of
the method, but an infinite number of views can not be used! The choice of the views to be used thus has to be
carefully performed as function of the aready acquired data.

Another model acquisition technique uses alaser plane and acamera. Thelaser illuminatesthe object along
aplane (the laser beam is quickly rotated over time to generate a plane). A cameraplaced at a certain distance
of the laser records the image of the object, where the illumination by the laser is visible as a slice (see Fig.
2.12). If the geometry of the plane and camerais known, triangulation can be used to infer the coordinates of
the illuminated dlice of the object. Trandating the laser plane permits the acquisition of the whole model. The
data acquired with such a system are called range images, that is, an image from the camera location which
providesthe depth of the points.

Two kinds of occlusion occur with these system: some part of an illuminated slice may not be visibleto the
camera, and some part of the object can be hidden to the laser, as shownin Fig. 2.12.

e laser camera
&
laser plane
i
shadow L
of thel illuminated
r~>gice

i

Figure 2.12: Object acquisition using a laser plane. The laser emits a plane, and the intersection between this
plane and the object is acquired by a camera. The geometry of the dlice can then be easily deduced. The laser
and cameratrandate to acquire the whole object. Occlusion with respect to the laser plane (in black) and to the
camera (in grey) have to be taken into account.

These problemsarereferred to as best-next-view or purposive viewpoint adjustment. The next viewpoint has
to be computed and optimized using the data already acquired. Previously occluded parts have to be explored.

The general problems of active vision are discussed in the report written after the 1991 Active Vision Work-
shop [AAA192]. An overview of the corresponding visibility techniquesis givenin [RM97, TAT95] and they
will be discussed in section 4.5 of chapter 5.

3 Robotics

A comprehensive overview of the problems and specificities of robotics research can be found in [HKL98]. A
more geometrical point of view is exposed in [HKL97]. The book by Latombe [Lat91] gives a complete and
comprehensive presentation of maotion planning techniques.
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A lot of the robotics techniques that we will discuss treat only 2D scenes. This restriction is quite under-
standabl e because alot of mobile robots are only alowed to move on a 2D floorplan.

Aswe have seen, robotics and computer vision share alot of topicsand our classification to one or the other
speciaty is sometimes arbitrary.

3.1 Motion planning

A robot has a certain number of degrees of freedom. A variable can be assigned to each degree of freedom,
defining a (usually multidimensional) configuration space. For example a two joint robot has 4 degrees of
freedom, 2 for each joint orientation. A circular robot allowed to move on a plane has two degrees of freedom
if its orientation does not have to be taken into account. Motion planning [Lat91] consists in finding a path
from a start position of the robot to a goal position, while avoiding collision with obstacles and respecting
some optional additional constraints. The optimality of this path can also be required.

The case of articulated robotsis particularly involved because they movein high dimensional configuration
spaces. We are interested herein robots allowed to tranglate in 2D euclidean space, for which orientation is not
considered. In this case the motion planning problem resumesto the motion planning for a point, by “growing”
the obstacles using the Minkovski sum between the robot shape and the obstacles, asillustrated in Fig. 2.13.

2D shape
of therobot'._ >

l/’\\ 50N
grown
acle obstacle

Figure 2.13: Motion planning on a floorplan. The obstacles are grown using the Minkovski sum with the shape
of the robot. The motion planning of the robot in the non-grown scene resumes to that of its centerpoint in the
grown scene.

The relation between euclidean motion planning and visibility comes from this simple fact: A point robot
can movein straight line only to the points of the scene which are visible fromiit.

We will seein Section 2 of chapter 5 that one of thefirst global visibility data structure, the visibility graph
was devel oped for motion planning purposes. °

3.2 Visibility based pursuit-evasion

Recently motion planning has been extended to the case where a robot searches for an intruder with arbitrary
motion in a known 2D environment. A mobile robot with 360° field of view explores the scene, “cleaning”
zones. A zone is cleaned when the robot sees it and can verify that no intruder isin it. It remains clean if no
intruder can go there from an uncleaned region without being seen. If all the sceneis cleaned, no intruder can
have been missed. Fig. 2.14 shows an example of arobot strategy to clean asimple 2D polygon.

If the environment contains a “column” (that is topologically ahole), it can not be cleaned by a single robot
since the intruder can always hide behind the column.

Extensions to this problem include the optimization of the path of the robot, the coordination of multiple
robots, and the treatment of sensor limitations such as limited range or field of view.

5 Assembly planning is another thematic of robotics where the ways to assemble or de-assemble an object are searched [HKL98]. The
relationship between these problems and visibility would deserve exploration, especially the relation between the possibility to trandate a
part and the visibility of the hole in which it hasto be placed.
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Figure 2.14: The robot has to search for an unknown intruder. The part of the scene visible from the robot isin
dark grey, while the “cleaned” zoneisin light grey. At no moment can an intruder go from the unknown region
to the cleaned region without being seen by the robot.

Pursuit evasion is somehow related to the art-gallery problem which we will present in section 4.3. A
technique to solve this pursuit-evasion problem will be treated in section 2.2 of chapter 7.

A related problem is the tracking of a mobile target while maintaining visibility. A target is movingin a
known 2D environment, and its motion can have different degrees of predictability (completely known mation,
bound on the velocity). A strategy is required for a mobile tracking robot such that visibility with the target is
never lost. A perfect strategy can not always be designed, and one can require that the probability to lose the
target be minimal. See section 3.3 of chapter 7.

3.3 Self-localisation

A mobile robot often has to be localised in its environment. The robot can therefore be equipped with sensor
to help it determineits position if the environment is known. Once data have been acquired, for examplein the
form of a range image, the robot has to infer its position from the view of the environment as shown in Fig.
2.15. Seethe work by Drumheller [Dru87] for a classic method.

@

Figure 2.15: 2D Robot localisation. (a) View from the robot. (b) Deduced location of the robot.

This problemisin fact very similar to the recognition problem studied in computer vision. The robot hasto
“recognise” its view of the environment. We will see in section 2.1 of chapter 7 that the approaches devel oped



4. COMPUTATIONAL GEOMETRY 19

arevery similar.

4 Computational Geometry

The book by de Berg et al. [dBvKOS97] is a very comprehensive introduction to computational geometry.
The one by O’Rourke [O’R94] is more oriented towards implementation. More advanced topics are treated in
various books on the subject [Ede87, BY 98]. Computational geometry often borrows themes from robotics.

Traditional computational geometry deals with the theoretical complexity of problems. Implementationis
not necessarily sought. Indeed some of the algorithms proposed in the literature are not implementable because
they are based on too intricate data-structures. Moreover, very good theoretical complexity sometimes hides
a very high constant, which means that the algorithm is not efficient unless the size of the input is very large.
However, recent reports [Chad6, TAA 796, LM98] and the CGAL project [FGK T96] (a robust computational
geometry library) show that the community is moving towards more applied subjects and robust and efficient
implementations.

4.1 Hidden surface removal

The problem of hidden surface removal has also been widely treated in computational geometry, for the case
of object-precision methods and polygonal scenes. It has been shown that a view can have O(n?) complexity,
where n is the number of edges (for example if the scene is composed of rectangles which project like a grid
asshown in Fig. 2.16). Optimal O(n?) algorithms have been described [McK 87], and research now focuses on
output-sensitive a gorithms, where the cost of the method also depends on the complexity of the view: ahidden
surface a gorithms should not spend O(n?) time if one object hides all the others.

n
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Figure 2.16: Scene composed of n rectangles which exhibits a view with complexity O(n?): the planar map
describing the view has O(n?) segments because of the O(n?) visual intersections.

The question has been studied in various context: computation of a single view, preprocessing for multiple
view computation, and update of aview along a predetermined path.

Constraints are often imposed on the entry. Many papers deal with axis aligned rectangles, terrains or
c-oriented polygons (the number of directions of the planes of the polygonsis limited).

See the thesis by de Berg [Ber93] and the survey by Dorward [Dor94] for an overview. We will survey
some computational geometry hidden-part remova methodsin chapter 4 (section 2.3 and 8), chapter 5 (section
1.5) and chapter 8 (section 2.2).

4.2 Ray-shooting and lines in space

The properties and algorithms related to lines in 3D space have received a lot of attention in computational
geometry.

Many algorithms have been proposed to reduced the complexity of ray-shooting (that is, the determination
of the first object hit by a ray). Ray-shooting is often an atomic query used in computational geometry for
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hidden surface removal. Some algorithms need to compute what is the object seen behind a vertex, or behind
the visual intersection of two edges.

Work somehow related to motion planning concerns the classification of lines in space: Given a scene
composed of a set of lines, do two query lines, have the same class, i.e. can we continuously move the first
one to the other without crossing a line of the scene? This problem is related to the partition of rays or lines
according to the object they see, as will be shown in section 2.2.

T
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Figure2.17: Line stabbing a set of convex polygonsin 3D space

Given a set of convex objects, the stabbing problems searches for a line which intersects all the objects.
Such alineis called a stabbing line or stabber or transversal (see Fig. 2.17). Stabbing is for example useful to
decideif aline of sight is possible through a sequence of doors ©.

We will not survey all the results related to lines in space; we will consider only those where the data-
structures and algorithms are of a particular interest for the comprehension of visibility problems. See chapter
8. The paper by Pellegrini [Pel97b] reviews the major results about lines in space and gives the corresponding
references.

4.3 Art galleries

In 1973, Klee raised this simple question: how many cameras are needed to guard an art gallery? Assume the
galery ismodeled by a2D polygonal floorplan, and the camera have infinite range and 360 ° field of view. This
problemis known as the art gallery problem. Since then, this question has received considerabl e attention, and

many variants have been studied, as shown by the book by O’Rourke [O’R87] and the surveys on the domain

[She92, Urr98]. The problem has been shown to be NP-hard.

Variation on the problem include mobile guards, limited field of view, rectilinear polygonsand illumination
of convex sets. The results are too humerous and most often more combinatorial than geometrical (the actual
geometry of the sceneis not taken into account, only its adjacencies are) so we refer the interested reader to the
aforementioned references. We will just give a quick overview of the major resultsin section 3.1 of chapter 7.

The art gallery problem is related to many questions raised in vision and robotics as presented in section 2
and 3, and recently in computer graphics where the acquisition of models from photographs requires the choice
of good viewpoints as seen in section 1.7.

4.4 2D visibility graphs

Another important visibility topic in computational geometry is the computation of visibility graphs which we
will introduce in section 2. The characterisation of such graphs (given an abstract graph, is it the visibility
graph of any scene?) is also explored, but the subject is mainly combinatorial and will not be addressed in this
survey. See e.g. [Gho97, Eved0, 0OS97].

6Stabbing can also have an interpretation in statistics to find alinear approximation to data with imprecisions. Each data point together
with its precision interval defines abox in amultidimensional space. A stabber for these boxesisavalid linear approximation.
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5 Astronomy

5.1 Eclipses

Solar and lunar eclipse prediction can be considered as the first occlusion related techniques. However, the
main issue was focused on planet motion prediction rather than occlusion.

Figure 2.18: Eclipses. (a) Lunar and Solar eclipse by Purbach. (b) Prediction of the 1715 eclipse by Halley.
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Figure 2.19: 1994 solar eclipse and 1993 lunar eclipse. Photograph Copyright 1998 by Fred Espenak
(NASA/Goddard Space Flight Center).

Seeeg.
http://sunearth.gsfc.nasa.gov/eclipse/eclipse.html
http://www.bdl .fr/Eclipse99

5.2 Sundials

Sundials are another example of shadow related techniques.

seeeg.
http://www.astro.indiana.edu/personnel/rberring/sundial .html
http://www.sundials.co.uk/2sundial.htm
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Figure 2.20: (a) Project of asundia on the Place dela Concordein Paris. (b) Complete sundia with analemmas
in front of the CICG in Grenoble.

6 Summary

Following Grant [Gra92], visibility problems can be classified according to their increasing dimensionality:
The most atomic query is ray-shooting. View and hard shadow computation are two dimensional problems.
Occlusion culling with respect to a point belong to the same category which we can refer to asclassical visibility
problems. Then comes what we call global visibility issues’. Theseinclude visibility with respect to extended
regions such as extended light sources or volumes, or the computation of the region of space from which a
featureis visible. The mutual visibility of objects (required for example for global illumination simulation) is
afour dimensiona problem defined on the pairs of points on surfaces of the scene. Finally the enumeration
of all possible views of an object or the optimization of a viewpoint impose the treatment of two dimensional
view computation problemsfor all possible viewpoints.

7Some author also define occlusion by other objects as global visibility effects as opposed to backface culling and silhouette computa-
tion.
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|D } EFORE presenting visibility techniques, we introduce a few notions which will be useful for
the understanding and comparison of the methods we survey. We first introduce the different
D spaces which are related to visibility and which induce the classification that we will use.
J) We then introduce the notion of visual event, which describes “where” visibility changesin
a scene and which is central to many methods. Finally we discuss some of the differences
which explain why 3D visibility is much more involved than its 2D counterpart.

1 Spaces and algorithm classification

In their early survey Sutherland, Sproull and Schumacker [SSS74] classified hidden-part removal algorithms
into object space and image-space methods. Our terminology is however dlightly different from theirs, since
they designated the precision at which the computations are performed (at the resol ution of theimage or exact),
while we have chosen to classify the methods we survey according to the space in which the computations are
performed.

Furthermore we introduce two new spaces: the space of al viewpoints and the space of lines. We will give
afew simple examplesto illustrate what we mean by all these spaces.

1.1 Image-space

In what follow, we have classified as image-space al the methods which perform their operationsin 2D pro-
jection planes (or other manifolds). As opposed to Sutherland et al.’s classification [SSS74], this plane is not
restricted to the plane of the actual image. It can be an intermediate plane. Consider the example of hard
shadow computation: an intermediate image from the point light source can be computed.

23
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Of course if the scene is two dimensional, image space has only one dimension: the angle around the
viewpoint.

Image-space methods often deal with a discrete or rasterized version of this plane, sometimes with a depth
information for each point. Image-space methodswill be treated in chapter 6.

1.2 Object-space

In contrast, object space is the 3 or 2 dimensional space in which the sceneis defined. For example, some hard
shadow computation methods use shadow volumes [FYDFH90, WPF90]. These volumes are truncated frusta
defined by the point light source and the occluding objects. A portion of space is in shadow if it liesinside a
shadow volume. Object-space methods will be treated in chapter 5.

1.3 Viewpoint-space

We define the viewpoint space as the set of al possible viewpoints. This space depends on the projection used.
If perspective projection is used, the viewpoint space is equivalent to the object space. However, if orthographic
(also called parallel) projection is considered, then a view is defined by a direction, and the viewpoint space
is the set 52 of directions, often called viewing sphere as illustrated in Fig. 3.1. Its projection on a cube is
sometimes used for simpler computations.

direction of
projection

@ (b) (©

Figure 3.1: (a) Orthographic view. (b) Corresponding point on the viewing sphere and (c) on the viewing cube.

An example of viewpoint space method would be to discretize the viewpoint space and precompute a view
for each sample viewpoint. One could then render views very quickly with a simple look-up scheme. The
viewer-centered representation which we have introduced in section 2.1 of the previous chapter is typically a
viewpoint space approach since each possible view should be represented.

Viewpoint-space can be limited. For example, the viewer can be constrained to lie at eye level, defining a
2D viewpoint space (the plane z = heye) in 3D for perspective projection. Similarly, the distance to a point can
be fixed, inducing a spherical viewpoint-space for perspective projection.

It is important to note that even if perspective projection is used, there is a strong difference between
viewpoint space methods and object-space methods. In a viewpoint space, the properties of points are defined
by their view. An orthographic viewpoint-space could be substituted in the method.

Shadow computation methods are hard to classify: the problem can be seen as the intersection of scene
objects with shadow volume, but it can also be seen as the classification of viewpoint lying on the objects
according to their view of the source. Some of our choices can be perceived arbitrary.

In 2D, viewpoint-space has 2 dimensions for perspective projection and has 1 dimension if orthographic
projection is considered.

Viewpoint space methods will be treated in chapter 7.

1.4 Line-space

Visihility can intuitively be defined in terms of lines. two point A and B are mutually visible if no object
intersects line (AB) between them. It is thus natural to describe visibility problemsin line space.
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For example, one can precompute the list of objects which intersect each line of a discretization of line-
space to speed-up ray-casting queries.

In 2D, lineshave 2 dimensions: for exampleits direction 6 and distanceto theorigin p. In 3D however, lines
have 4 dimensions. They can for example be parameterized by their direction (6, ¢) and by the intersection
(u,v) onan orthogonal plane (Fig. 3.2(a)). They can a so be parameterized by their intersection with two planes
(Fig. 3.2(b)). These two parameterizations have some singularities (at the pole for the first one, and for lines
parallel to the two planesin the second). Linesin 3D space can not be parameterized without a singularity. In
section 3 of chapter 8 we will study away to cope with this, embedding linesin a5 dimensional space.
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Figure 3.2: Line parameterisation. (a) Using two angles and the intersection on an orthogonal plane. (b) Using
the intersection with two planes.

The set of lines going through a point describe the view from this point, asin the ray-tracing technique (see
Fig. 2.5). In 2D the set of lines going through a point has one dimension: for example their angle. 1n 3D, 2
parameters are necessary to describe aline going through a point, for exampletwo angles.

Many visibility queries are expressed in terms of rays and not lines. The ray-shooting query computes
the first object seen from a point in a given direction. Mathematically, aray is a half line. Ray-space has 5
dimensions (3 for the origin and two for the direction).

The mutual visibility query can be better expressed in terms of segments. A and B are mutually visible only
if segment [AB] intersects no object. Segment space has 6 dimensions: 3 for each endpoint.

The information expressed in terms of rays or segments is very redundant: many colinear rays “see” the
same object, many colinear segments areintersected by the same object. We will see that the notion of maximal
free segments handles this. Maximal free segments are segments of maximal length which do not touch the
objects of the sceneintheir interior. Intuitively these are segmentswhich touch objectsonly at their extremities.

We have decided to group the methods which deal with these spacesin chapter 8. Theinterested reader will
find some important notions about line space reviewed in appendix 11.

1.5 Discussion

Some of the methods we survey do not perform al their computations in a single space. An intermediate
data-structure can be used, and then projected in the space in which the final result is required.

Even though each method is easier to describein agiven space, it can often be described in adifferent space.
Expressing a problem or a method in different spaces is particularly interesting because it alows different
insights and can yield aternative methods. We particularly invite the reader to transpose visibility questionsto
line space or ray space. We will show throughout this survey that visibility has a very natural interpretation in
line space.

However thisisnot an incitation to actually perform complex calculationsin 4D line space. We just suggest
adifferent way to understand problems and devel op methods, even if calculations are eventually performed in
image or object space.
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2 Visual events, singularities

We now introduce a notion which is central to most of the algorithms, and which expresses “how” and “where”
visihility changes. We then present the mathematical framework which formalizes this notion, the theory of
singularities. The reader may be surprised by the space devoted in this survey to singularity theory compared
to its use in the literature. We however believe that singularity theory permits a better insight on visibility
problems, and allows one to generalize some results on polygonal scenesto smooth objects.

2.1 Visual events

Consider the example represented in Fig. 3.3. A polygona scene is represented, and the views from three
eyepoints are shown on the right. As the eyepoint moves downwards, pyramid P becomes completely hidden
by polygon Q. The limit eyepoint is eyepoint 2, for which vertex V projects exactly on edge E. Thereisa
topological changein visibility: itiscalled avisual event or avisibility event.

A

Figure 3.3: EV visua event. The views from the three eyepoints are represented on the right. As the eyepoint
moves downwards, vertex V becomes hidden. Viewpoint 2 is the limit eyepoint, it lies on avisual event.

Visual events are fundamental to understand many visibility problems and techniques. For example when
an observer moves through a scene, objects appear and disappear at such events (Fig. 3.3). If pyramid P emits
light, then eyepoint 1 isin penumbrawhile eyepoint 3 isin umbra: the visual event is a shadow boundary. If a
viewpoint is sought from which pyramid P is visible, then the visual event is alimit of the possible solutions.
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Figure 3.4: Locusan EV visual event. (a) In object space or perspective viewpoint space it isawedge. (b) In
orthographic viewpoint spaceitisan arc of agreat circle. (c) Inline spaceit isthe 1D set of lines going through
VandE

Fig. 3.4 shows the locus of this visual event in the spaces we have presented in the previous section. In
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object space or in perspective viewpoint space, it is the wedge defined by vertex V and edge E. We say that
V and E are the generators of the event. In orthographic viewpoint space it is an arc of a great circle of the
viewing sphere. Findly, in line-spaceit is the set of lines going throughV and E. These critical lines have one
degree of freedom since they can be parameterized by their intercept on E, we say that itisa 1D set of lines.

The EV events generated by avertex V are caused by the edges which are visible fromV. The set of events
generated by V thus describe the view from V. Reciprocally, aline drawing of aview from an arbitrary point P
can be seen as the set of EV events which would be generated if an imaginary vertex was place at P.

Figure 3.5: A EEE visua event. The views from the three eyepoints are represented on the right. As the
eyepoint moves downwards, polygon R becomes hidden by the conjunction of polygon P and Q. From the
limit viewpoint 2, the three edges have a visual intersection.

Thereisalso adlightly more complex kind of visual event in polygonal scenes. It involvesthe interaction of
3 edges which project on the same point (Fig. 3.5). When the eyepoint moves downwards, polygon P becomes
hidden by the conjunction of Q and R. From the limit eyepoint 2, edges Ep, Eq and Er are aligned.
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Figure3.6: Locusof aEEE visual event. (a) In object-space or perspectiveviewpoint spaceit isaruled quadrics.
(b) In orthographic viewpoint space it is a quadric on the viewing sphere. (c) In line space it is the set of lines
stabbing the three edges.

The locus of such eventsin line space is the set of lines going through the three edges (we also say that
they stab the three edges) as shown on Fig. 3.6(c). In object space or perspective viewpoint space, this defines
aruled quadric often called swath (Fig. 3.6(a)). (Itisin fact doubly ruled: the three edges define one family of
lines, the stabber defining the second.) In orthographic viewpoint space it is a quadric on the viewing sphere
(see Fig. 3.6(b)).

Finally, asimpler class of visual events are caused by a viewpoint lying in the plane of faces of the scene.
The face becomes visible or hidden at such an event.

Visual events are smpler in 2D: they are simply the bitangents and inflexion pointsof the scene.

A deeper understanding of visual events and their generalisation to smooth objects requires a strong for-
malism: it is provided by the singularity theory.
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2.2 Singularity theory

The singularity theory studies the emergence of discrete structures from smooth continuous ones. The branch
we are interested in has been developed mainly by Whitney [Whi55], Thom [Tho56, Tho72] and Arnold
[Arn69]. It permits the study of sudden events (called catastrophes) in systems governed by smooth con-
tinuous laws. An introduction to singularity theory for visibility can be found in the masters thesis by PetitJean
[Pet92] and an educational comics has been written by lan Stewart [Ste82]. See also the book by Koenderink
[Koe9Q] or his paperswith van Doorn [Kv76, KvD82, Kg84, Koe87].

We are interested in the singularities of smooth mappings. For example a view projection is a smooth
mapping which associate each point of 3D spaceto apoint on aprojection plane. First of all, singularity theory
permits the description the structure of the visible parts of a smooth object.

fold fold
@ (b) )

Figure 3.7: View of atorus. (a) Shaded view. (b) Line drawing with singularities indicated (b) Opague and
transparent contour.

Consider the example of a smooth 3D object such as the torus represented in Fig. 3.7(8). Its projection
on a viewing plane is continuous nearly everywhere. However, some abrupt changes appear at the so called
silhouette. Consider the number of point of the surface of the object projecting on agiven point on the projection
plane (counting the backfacing points). On the exterior of the silhouette no point is projected. In the interior
two points (or more) project on the same point. These two regions are separated by the silhouette of the object
at which the number of projected point changes abruptly.

This abrupt change in the smooth mapping is called a singularity or catastrophe or bifurcation. The singu-
larity corresponding to the silhouette was named fold (or also occluding contour or limb). The fold is usualy
used to make aline drawing of the object asin Fig. 3.7(b). It correspondsto the set of pointswhich are tangent
to the viewing direction?.

The fold is the only stable curve singularity for generic surfaces: if we move the viewpoint, there will
always beasimilar fold.

The projectionin Fig. 3.7 aso exhibitstwo point singularities: at-vertex and acusp. T-verticesresultsfrom
the intersection of two folds. Fig. 3.7(c) shows that a fourth fold branch is hidden behind the surface. Cusps
represent the visual end of folds. In fact, a cusp corresponds to a point where the fold has an inflexion in 3D
space. A second tangent fold is hidden behind the surface asillustrated in Fig. 3.7(c).

These are the only three stable singularities: al other singularities disappear after a small perturbation of
the viewpoint (if the object is generic, which is not the case of polyhedral objects). These stable singularities
describe the limits of the visible parts of the object. Malik [Mal87] has established a catal ogue of the features
of line drawings of curved objects.

Singularity theory also permits the description of how the line drawing changes as the viewpoint is moved.
Consider the example represented in Fig. 3.8. As the viewpoint moves downwards, the back sphere becomes
hidden by the front one. From viewpoint (b) where this visual event occurs, the folds of the two spheres are
superimposed and tangent. This unstable singularity is called a tangent crossing. It is very similar to the EV
visual event shown in Fig. 3.3. It is unstable in the sense that any small change in the viewpoint will make it
disappear. The viewpoint is not generic, it is accidental.

1What is the relationship between the view of a torus and the occurrence of a sudden catastrophe? Imagine the projection plane is the
command space of a physical system with two parameters x and y. The torus is the response surface: for a pair of parameters (x,y) the
depth z represents the state of the system. Note that for apair of parameters, there may be many possible states, depending on the history of
the system. When the command parameters vary smoothly, the corresponding state varies smoothly on the surface of the torus. However,
when afold is met, there is an abrupt change in the state of the system, this is a catastrophe. See e.g. [Ste82].
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Figure 3.8: Tangent crossing singularity. As the viewpoint moves downwards, the back sphere becomes hidden
by the frontmost one. At viewpoint (b) a singularity occurs (highlighted with a point): the two spheres are
visually tangent.

(b) (©

Figure 3.9: Disappearance of acusp at a swallowtail singularity at viewpoint (b). (in fact two swallowtails occur
because of the symmetry of the torus)

Another unstable singularity is shown in Fig. 3.9. As the viewpoints moves upward, the t-vertex and the
cusp disappear. In Fig. 3.9(a) the points of the plane below the cusp result from the projection of 4 points of
the torus, whilein Fig. 3.9(c) all points result from the projection of 2 or 0 points. This unstable singularity is
called swallowtail.

Unstable singularities are the events at which the organisation of the view of a smooth object (or scene) is
changed. These singularities are related to the differential properties of the surface. For example swallowtails
occur only in hyperbolic regions of the surface, that is, regions where the surface is locally nor concave nor
CONVex.

Singularity theory originally does not consider opaqueness. Objects are assumed transparent. As we have
seen, at cusps and t-vertices, some fold branches are hidden. Moreover a singularity like a tangent crossing is
considered even if some objects lie between the two sphere causing occlusion. The visible singularity are only
a subset but all the changes observed in views of opague objects can be described by singularity theory. Some
catal ogues now exist which describe singularities of opague objects 2. See Fig. 3.10.

The catalogue of singularities for views of smooth objects has been proposed by Kergosien [Ker81] and
Rieger [Rie87, Rie90] who has also proposed a classification for piecewise smooth objects [Rie87] 3.

3 2D versus 3D Visibility

We enumerate here some points which make that the difference between 2D and 3D visibility can not be
summarized by asimple increment of one to the dimension of the problem.

This can be more easily envisioned in line space. Recall that the atomic queriesin visibility are expressed
in line-space (first point seen along aray, are two points mutualy visible?).

2Williams [WH96, Wil96] tries to fill in the gap between opaque and transparent singularities. Given the view of an object, he proposes
to deduce the invisible singularities from the visible ones. For example at at-vertex, two folds intersect but only three branches are visible;
the fourth one which is occluded can be deduced. See Fig. 3.10.

3Those interested in the problems of robustness and degeneracies for geometric computations may also notice that a degenerate config-
uration can be seen as a singularity of the space of scenes. The exploration of the relations between singularities and degeneracies could
help formalize and systemize the treatment of the latter. See also section 2 of chapter 9.



30 CHAPTER 3. PRELIMINARIES

Figure 3.10: Opaque (bold lines) and semi-transparent (grey) singularities. After [Wil96].

First of al, the increase in dimension of line-space istwo, not one (in 2D line-spaceis 2D, whilein 3D it is
4D). This makes things much more intricate and hard to apprehend.

A lineisahyperplanein 2D, which is no more the case in 3D. Thus the separability property islost: a 3D
line does not separate two half-space asin 2D.

A 4D parameterization of 3D linesis not possible without singularities (the one presented in Fig. 3.2(a) has
two singularities at the pole, whilethe onein Fig. 3.2(b) can not represent lines parallel to the two planes). See
section 3 of chapter 8 for a partial solution to this problem.

Visual eventsare simplein 2D: bitangent lines or tangent to inflection points. In 3D their locus are surfaces
which arerarely planar (EEE or visual eventsfor curved objects).

All these arguments make the sentence “the generalization to 3D is straightforward” a doubtful statement
in any visibility paper.



CHAPTER 4

The classics of hidden part removal

Il convient encore de noter que c’est parce que quelque
chose des objets extérieurs pénétre en nous que nous
voyons les formes et que nous pensons

EPICURE, Doctrines et Maximes

E FIRST BRIEFLY review the classical agorithms to solve the hidden surface removal
problem. It isimportant to have these techniques in mind for awider insight of visibility
techniques. We will however remain brief, since it is beyond the scope of this survey to
discuss all the technical details and variations of these algorithms. For a longer survey
see [SSS74, Gra92], and for alonger and more educational introduction see [FvDFH90,

Rog97].

Theview computation problem is often reduced to the case wherethe viewpoint lieson the zaxis at infinity,
and x and y are the coordinates of the image plane; y is the vertical axis of the image. This can be done using
a perspective transform matrix (see [FvDFH90, Rog97]). The objects closer to the viewpoint can thus be said
to lie “above” (because of the z axis) as well as “in front” of the others. Most of the methods treat polygonal
scenes.

Two categories of approaches have been distinguished by Sutherland et al. Image-precision algorithms
solve the problem for a discrete (rasterized) image, visibility being sampled only at pixels; while object-
precision algorithm solve the exact problem. The output of the latter category is often a visibility map, which
is the planar map describing the view. The order in which we present the methodsis not chronological and has
been chosen for easier comparison.

Solutions to hidden surface removal have other applications that the strict determination of the objects
visible from the viewpoint. As evoked earlier, hard shadows can be computed using a view from a point light
source. Inversely, the amount of light arriving at a point in penumbra corresponds to the visible part of the
source from this point as shown in Fig. 2.2(b). Interest for the application of exact view computation has thus
recently been revived.
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1 Hidden-Line Removal

The first visibility techniques have were developed for hidden line removal in the sixties. These agorithms
provideinformation only on thevisibility of edges. Nothing isknown on theinterior of visiblefaces, preventing
shading of the objects.

1.1 Robert

Robert [Rob63] developed the first solution to the hidden line problem. He tests all the edges of the scene
polygonsfor occlusion. He then computes the intersection of the wedge defined by the viewpoint and the edge
and all objectsin the scene using a parametric approach.

1.2 Appel

Appel [App67] has developed the notion of quantitative invisibility which is the number of objects which
occlude a given point. Thisis the notion which we used to present singularity theory: the number of points of
the object which project on a given point in the image. Visible points are those with 0 quantitative invisibility.
The quantitative invisibility of an edge of a view changes only when it crosses the projection of another edge
(it correspondsto at-vertex). Appel thus computes the quantitative invisibility number of a vertex, and updates
the quantitative invisibility at each visual edge-edge intersection.
Markosian et al. [MKT ™97] have used thisalgorithm to render the silhouette of objectsin anon-photorealistic

manner. When the viewpoint is moved, they use a probabilistic approach to detect new silhouettes which could
appear because an unstable singularity is crossed.

1.3 Curved objects

Curved objects are harder to handle because their silhouette (or fold) first has to be computed (see section 2.2 of
chapter 3). Elber and Cohen [EC90] compute the silhouette using adaptive subdivision of parametric surfaces.
The surface is recursively subdivided as long as it may contain parts of the silhouette. An algorithm similar
to Appel’s method is then used. Snyder [Sny92] proposes the use of interval arithmetic for robust silhouette
computation.

2 Exact area-subdivision

2.1 Weiler-Atherton

Weiler and Atherton [WA77] devel oped the first object-precision method to compute a visibility map. Objects
are preferably sorted according to their depth (but cycles do not have to be handled). The frontmost polygons
are then used to clip the polygons behind them.

This method can also be very simply used for hard shadow generation, as shown by Atherton et al.
[AWGT8]. A view is computed from the point light source, and the clipped polygons are added to the scene
database as lit polygon parts.

The problem with Weiler and Atherton’s method, as for most of the object-precision methods, is that it
reguires robust geometric calculations. It is thus prone to numerical precision and degeneracy problems.

2.2 Application to form factors

Nishita and Nakamae [NN85] and Baum et al. [BRW89] compute an accurate form factor between a polygon
and a point (the portion of light leaving the polygon which arrives at the point) using Weiler and Atherton’s
clipping. Once the source polygon is clipped, an analytical formula can be used. Using Stoke’s theorem, the
integral over the polygon is computed by an integration over the contour of the visible part. The jacobian of
the lighting function can be computed in a similar manner [Arv94].

Vedel [Ved93] has proposed an approximation for the case of curved objects.
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2.3 Mulmuley

Mulmuley [Mul89] has proposed an improvement of exact area-subdivision methods. He inserts polygons
in a randomized order (as in quick-sort) and maintains the visibility map. Since visibility maps can have
complex boundaries (concave, with holes), he uses a trapezoidal decomposition [dBvKOS97]. Each trapezoid
correspondsto a part of one (possibly temporary) visible face.

Each trapezoid of the map maintains a list of conflict polygons, that is, polygons which have not yet been
projected and which are above the face of the trapezoid. Asafaceis chosen for projection, all trapezoids with
which it isin conflict are updated. If aface is below the temporary visible scene, no computation has to be
performed.

The complexity of this agorithm is very good, since the probability of a feature (vertex, part of edge) to
induce computation is inversely proportional to its quantitative invisibility (the number of objects aboveit). It
should be easy to implement and robust due to its randomized nature. However, no implementation has been
reported to our knowledge.

2.4 Curved objects

Krishnan and Manocha [KM94] propose an adaptation of Weiler and Atherton’s method for curved objects
modeled with NURBS surfaces. They perform their computation in the parameter space of the surface. The
silhouette correspondsto the pointswhere the normal is orthogonal to the view-line, which definesa polynomial
system. They use an algebraic marching method to solveit. These silhouettes are approximated by piecewise-
linear curves and then projected on the parts of the surface below, which gives a partition of the surface where
the quantitative invisibility is constant.

3 Adaptive subdivision

The method devel oped by Warnock [War69] can be seen as an approximation of Weiler and Atherton’s exact
method, even though it was developed earlier. It recursively subdivides the image until each region (called a
window) is declared homogeneous. A window is declared homogeneous if one face completely coversit and
isin front of all other faces. Faces are classified against a window as intersecting or digoint or surrounding
(covering). This classification is passed to the subwindows during the recursion. The recursion is aso stopped
when pixel-sizeis reached.

The classical method considers quadtree subdivision. Variations however exist which use the vertices of
the scene to guide the subdivision and which stop the recursion when only one edge covers the window.

Markset al. [MWCF90] presents an analysis of the cost of adaptive subdivision and proposes a heuristic to
switch between adaptive methods and brute-force z-buffer.

4 Depth order and the painter’s algorithm

The painter’s algorithm is a class of methods which consist in simply drawing the objects of the scene from
back to front. Thisway, visible objects overwrite the hidden ones. Thisis similar to a painter who first draws
a background then paints the foreground onto it. However, ordering objects according to their occlusion is not
straightforward. Cycles may appear, asillustrated in Fig. 4.1(a).

The inverse order (Front to Back) can also be used, but a flag has to be indicate whether a pixel has been
written or not. This order allows shading computations only for the visible pixels.

4.1 Newell Newell and Sancha

In the method by Newell, Newell and Sancha[NNS72] polygons are first sorted according to their minimum z
value. However this order may not be the occlusion order. A bubble sort like schemeis thus applied. Polygons
with overlapping z intervals are first compared in the image for xy overlap. If it isthe case, their plane equation
is used to test which occlude which. Cyclesin occlusion are tested, in which case one of the polygonsis split
asshownin Fig. 4.1(b).
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Figure 4.1: (a) Classic example of a cycle in depth order. (b) Newell, Newell and Sancha split one of the
polygonsto break the cycle.

For new theoretical results on the problem of depth order, see the thesis by de Berg [Ber93].

4.2 Priority list preprocessing

Schumacker [SBGS69] developed the concept of a priori depth order. An object is preprocessed and an order
may be found which isvalid from any viewpoint (if the backfacing faces are removed). See the example of Fig.
4.2,

A
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Figure4.2: A priori depth order. (a) Lower number indicate higher priorities. (b) Graph of possible occlusions
from any viewpoint. An arrow means that a face can occlude another one from a viewpoint. (c) Example of
aview. Backfacing polygons are eliminated and other faces are drawn in the a priori order (faces with higher
numbers are drawn first).

These objects are then organised in clusters which are themselves depth-ordered. This technique is funda-
mental for flight simulators where real-time display is crucial and where cluttered scenes are rare. Moreover,
antialiasing is easier with list-priority methods because the coverage of a pixel can be maintained more consis-
tently. The survey by Yan [Yan85] states that in 1985, al simulators were using depth order. It is only very
recent that z-buffer has started to be used for flight simulators (see section below).

However, few objects can be a priori ordered, and the design of a suitable database had to be performed
mainly by hand. Nevertheless, this work has led to the development of the BSP tree which we will present in
section 1.4 of chapter 5

4.3 Layer ordering for image-based rendering

Recently, the organisation of scenes into layers for image-based rendering has revived the interest in depth-
ordering ala Newell et al. Snyder and Lengyel [ SL 98] proposed the merging of layerswhich form an occlusion
cycle, while Decoret al. [DSSD99] try to group layers which cannot have occlusion relations to obtain better
parallax effects.
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5 The z-buffer

5.1 Z-buffer

The z-buffer was developed by Catmull [Cat74, Cat75]. It is now the most widespread view computation
method.

A depth (or z-value) is stored for each pixel of theimage. As each object is scan-converted (or rasterized),
the depth of each pixel it covers in the image is computed and compared against the corresponding current
z-value. The pixel isdrawn only if it is closer to the viewpoint.

Z-buffer was devel oped to handl e curved surfaces, which are recursively subdivided until a sub-patch covers
only one pixel. See also [CLR80] for improvements.

The z-buffer is simple, general and robust. The availability of cheap and fast memory has permitted very
efficient hardware implementations at low costs, allowing today’s low-end computer to render thousands of
shaded polygons in real-time. However, due to the rasterized nature of the produced image, aliasing artifacts
occur.

5.2 A-buffer

The A-buffer (antialiased averaged areaaccumul ation buffer) isahigh quality antialiased version of the z-buffer.
A similar rasterization scheme is used. However, if a pixel is not completely covered by an object (typically
at edges) a different treatment is performed. The list of object fragments which project on these non-simple
pixelsis stored instead of a color value (see Fig. 4.3). A pixel can befirst classified non simple because an edge
projects on it, then simple because a closer object completely coversit. Once all objects have been projected,
sub-pixel visibility is evaluated for non-simple pixels. 4*8 subpixels are usually used. Another advantage of
the A-buffer isitstreatment of transparency; Subpixel fragments can be sorted in front-to-back order for correct
transparency computations.
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Figure4.3: A buffer. (a) The objects are scan-converted. The projection of the objectsis dashed and non-simple
pixels are represented in bold. (b) Close-up of a non-simple pixel with the depth sorted fragments (i.e., the
polygons clipped to the pixel boundary). (c) The pixel is subsampled. (d) The resulting color is the average of
the subsamples. (€) Resulting antialiased image.

The A-buffer can be credited to Carpenter [Car84], and Fiume et al. [FFR83]. It is a simplification of
the “ultimate” algorithm by Catmull [Cat78] which used exact sub-pixel visibility (with a Weiler-Atherton
clipping) instead of sub-sampling. A comprehensive introduction to the A-buffer and a discussion of imple-
mentation is given in the book by Watt and Watt [WW92].
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The A-buffer is, with ray-tracing, the most popular high-quality rendering techniques. It is for example
implemented in the commercial products Alias Wavefront Maya and Pixar Renderman [CCC87]. Similar
techniques are apparently present in the hardware of some recent flight simulator systems [Mue95].

Most of the image space methods we present in chapter 6 are based on the z-buffer. A-buffer-like schemes
could be explored when diasing is too undesirable.

6 Scan-line

6.1 Scan-line rendering

Scan-line approaches produce rasterized images and consider one line of theimage at atime. Their memory re-
quirements are low, which explainswhy they have long been very popular. Wylie and his coauthors [WREEG7]
proposed the first scan-line algorithms, and Bouknight [Bou70] and Watkins [Wat70] then proposed very simi-
lar methods.

The objects are sorted according to y. For each scan-line, the objects are then sorted according to x. Then
for each span (x interval on which the same objects project) the depths of the polygons are compared. See
[WC91] for a discussion of efficient implementation. Another approach is to use a z-buffer for the current
scan-line. The A-buffer [Car84] was in fact originally developed in a scan-line system.

Crocker [Cro84] has improved this method to take better advantage of coherence.

Scan-line algorithms have been extended to handl e curved objects. Some methods[Clar9, LC79, LCWB80]
use a subdivision scheme similar to Catmull’s algorithm presented in the previous section while others [BIi 78,
Whi78, Sz89] actually compute the intersection of the surface with the current scan-line. See aso [Rog97]
page 417.

Sechrest and Greenberg [SG82] have extended the scanline method to compute object precision (exact)
views. They place scan-lines at each vertex or edge-edge intersection in the image.

Tanaka and Takahashi [TT90] have proposed an antialiased version of the scan-line method where the
imageis scanned bothin x and y. An adaptive scan is used in-between two y scan-lines. They have applied this
scheme to soft shadow computation [TT97] (see also section 1.4 of chapter 8).

6.2 Shadows

The first shadowing methods were incorporated in a scan-line process as suggested by Appel [App68]. For
each span (segment where the same polygon is visible) of the scan-line, its shadowing has to be computed.
The wedge defined by the span and a point light-source is intersected with the other polygons of the scene to
determine the shadowed part of the span.

In section 1.1 of chapter 6 we will see an improvement to this method. Other shadowing techniques for
scan-line rendering will be covered in section 4.1 of chapter 5.

7 Ray-casting

The computation of visible objects using ray-casting was pioneered by Appel [App68], the Mathematical Ap-
plication Group Inc. [MAG68] and Goldstein and Nagel [GN71] in the late sixties. The object visible at one
pixel is determined by casting a ray through the scene. The ray is intersected with all objects. The closest
intersection gives the visible object. Shadow rays are used to shade the objects. Asfor the z-buffer, Sutherland
et al. [SSS74] considered this approach brute force and thought it was not scalable. They are now the two most
popular methods.

As evoked in section 1.5 of chapter 2 Whitted [Whi80] and Kay [KG79] have extended ray-casting to
ray-tracing which treats transparency and reflection by recursively sending secondary rays from the visible
points.

Ray tracing can handle any type of geometry (as soon as an intersection can be computed). Various methods
have been devel oped to compute ray-surface intersections, e.g., [Kg 82, Han89].

Ray-tracing is the most versatile rendering technique since it can also render any shading effect. Antialias-
ing can be performed with subsampling: many rays are sent through a pixel (see e.g. [DW85, Mit87]).
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Ray-casting and ray-tracing send rays from the eye to the scene, which is the opposite of actual physical
light propagation. However, this correspondsto the theory of scientists such as Aristote who think that “visual
rays” go from the eye to the visible objects.

As observed by Hofmann [Hof92] and illustrated in Fig. 4.4 ideas similar to ray-casting were exposed by
Durer [Dur38] while he was presenting perspective.

Figure 4.4: Drawing by Direr in 1538 to illustrate his setting to compute perspective. It can be thought of as
an ancestor of ray-casting. The artist’s assistant is holding a stick linked to a string fixed at an eyebolt in the
wall which represents the viewpoint. He pointsto part of the object. The position of the string in the framesis
marked by the artist using the intersection of two strings fixed to the frame. He then rotates the painting and
draws the point.

8 Sweep of the visibility map

Most of the algorithms developed in computational geometry to solve the hidden part removal problem are
based on a sweep of the visibility map for polygonal scenes. Theideaisillustrated in Fig. 4.5. The view is
swept by a vertical (not necessarily straight) line, and computations are performed only at discrete steps often
called events. A list of active edges (those crossing the sweep line) is maintained and updated at each events.
Possible events are the appearance the vertex of a new polygon, or at-vertex, that is, the visual intersection of
an active edge and another edge (possibly not active).

The problem then reducesto the efficient detection of these events and the maintenance of the active edges.
As evoked in the introduction this often involves some ray shooting queries (to detect which face becomes
visible at at-vertex for example). More complex queries are required to detect some t-vertices.

Theliterature on this subject is vast and well surveyedin the paper by Dorward [Dor94]. See also the thesis
by de Berg [Ber93]. Other recent results on the subject include [Mul91, Pel96] (see section 1.5 of chapter 5).
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Figure 4.5: Sweep of avisibility map. Active edges are in bold. Already processed events are black points,
while white pointsindicate the event queue.



CHAPTER D

Object-Space

Ombres sans nombre
nombres sans ombre
al’infini
au pas cadencé
Nombres des ombres
ombre des nombres
al’infini
au pas commencé

Jacques PREVERT, Fatras

BJECT-SPACE methods exhibit the widest range of approaches. We first introduce methods

) which optimize visibility computation by using a well-behaved subdivision of space. We

then present two important data-structures based on the object-space locus of visual events,

the 2D visibility graph (section 2) and visua hull (section 3). We then survey the large class

of methods which characterize visibility using pyramid-like shapes. We review methods

using beams for visibility with respect to a point in section 4. We then present the extensions of these methods

to compute limits of umbra and penumbrain section 5, while section 6 discusses methods using shafts with

respect to volumes. Finally section 7 surveys methods developed for visibility in architectural environments
where visibility information is propagated through sequences of openings.

1 Space partitioning
If all objects are convex, simple, well structured and aligned, visibility computations are much easier. This
is why some methods attempt to fit the scene into simple enclosing volumes or regular spatial-subdivisions.

Computations are simpler, occlusion cycles can no longer occur and depth ordering is easy.
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1.1 Ray-tracing acceleration using a hierarchy of bounding volumes

Intersecting a ray with al objectsis very costly. Whitted [Whi80] enclosed objects in bounding volumes for
which the intersection can be efficiently computed (spheres in his paper). If the ray does not intersect the
bounding volume, it cannot intersect the object.

Rubin and Whitted [RW80] then extended this ideawith hierarchies of bounding volumes, enclosing bound-
ing volumesin a hierarchy of successive bounding volumes. The trade-off between how the bounding volumes
fits the object and the cost of the intersection has been studied by Weghorst et al. [WHG84] using a probabilis-
tic approach based on surface ratios (see also section 4 of chapter 8). Kay and Kgjiya[KK86] built tight-fitting
bounding volumes which approximate the convex hull of the object by the intersection of parallel slabs.

The drawback of standard bounding volume methods, is that all objects intersecting the rays have to be
tested. Kay and Kgjiya[KK86] thus propose an efficient method for atraversal of the hierarchy which first tests
the closest bounding volumes and terminates when an intersection is found which is closer than the remaining
bounding volumes.

Many other methods were proposed to improve bounding volume methods for ray-tracing, see e.g. [Bou85,
AK89, FvDFH90, Rog97, WW92]. See also [Smi99] for efficiency issues.

1.2 Ray-tracing acceleration using a spatial subdivision

The aternative to bounding volumes for ray-tracing is the use of a structured spatial subdivision. Objects
of the scene are classified against voxels (boxes), and shooting a ray consists in traversing the voxels of the
subdivision and performing intersections only for the objects inside the encountered voxels. An object can lie
inside many voxels, so this has to be taken into account.

The trade-off here is between the simplicity of the subdivision traversal, the size of the structure and the
number of objects per voxel.

Regular grids have been proposed by Fujimoto et al. [FT186] and Amanatides and Woo [AW87]. The
drawback of regular gridsis that regions of high object density are “sampled” at the same rate as regions with
many objects, resulting in a high cost for the latter because one voxel may contain many objects. However the
traversal of the gridis very fast, similar to the rasterization of aline on a bitmap image. To avoid the time spent
in traversing empty regions of the grid, the distance to the closest object can be stored at each voxel (see e.g.
[CS94, SKaT)).

Glassner [Gla84] introduced the use of octrees which result in smaller voxels in regions of high object
density. Unfortunately the traversal of the structure becomes more costly because of the cost induced by the
hierarchy of the octree. See [ES94] for a comparison between octrees and regular grids.

Recursive grids [JW89, KS97] are similar to octrees, except that the branching factor may be higher, which
reduces the depth of the hierarchy (see Fig. 5.1(a)). The size of the voxel in a grid or sub-grid should be
proportional to the cubic root of the number of objectsto obtain a uniform density.

Snyder and Bar [SB87] use tight fitting regular grids for complex tessellated objects which they insert in a
bounding box hierarchy.

Finally Cazals et al. [CDP95, CP97] propose the Hierarchy of Uniform Grids, where grids are not nested.
Objects are sorted according to their size. Objects which are close and have the same size are clustered, and a
grid is used for each cluster and inserted in a higher level grid (see Fig. 5.1(b)). An in-depth analysis of the
performance of spatial subdivision methods is presented. Recursive grids and the hierarchy of uniform grid
seem to be the best trade-off at the moment (see a'so [KWCH97, Wo097] for a discussion on this subject).

1.3 Volumetric visibility

The methods in the previous sections till require an intersection calculations for each object inside a voxel.
In the context of radiosity lighting simulation, Sillion [SiI|95] approximates visibility inside a voxel by an
attenuation factor (transparency or transmittance) asis done for volume rendering. A multiresolution extension
was presented [SD95] and will be discussed in section 1.2 of chapter 9.

The transmittance is evaluated using the area of the objects inside a voxel. These voxels (or clusters) are
organised in ahierarchy. Choosing thelevel of the hierarchy used to compute the attenuation along aray allows
atrade-off between accuracy and time. The problem of refinement criteria will be discussed in section 1.1 of
chapter 9.
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Figure5.1: A 2D analogy of ray-tracing acceleration. An intersection test is performed for objectswhich arein
bold type. (a) Recursive grid. (b) Hierarchy of uniform grids. Note that fewer intersections are computed with
the latter because the grids fit more tightly to the geometry.

Christensen et al. [CLSS97] propose another application of volumetric visibility for radiosity.

Chamberlainet al [CDL 96] perform real-time rendering by replacing distant geometry by semi-transparent
regular voxels averaging the color and occlusion of their content. Neyret [Ney96, Ney98] presents similar ideas
to model and render complex scenes with hierarchical volumetric representations called texels.

1.4 BSP trees

We have seen in section 4.2 of chapter 4 that an a priori depth order can be found for some objects. Unfortu-
nately, thisis quite rare. Fuchs and his co authors[FKN80, FAG83] have devel oped the BSP tree (Binary Space
Partitioning tree) to overcome this limitation.

The principleis simple: if the scene can be separated by a plane, the objects lying on the same side of the
plane as the viewer are closer than the othersin a depth order. BSP trees recursively subdivide the scene along
planes, resulting in a binary tree where each node correspondsto a splitting plane. The computation of a depth
order is then a straightforward tree traversal: at each node the order in which the subtrees have to be drawn is
determined by the side of the plane of the viewer. Unfortunately, since a sceneis rarely separable by a plane,
objects have to be split. Standard BSP approaches perform subdivision along the polygons of the scene. See
Fig. 5.2 for an examplel.

It has been shown [PY 90] that the split in BSP trees can cause the number of sub-polygonsto be as high as
O(n?) for a scene composed of n entry polygons. However, the choice of the order of the polygons with which
subdivision is performed is very important. Paterson and Yao [PY 90] give a method which builds a BSP tree
with size O(n?). Unfortunately, it requires O(n®) time. However these bounds do not say much on the practical
behaviour of BSPs.

See e.g. [NR95] for the treatment of curved objects.

Agarwal et al. [AGMV97, AEG98] do not perform subdivision along polygons. They build cylindrical
BSP trees, by performing the subdivision along vertical planes going through edges of the scene (in a way
similar to the method presented in the next section). They give algorithms which build a quadratic size BSP in
roughly quadratic time.

Chen and Wang [CW96] have proposed the feudal priority algorithm which limits the number of splits
compared to BSP. They first treat polygons which are back or front-facing from any other polygon, and then
chose the polygons which cause the smallest number of splits.

1 BSP trees have also been applied as a modeling representation tool and powerful Constructive Solid Geometry operations have been
adapted by Naylor et al. [NAT90].
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Figure5.2: 2D BSP tree. (a) The sceneis recursively subdivided along the polygons. Note that polygon D has
to be split. (b) Corresponding binary tree. The traversal order for the viewpoint in (a) is depicted using arrows.
The order is thus, from back to front: FCGAD 1BHED>

Naylor [Nay92] also uses a BSP tree to encode the image to perform occlusion-culling; nodes of the object-
space BSP tree projecting on a covered node of the image BSP are discarded in a manner similar to the hierar-
chical z-buffer which we will present in section 3 of the next chapter.

BSP trees are for examplein the game Quake for the hidden-surface removal of the static part if the model
[Abr96] (moving objects are treated using a z-buffer).

1.5 Cylindrical decomposition

Mulmuley [Mul91] has devised an efficient preprocessing algorithm to perform object-precision view compu-
tations using a sweep of the view map as presented in section 8 of chapter 4. However this work is theoretical
and is unlikely to be implemented. He builds a cylindrical partition of 3D space which is similar to the BSPs
that Agarwall et al. [AGMV97, AEG98] have later described. Nonetheless, he does not use whole planes.
Each cell of his partition is bounded by parts of the input polygons and by vertical walls going through edges
or vertices of the scene. His paper also contains an interesting discussion of sweep algorithms.

2 Path planning using the visibility graph

2.1 Path planning

Nilsson [Nil69] developed the first path planning algorithms. Consider a 2D polygonal scene. The visibility
graph is defined as follows: The nodes are the vertices of the scene, and an arc joins two vertices A and B if
they are mutually visible, i.e. if the segment [AB] intersects no obstacle. As noted in the introduction, it is
possibleto go in straight line from Ato B only if Bisvisible from A. The start and goal points are added to the
set of initia vertices, and so are the corresponding arcs (see Fig. 5.3). Only arcs which are tangent to a pair of
polygons are necessary.

It can be easily shown that the shortest path between the start point and the goal goes through arcs of the
visibility graph. The rest of the method is thus a classical graph problem. See aso [LPW79].

This method can be extended to non-polygonal scenes by considering bitangents and portions of curved
objects.

The method unfortunately does not generalize smply to 3D where the problem has been shown to be
NP-complete by Canny [Can88].
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Figure5.3: Path planning using the visibility graph.

2.2 Visibility graph construction

The 2D visibility graph has size which is between linear and quadratic in the number of polygon edges. The
construction of visibility graphs is arich subject of research in computational geometry. Optimal O(n?) ago-
rithms have been proposed [EG86] as well as output-sensitive approaches (their running time depends on the
size of the output, i.e. the size of the visibility graph) [OW88, GM91].

The 2D visibility complex which we will review in section 1.2 of chapter 8 is also a powerful tool to build
visibility graphs.

In 3D, the term “visibility graph” often refersto the abstract graph where each object is a node, and where
arcsjoin mutually visible objects. Thisis however not the direct equivalent of the 2D visibility graph.

2.3 Extensions to non-holonomic visibility

In this section we present some motion planning works which are hard to classify since they deal with exten-
sions of visibility to curved lines of sight. They have been developed by Vendittelli et al. [VLN96] to plan
the motion of a car-like robot. Car tragjectories have a minimum radius of curvature, which constraints their
motion. They are submitted to non-holonomic constraints: the tangent of the trgjectory must be colinear to
the velocity. Dubins [Dub57] and Reeds and Shepp [RS90] have shown that minimal-length trajectories of
bounded curvature are composed of arcs of circles of minimum radius and line segments.

For exampleif acar lies at the origin of the plane and is oriented horizontally, the shortest path to the points
of the upper quadrant are represented in Fig. 5.4(a). The rightmost paths are composed of a small arc of circle
forward followed by aline segment. To go to the points on the left, a backward circle arc is first necessary, then
aforward arc, then aline segment.

Now consider an obstacle such as the line segment represented in Fig. 5.4(a). It forbids certain paths. The
points which cannot be reached are said to be in shadow, by analogy to the case where optimal paths are simple
line segments?.

The shape of such a shadow can be much more complex thanintheline-visibility case, asillustrated in Fig.
5.4(b).

Thisanalogy between visibility and reachability is further exploited in the paper by Nissoux et al. [NSL99]
where they plan the motion of robotswith arbitrary numbers of degrees of freedom.

3 The Visual Hull

The reconstruction of objects from silhouettes (see section 2.2 of chapter 2) is very popular becauseit is robust
and simple. Remember that only exterior silhouettes are considered, folds caused by self occlusion of the object
are not considered because they are harder to extract from images. Not all objects can be reconstructed with

2What we describe here are in fact shadows in a Riemannian geometry. Our curved lines of sight are in fact geodesics, i.e.c the shortest
path from one point to another.
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Figure5.4: Shadow for non-holonomic path-planning (adapted from [VLN96]). (a) Simple (yet curved) shadow.
(b) Complex shadows. Some parts of the convex blocker do not lie on the shadow boundary. The small
disconnected shadow is caused by the impossibility to perform an initial backward circle arc.

this method; The cavity of abowl can not be reconstructed because it is not present on an external silhouette.
The best reconstruction of abowl one can expect is a“full” version of the initial object.

However the reconstructed object is not necessarily the convex hull of the object: the hole of atorus can be
reconstructed because it is present on the exterior silhouette of some images.

Laurentini [Lau94, Lau9s, Lau97, Lau99] has introduced the visual hull concept to study this problem. A
point P of spaceisinside the visual hull of an object A, if from any viewpoint P projects inside the projection
of A. To give aline-space formulation, each line going through a point P of the visual hull intersects object A.
Thevisua hull isthe smallest object which can be reconstructed from silhouettes. See Fig. 5.5 for an example.
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Figure5.5: Visual hull (adapted from [Lau94]). (a) Initial object. A EEE event is shown. (b) Visua hull of the
object (the viewer is not allowed inside the convex hull of the object). It isdelimited by polygonsand a portion
of the ruled quadric of the E1E2E3 event. (c) A different object with the same visua hull. The two objects can
not be distinguished from their exterior silhouette and have the same occlusion properties.

The exact definition of the visual hull in fact depends on the viewing region authorized. The visual hull is
different if the viewer is alowed to go inside the convex hull of the object. (Half lines have to be considered
instead of linesin our line-space definition)

The visual hull is delimited by visual events. The visua hull of a polyhedron is thus not necessarily a
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polyhedron, as shown in Fig. 5.5 where a EEE event isinvolved.

Laurentini has proposed a construction algorithms in 2D [Lau94] and for objects of revolution in 3D
[Lau99]. Petitjean [Pet98] has developed an efficient construction algorithm for 2D visual hulls using the
visihbility graph.

The visual hull also represents the maximal solid with the same occlusion properties as the initial object.
This concept thus completely applies to the simplification of occluders for occlusion culling. The simplified
occluder does not need to lie inside the initial occluder, but inside its visual hull. See the work by Law and Tan
[LT99] on occluder simplification.

4 Shadows volumes and beams

In this section we present the rich category of methods which perform visibility computation using pyramids
or cones. The apex can be defined by the viewpoint or by a point light source. It can be seen as the volume
occupied by the set of rays emanating from the apex and going through a particular object. The intersection of
such a volume with the scene accounts for the occlusion effects.

4.1 Shadow volumes

Shadow volumes have been developed by Crow [Cro77] to compute hard shadows. They are pyramids defined
by a point light source and a blocker polygon. They are then used in a scan-line renderer asillustrated in Fig.
5.6.

E}%//z point light source
ZAN

blocker 7 \ghadow volume

Figure 5.6: Shadow volume. As object A is scan converted on the current scan-line, the shadowing of each
pixel is computed by counting the number of back-facing and front-facing shadow volume polygonsontheline
joining it to the viewpoint. For point P, thereis one front-facing intersection, it is thusin shadow.

The wedges delimiting shadow volumes are in fact visual events generated by the point light source and
the edges of the blockers. In the case of a polyhedron light source, only silhouette edges (with respect to the
source) need to be considered to build the shadow volume polygons.

Bergeron [Ber86] has proposed a more general version of Crow’s shadow volumes. His method has long
been very popular for production rendering.

Shadow volumes have al so been used with ray-tracing [EK89]. Brotman and Badler [BB84] have presented
a z-buffer based use of shadow volumes. They first render the scene in a z-buffer, then they build the shadow
volumes and scan convert them. Instead of displaying them, for each pixel they keep the number of frontfacing
and backfacing shadow volume polygons. This method is hybrid object-space and image space, the advantage
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over the shadow map is that only one sampling is performed. They also sample an area light source with points
and add the contributions computed using their method to obtain soft shadow effects. An implementation
using current graphics hardwareis described in [MBGN98] section 9.4.2. A hardwareimplementation has also
been developed on pixel-plane architecture [FGH T85], except that shadow volumes are simply described as
plane-intersections.

Shadow volumes can also be used inversely as light-volumes to simulate the scattering of light in dusty air
(e.g., [INMN87, Hai91]).

Albrecht Durer [DUr38] describes similar constructions, as shown in Fig. 5.7

Figure 5.7: Construction of the shadow of a cube by Direr.

4.2 Shadow volume BSP

Chin and Feiner [CF89] compute hard shadows using BSP trees. Their method can be compared to Atherton
et al.’s technique presented in section 2.1 of chapter 4 where the same algorithm is used to compute the view
and to compute the illuminated parts of the scene. Two BSP are however used: onefor depth ordering, and one
called shadow BSP tree to classify the lit and unlit regions of space.

The polygons are traversed from front to back from the light source (using the first BSP) to build a shadow
BSP tree. The shadow BSP treeis split along the planes of the shadow volumes. As apolygon is considered, it
isfirst classified against the current shadow BSP tree (Fig. 5.8(a)). It is split into lit and unlit parts. Then the
edges of the lit part are used to generate new splitting planes for the shadow BSP tree (Fig. 5.8 (b)).

The scene augmented with shadowing information can then be rendered using the standard BSP.

Chrysanthou and Slater [ CS95] proposeamethod which avoidsthe use of the scene BSP to build the shadow
BSP, resulting in fewer splits.

Campbell and Fussel [CF90] were the first to subdivide a radiosity mesh along shadow boundaries using
BSPs. A good discussion and some improvements can be found in Campbell’s thesis [Cam91].

4.3 Beam-tracing and bundles of rays

Heckbert and Hanrahan [HH84] developed beam tracing. It can be seen as a hybrid method between Weiler
and Atherton’s algorithm [WA77], Whitted’s ray-tracing [Whi80] and shadow volumes.

Beams are traced from the viewpoint into the scene. One initial beam is cast and clipped against the
scene polygons using Weiler and Atherton’s exact method, thus defining smaller beams intersecting only one
polygon (see Fig. 5.9(a)). If the a polygonisamirror, areflection beam is recursively generated. Its apex isthe
symmetric to the viewpoint with respect to the light source (Fig. 5.9(b)). It is clipped against the scene, and the
computation proceeds.

Shadow beams are sent from the light source in a preprocess step similar to Atherton et al’s shadowing
[AWGT8]. Refraction can be approximated by sending refraction beams. Unfortunately, since refraction is not
linear, this computation is not exact.

Dadoon et al. [DKW85] propose an efficient version optimized using BSP trees.
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Figure5.8: 2D equivalent of shadow BSP. The splitting planes of the shadow BSP are represented with dashed
lines. (a) Polygon C is tested against the current shadow BSP. (b) It is split into a part in shadow C4 and alit
part Co. The boundary of thelit part generates a new splitting plane.
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Figure 5.9: Beam tracing. (a) A beam is traced from the eye to the scene polygons. It is clipped against the
other polygons. (b) Since polygon A isamirror, areflected beam is recursively traced and clipped.

Amanatides[Ama84] and Kirk [Kir87] use conesinstead of beams. Cone-tracingallowsantialiasing aswell
as depth-of-field and soft shadow effects. The practical use of this method is however questionable because
secondary cones are hard to handle and because object-coneintersections are difficult to perform. Shinyaet al.
[STN87] have formalized these concepts under the name of pencil tracing.

Beam tracing has been used for efficient specular sound propagation by Funkhouser and his co-author.
[FCE'98]. A bidirectional version has also been proposed where beams are propagated both from the sound
source and from the receiver [FMC99].They moreover amortize the cost of beam propagation as listeners and
sources move smoothly.

Speer [SDB85] hastried to take advantage of the coherence of bundles of rays by building cylindersin free-
space around aray. If subsequent rays are within the cylinder, they will intersect the same object. Unfortunately
his method did not procure the expected speed-up because the construction of the cylinders was more costly
than a brute-force computation.

Beams defined by rectangular windows of theimage can allow high-quality antialiasing with general scenes.
Ghazanfarpour and Hasenfratz [GH98, Has98] classify non-simple pixelsin a manner similar to the A-buffer
or to the ZZ-buffer, but they take shadows, reflection and refraction into account.

Teller and Alex [TA98] propose the use of beam-casting (without reflection) in a real-time context. Beams
are adaptively subdivided according to a time budget, permitting a trade-off between time and image quality.
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Finally Watt [Wat90] traces beams from the light source to simulate caustic effects which can for example
be caused by the refraction of light in water.

4.4 Occlusion culling from a point

Sometimes, nearby large objects occlude most of the scene. This is the case in a city where nearby facades
hide most of the buildings. Coorg and Teller [CT96, CT97b] quickly reject the objects hidden by some con-
vex polygonal occluders. The scene is organised into an octree. A Shadow volume is generated for each
occluder, and the cells of the octree are recursively classified against it as occluded, visible or partially visible,
asillustrated in Fig. 5.10.

big convex
occluder
scene octree

Figure 5.10: Occlusion culling with large occluders. The cells of the scene octree are classified against the
shadow volumes. In dark grey we show the hidden cells, while those partially occluded arein light grey.

The occlusion by a conjunction of occluders in not taken into account, as opposed to the hierarchical z-
buffer method exposed in section 3 of chapter 6. However we will seein section 4.2 of chapter 7 that they treat
frame-to-frame coherence very efficiently.

Similar approaches have been devel oped by Hudson et al. [HMC *97]. Bittner et al. [BHS98] use shadow
volume BSP tree to take into account the occlusion caused by multiple occluders.

Woo and Amanatides [WA90] propose a similar scheme to speed-up hard shadow computation in ray-
tracing. They partitionthe scenein aregular grid and classify each voxel against shadow volumes as completely
lit, completely in umbraor complicated. Shadow rays are then sent only from complicated voxels.

Indoor architectural scenes present the dual characteristic featureto occlusion by large blockers: onecan see
outside a room only through doors or windows. These opening are named portals. Luebke and George [LG95]
following ideas by Jones[Jon71] and Clark [Cla76] use the portalsto reject invisible objects in adjacent rooms.
The geometry of the current room is completely rendered, then the geometry of adjacent roomsis tested against
the screen bounding box of the portals as shown in Fig. 5.11. They aso apply their technique to the geometry
reflected by mirrors.

This technique was also used for awalk through avirtual colon for the inspection of acquired medical data
[HMK*97] and has been implemented in a 3D game engine [BEW *98].

45 Best-next-view

Best-next-view methods are used in model reconstruction to infer the position of the next view from the data
already acquired. The god is to maximize the visibility of parts of the scene which were occluded in the
previousview. They are delimited by the volume of occlusion as represented in Fig. 5.12. These volumes are
in fact the shadow volumes where the camerais considered as alight source.

Reed and Allen [RA96] construct a BSP model of the object as well as the boundaries of the occlusion
volume. They then attempt to maximizethe visibility of the latter. Thisusually results roughly in a90 ° rotation
of the camera since the new viewpoint is likely to be perpendicular to the view volume.

Similar approaches have been developed by Maver and Bajcsy [MB93] and Banta et al. [BZW *95].
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Figure5.11: Occlusion culling using image-space portals. The geometry of the adjacent roomsis tested against
the screen bounding boxes of the portals

=

@)i‘i

volume o
occlusion

Figure 5.12: Acquisition of the model of a 3D object using a range image. The volume of occlusion is the
unknown part of space.

Thisproblemisvery similar to the problem of gapsin image-based view warping (see section 1.7 of chapter
2and Fig. 2.7 page 12). When aview is reprojected, the regions of indeterminate visibility lie on the boundary
of the volumes of occlusion.

5 Arealight sources

5.1 Limits of umbra and penumbra

Nishita and Nakamae [NN85, NON85, NN83] have computed the regions of umbra and penumbra caused by
convex blockers. They show that the umbrafrom a polygonal light source of a convex object istheintersection
of the umbra volumes from the vertices of the source (see Fig. 5.13). The penumbrais the convex hull of the
union of the umbra volumes. They use Crow’s shadow volumes to compute these regions.

The umbrais bounded by portions of EV events generated by one vertex of the source and one edge of the
blocker, while the penumbrais bounded EV events generated by edges and vertices of both the source and the
blocker.

Their method fails to compute the exact umbra caused by multiple blockers, since it is no longer the inter-
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Figure 5.13: Umbra (dark grey) and penumbra (light grey) of a convex blocker (adapted from [NN85]).

section of their umbras. The penumbraboundary is however valid, but some parts of the umbra are incorrectly
classified as penumbra. Thisis not a problem in their method because a shadow computation is performed in
the penumbraregion (using an exact hidden line removal method). The umbra of a concave object is bounded
by EV visual events and also by EEE events (for example in Fig. 3.5 page 27 if polygon R is a source, the
EEE event exhibited is an umbraboundary). Penumbraregions are bounded only by EV events.

Drawings by da Vinci exhibit the first description of the limits of umbraand penumbra (Fig. 5.14).

5.2 BSP shadow volumes for area light sources

Chin and Feiner [CF92] have extended their BSP method to handle area light sources. They build two shadow
BSP, one for the umbra and one for the penumbra.

As in Nishita and Nakamae’s case, their algorithm does not compute the exact umbra volume due to the
occlusion by multiple blockers.

5.3 Discontinuity meshing

Heckbert [Hec92b, Hec924] has introduced the notion of discontinuity meshing for radiosity computations.
At avisual event, aC? discontinuity occurs in the illumination function (see [Arv94] for the computation of
illumination gradients). Heckbert uses EV discontinuity surfaces with one generator on the source.

Other authors [LTG93, LTG92, Stu94, Cam91, CF91a, GH94] have used similar techniques. See Fig. 5.15
for an example. Hardt and Teller [HT96] also consider discontinuities which are caused by indirect lighting.
Other discontinuity meshing techniques will be treated in section 2.3 of chapter 7 and 2.1 of chapter 8.

However, discontinuity meshing approaches have not yet been widely adopted because they are prone to
robustness problems and also because the irregular meshes induced are hard to handle.

5.4 Linear time construction of umbra volumes

Yoo et al. [YKSC98] perform the same umbra/penumbraclassification as Nishita and Nakamae, but they avoid
the construction and intersection/union of all the shadow volumes from the vertices of the source.

They notethat only EV events on separating and supporting planes have to be considered. Their algorithm
walks along the chain of edges and vertices simultaneously on the source and on the blocker as illustrated in
Fig. 5.16.
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Figure 5.14: Penumbra by Leonardo da Vinci (Manuscript). Light is coming from the lower window, and the
sphere causes soft shadows.

This can be interpreted in line space as a walk aong the chain of 1 dimensional sets of lines defined by
visual events.
Related methods can be found in [Cam91, TTK96].

5.5 Viewpoint constraints

As we have seen, viewpoint optimisation is often performed for the monitoring of robotics tasks. In this
setting, the visibility of a particular feature of object hasto be enforced. Thisisvery similar to the computation
of shadows considering that the feature is an extended light source.

Cowan and Kovesi [CK88] use an approach similar to Nishita and Nakamae. They compute the penumbra
region caused by a convex blocker as the intersection of the half spaces defined by the separating planes of
the feature and blockers (i.e. planes tangent to both objects such that each object lies on a different side of the
plane). The union of the penumbra of al the blockers is taken and constraints related to the sensor are then
included: resolution of theimage, focus, depth of field and view angle. Theadmissibleregionistheintersection
of these constraints.

Briggs and Donald [BD98] propose a 2D method which uses the intersection of half-planes defined by
bitangents. They also reject viewpoints from which the observation can be ambiguous because of similarities
in the workspace or in the object to be manipulated.

Tarabanisand Tsal [ TTK96] compute occlusion free viewpointsfor ageneral polyhedral scene and ageneral
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Figure5.15: Global illumination simulation. (a) Without discontinuity meshing. Note the jagged shadows. (b)
Using discontinuity meshing, shadows are finer (images courtesy of Dani Lischinski, Program of Computer
Graphics, Cornell University).
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Figure 5.16: Linear time construction of a penumbra volume.

polygonal feature. They enumerate possible EV wedges and compute their intersection.

Kim et al. [KYCS98] aso present an efficient algorithm which computes the compl ete visibility region of
a convex object.
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5.6 Light from shadows

Poulin et al. [PF92, PRJ97] have developed inverse techniques which allow a user to sketch the positions of
shadows. The position of the light source is then automatically deduced.

The principle of shadow volumes is reversed: A point P lies in shadow if the point light source isin a
shadow volume emanating from point P. The sketches of the user thus define constraints under the form of an
intersection of shadow volumes (see Fig. 5.17).

Figure 5.17: Sketching shadows. The user specifies the shadows of the ellipsoid on the floor with the thick
strokes. This generates constraint cones (dashed). The position of the light source is then deduced (adapted
from [PRJ97]).

Their method can also handle soft shadows, and additional constraints such as the position of highlights.

6 Shafts

Shaft method are based on the fact that occlusion between two objects can be caused only by objects inside
their convex hull. Shafts can be considered as finite beams for which the apex is not a point. They can aso be
seen as the volume of space defined by the set of rays between two objects.

6.1 Shaft culling

Haines and Wallace [HW91] have developed shaft culling in a global illumination context to speed up form
factor computation using ray-casting. They define a shaft between two objects (or patches of the scene) as the
convex hull of their bounding box (see Fig. 5.18).

Figure 5.18: Shaft culling. The shaft between A and B is defined as the convex hull of the union of their
bounding boxes. Object C intersects the shaft, it may thus cause occlusion between A and B.
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They have developed an efficient construction of approximate shafts which takes advantage of the axis
aligned bounding boxes. The test of an object against a shaft is also optimized for bounding boxes.

Similar methods have been independently devised by Zhang [Zha91] and Campbell [Cam91].

Marks et al [MWCF9Q0], Campbell [Cam91] and Drettakis and Sillion [DS97] have derived hierarchical
versions of shaft culling. The hierarchy of shafts is implicitly defined by a hierarchy on the objects. This
hierarchy of shaft can also be seen as a hierarchy in line-space [DS97]. Briére and Poulin [BP96] also use a
hierarchy of shafts or tubesto accelerate incremental updatesin ray tracing.

6.2 Use of adual space

Zao and Dobkin [ZD93] use shaft culling between pairs of triangles. They speed up the computation by the
use of a multidimensional dual space. They decompose the shaft between a pair of triangles into tetrahedra
and derive the conditionsfor another triangle to intersect a tetrahedron. These conditions are linear inegualities
depending on the coordinates of the triangle.

They use multidimensional spaces depending on the coordinates of the triangles to speed up these tests.
The queriesin these spaces are optimized using binary trees (kd-treesin practice).

6.3 Occlusion culling from a volume

Cohen-Or and his co-authors [COFHZ98, COZ98] compute potentially visible sets from viewing cells. That
is, the part of the scene where the viewer is allowed (the viewing space in short) is subdivided into cells from
which the set of objects which may be visible is computed. This method can thus be seen as a viewpoint space
method, but the core of the computation is based on the shaft philosophy.

Their method detectsif a convex occluder occludes an object from agiven cell. If convex polygonal objects
are considered, it is sufficient to test if all rays between pairs of vertices are blocked by the occluder. The test
is early terminated as soon as a hon-blocked ray is found. It isin fact sufficient to test only silhouette rays (a
ray between two point is a silhouetteray if each point is on the silhouette as seen from the other).

The drawback of this method is that it can not treat the occlusion caused by many blockers. The amount
of storage required by the potentially visible set information is also a critical issue, as well as the cost of
ray-casting.

7 Visibility propagation through portals

As dready introduced, architectural scenes are organized into rooms, and inter-room visibility occurs only
along openingsnamed portals. Thismakesthem particularly suitablefor visibility preprocessing. Airey [Air90]
and Teller [Tel92b, TS91] decompose a building into cells (roughly representing rooms) and precompute Po-
tentially Visible Sets for each set. These are superset of objects visible from the cell which will then typically
be sent to a z-buffer in awalkthrough application (see bel ow).

7.1 Visibility computation

We describe here the methods proposed by Teller [Tel92b]. An adjacency graph is built connecting cells
sharing a portal. Visibility is then propagated from a cell to neighbouring cells through portal sequencesin a
depth-first manner. Consider the situation illustrated in Fig. 5.19(8). Cell B is visible from cell A through the
sequence of portals p1p2. Cell C is neighbour of B in the adjacency graph, its visibility from A is thus tested.
A sightline stabbing the portals p1, p2 and p3 is searched (see Fig. 5.19(b)). A stab-treeis built which encodes
the sequences of portals.

If the sceneis projected on a floorplan, this stabbing problem reduces to find a stabber for a set of segments
and can be solved using linear programming (see [ Tel92b, TS91]).

If rectangular axis-aligned portals are considered in 3D, Teller [Tel92b] shows that the problem can be
solved by projecting it in 2D aong the three axis directions.

If arbitrary oriented portals are computed, he proposes to compute a conservative approximation to the
visible region [Tel92b, TH93]. As each portal is added to the sequence, the EV events bounding the visibility
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Figure 5.19: Visibility computations in architectural environments. (a) In grey: part of the scene visible from
the black cell. (b) A stabbing line (or sightline) through a sequence of portals.

region are updated. These EV events correspond to separating planes between the portals. For each edge of
the sequence of portals, only the extremal event is considered. The process is illustrated Fig. 5.20. Itisa
conservative approximation because EEE boundaries are not considered.

@ (b)

Figure 5.20: Conservative visibility propagation through arbitrary portals. (a) The separating plane considered
for e is generated by v3 because it lies below the one generated by vo. (b) As a new porta is added to the
sequence, the separating plane is updated with the same criterion.

If the visibility region is found to be empty, the new cell is not visible from the current cell. Otherwise,
objectsinside the cell are tested for visibility against the boundary of the visibility region asin a shaft method.

Airey [Air90] also proposes an approximate scheme where visibility between portals is approximated by
casting a certain number of rays (see section 4 of chapter 8 for the approaches involving sampling with rays).
See also the work by Yagel and Ray [Y R96] who describe similar ideasin 2D.

The portal sequence can be seen as a sort of infinite shaft. We will also study it as the set of lines going
through the portalsin section 3.3 of chapter 8.

7.2 Applications

The primary focus of these potentialy visible sets methods was the use in walkthrough systems. Examples
can be found in both Airey [ARB90] and Teller’s thesis [TS91, Tel92b]. Teller aso uses an online visibility
computation which restricts the visible region to the current viewpoint. The stab-tree is used to speed up a
beam-like computation.

Funkhouser et al. [FS93] have extended Teller’s system to use other rendering accel eration techniques such
as mesh simplification in a real time context to obtain a constant framerate. He and his co-authors [FST92,
Fun96¢] have also used the information provided by the potentially visible sets to efficiently load from the disk
or from the network only the parts of the geometry which may become visible in the subsequent frames. It can
also be used in adistributed virtual environment context to limit the network bandwidth to messages between
clients who can see each other [Fun95].

These computations have also been applied to speed-up radiosity computations by limiting the cal culation
of light interactions between mutually visible objects [TH93, ARB90]. It aso permits lighting simulations for
scenes which cannot fit into memory [ TFFH94, Fun96b].
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CHAPTER O

Image-Space

L’art de peindre n’est que I’art d’exprimer I’invisible
par levisible

Eugéne FROMENTIN

OST OF the image-space methods we present are based on a discretisation of an image.

They often take advantage of the specialised hardware present in most of today’s comput-

ers, which makes them simple to implement and very robust. Sampling rate and aliasing

are however often the critical issues. We first present some methods which detect oc-

clusions using projections on a sphere or on planes. Section 1 deals with the use of the
z-buffer hardware to speed-up visibility computation. We then survey extensions of the z-buffer to perform
occlusion-culling. Section 4 presents the use of a z-buffer orthogonal to the view for occlusion-culling for
terrain-like scenes. Section 5 presents epipolar geometry and its use to perform view-warping without depth
comparison. Section 6 discusses the computation of soft shadow using convolution, while section 7 deals with
shadow-coherence in image-space.

1 Projection methods

1.1 Shadow projection on a sphere

Bouknight and Kelly [BK70] propose an optimization to compute shadows during a scan-line process as pre-
sented in section 6 of chapter 4. Their method avoids the need to intersect the wedge defined by the current
span and the light source with all polygons of the scene.

As apreprocess, the polygons of the scene are projected onto a sphere centered at the point light source. A
polygon can cast shadows on another polygon only if their projections overlap. They use bounding-box tests
to speed-up the process.

Slater [S1a92] proposes asimilar schemeto optimize the classification of polygonsin shadow volume BSPs.
He uses a discretized version of a cube centered on the source. Each tile (pixel) of the cube stores the polygon
which project onit. This speeds up the determination of overlapping polygons on the cube. This shadow tiling
isvery similar to the light-buffer and to the hemicube which we will present in section 2.
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1.2 Arealight sources

Chrysanthou and Slater [CS97] have extended this technique to handle area light sources. In the methods
presented above, the size of the sphere or cube does not matter. Thisis not the case of the extended method: a
cube is taken which encloses the scene.

For each polygon, the projection used for point light sources becomes the intersection of its penumbra
volume with the cube. The polygonswith which it interacts are those which project on the same tiles.

1.3 Extended projections

The extended projection method proposed in chapter 5 of [Dur99] can be seen as an extension of the latter
technique to perform offline occlusion culling from a volumetric cell (it can aso be seen as an extension
of Greene’s hierarchical z-buffer surveyed in section 3). The occluders and occludees are projected onto a
projection plane using extended projection operators. The extended projection of an occluder istheintersection
of its views from all the viewpoints inside the cell. The extended projection of an occludee is the union of its
views (similar to the penumbra used by Chrysanthou et al.).

If the extended projection of an occludeeis in the cumulative extended projection of some occluders (and
if it lies behind them), then it is ensured that it is hidden from any point inside the cell. This method handles
occluder fusion.

2 Advanced z-buffer techniques

The versatility and robustness of the z-buffer together with efficient hardware implementations have inspired
many visibility computation and accel eration schemes?. The use of the frame-buffer as a computational model
has been formalized by Fournier and Fussel [FF88].

2.1 Shadow maps

As evoked in section 1.2 of chapter 2, hard shadow computation can be seen as the computation of the points
which are visible from a point-light source. It is no surprise then that the z-buffer was used in this context.

image

shadow map

camera light

source

Figure 6.1: Shadow map principle. A shadow map is computed from the point of view of the light source
(z-values are represented as grey levels). Then each point in the final image is tested for shadow occlusion by
projecting it back in the shadow map (gallion model courtesy of Viewpoint Datalab).

A two pass method is used. Animage s first computed from the source using a z-buffer. The z values of
the closest points are stored in a depth map called shadow map. Then, as the final image is rendered, deciding

1Unexpected applications of the z-buffer have also been proposed such as 3D motion planning [LRDG90], Voronoi diagram computa-
tion [Hae90, ICK*99] or collision detection [MOK95].
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if apoint isin shadow or not consists in projecting it back to the shadow map and comparing its distance to
the stored z value (similarly to shadow rays, using the depth map as a query data-structure). The shadow map
process is illustrated in Fig 6.1. Shadow maps were developed by Williams [Wil 78] and have the advantage
of being able to treat any geometry which can be handled by a z-buffer. Discussions of improvements can be
found in [Gra92, Woo092].

The main drawback of shadow masksis aliasing. Standard filtering can not be applied, because averaging
depth values makes no sense in this context. This problem was addressed by Reeveset al. [RSC87]. Averaging
the depth values of the neighbouring pixelsin the shadow map before performing the depth comparison would
make no sense. They thus first compare the depth value with that of the neighbouring pixels, then they compute
the average of the binary results. Had-oc soft shadows are obtained with this filtering, but the size of the
penumbrais arbitrary and constant. See also section 6 for soft computation using an image-space shadow-map.

Soft shadow effects can be also achieved by sampling an extended light source with point light sources and
averaging the contributions[HA90, HH97, Kel97]. See also [Zat93] for a use of shadow maps for high quality
shadows in radiosity lighting simulation.

Shadow maps now seem to predominatein production. Ray tracing and shadow raysare used only when the
artifacts caused by shadow maps are too noticeable. A hardware implementation of shadow mapsis now avail-
able on some machines which allow the comparison of a texture value with a texture coordinate [SKvW +92]2.

Zhang [Zha984] has proposed an inverse scheme in which the pixels of the shadow map are projected in
the image. His approach consists in warping the view from the light source into the final view using the view
warping technique presented in section 1.7 of chapter 2. This is similar in spirit to Atherton and Weiler’s
method presented in section 2.1 of chapter 4: the view from the source is added to the scene database.

2.2 Ray-tracing optimization using item buffers

A z-buffer can be used to speed up ray-tracing computations. Weghorst et al. [WHG84] use a z-buffer from
the viewpoint to speed up the computation of primary rays. An identifier of the objectsis stored for each pixel
(for example each object is assigned a unique color) in aso called item buffer. Then for each pixel, the primary
ray isintersected only with the corresponding object. See also [Sun92].

Haines and Greenberg [HG86] proposeasimilar schemefor shadow rays. They place alight buffer centered
on each point light source. It consists of 6 item buffers forming a cube (Fig. 6.2(a)). The objects of the scene
are projected onto this buffer, but no depth test is performed, all objects projecting on a pixel are stored. Object
lists are sorted according to their distance to the point light source. Shadow rays are then intersected only with
the corresponding objects, starting with the closest to the source.

Poulin and Amanatides [PA91] have extended the light-buffer to linear light sources. This latter method
is afirst step towards line-space acceleration techniques that we present in section 1.4 of chapter 8, since it
precomputes all objectsintersected by the rays emanating from the light source.

Salesin and Stolfi [SS89, SS90] have extended the item buffer concept for ray-tracing acceleration. Their
ZZ-huffer performs anti-aliasing through the use of an A-buffer like scheme. They detect completely covered
pixels, avoiding the need for a subsampling of that pixel. They aso sort the objects projecting on a non -
simple pixel by their depth intervals. The ray-object intersection can thus be terminated earlier as soon as an
intersection is found.

ZZ buffers can be used for primary rays and shadow rays. Depth of field and penumbra effects can also be
obtained with a slightly modified ZZ-buffer.

In acommercial products such as Maya from Alias Wavefront [May99], an A-buffer and a ray-tracer are
combined. The A-buffer is used to determine the visible objects, and ray-tracing is used only for pixels where
high quality refraction or reflection is required, or if the shadow maps cause too many artifacts.

2A shadow map is computed from the point light source and copied into texture memory. The texture coordinate matrix is set to the
perspective matrix from the light source. Theinitial u,v,w texture coordinate of avertex are set to its 3D coordinates. After transformation,
w represents the distance to the light source. It is compared against the texture value at u, v, which encodes the depth of the closest object.
The key feature isthe possibility to draw a pixel only if the value of wis smaller than the texture value at u,v.See [MBGN98] section 9.4.3.
for implementation details.
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Figure6.2: (a) Light buffer. (b) Form factor computation using the hemicube. Five z-buffers are placed around
the center of patch A. All form factors between A and the other patches are evaluated simultaneously, and
occlusion of C by B is taken into account.

2.3 The hemicube

Recall that form factors are used in radiosity lighting simulations to model the proportion of light leaving a
patch which arrives at another. The first method developed to estimate visibility for form factor computations
was the hemicube which uses five item-buffer images from the center of a patch as shown in Fig. 6.2(b). The
form factor between one patch and all the othersis evaluated simultaneously by counting the number of pixels
covered by each patch.

The hemicube was introduced by Cohen et al. [CG85] and has long been the standard method for radiosity
computations. However, asfor all item buffer methods, sampling and aliasing problemsare its main drawbacks.
In section 2.2 of chapter 4 and section 4 of chapter 8 we present some solutions to these problems.

Sillion and Puech [SP89] have proposed an alternative to the hemicube which uses only one plane parallel
the patch (the plane is however not uniformly sampled: A Warnock subdivision scheme is used.

Pietrek [Pie93] describe an anti-aliased version of the hemicube using a heuristic based on the variation
between a pixel and its neighbours. See also [Mey90, BRW89]. Alonso and Holzschuch [AH97] present
similar ideas as well as a deep discussion of the efficient access to the graphics hardware resources.

2.4 Sound occlusion and non-binary visibility

The wavelengths involved in sound propagation make it unrealistic to neglect diffraction phenomena. Simple
binary visibility computed using ray-object intersection is far from accurate.

Tsingosand Gascuel [TG97d] use Fresnel ellipsoids and the graphi cs hardware to compute semi-quantitative
visibility values between a sound source and a microphone. Sound does not propagate through lines; Fresnel
ellipsoids describe the region of space in which most of the sound propagation occurs. Their size depends on
the sound frequency considered. Sound attenuation can be modeled as the amount of occluders present in the
Fresnel ellipsoid. They use the graphics hardware to compute a view from the microphone in the direction of
the source, and count the number of occluded pixels.

They also use such aview to compute diffraction patterns on an extended receiver such as aplane[TG97h].
One view is computed from the source, and then for each point on the receiver, and integral is computed using
the z values of the view. The contribution of each pixel to diffraction is then evaluated (see Fig. 6.3 for an
example).
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Figure 6.3: Non binary visibility for sound propagation. The diffraction by the spheres of the sound emitted by
the source causes the diffraction pattern on the plane. (a) Geometry of the scene. (b) z-buffer from the source.
(c) Close up of the diffraction pattern of the plane. (Courtesy of Nicolas Tsingos, IMAGIS-GRAVIR).

3 Hierarchical z-buffer

The z-buffer is simple and robust, however it has linear cost in the number of objects. With the ever increasing
size of scenesto display, occlusion culling techniques have been devel oped to avoid the cost incurred by objects
which are not visible.

Greene et al. [GKM93, Gre96] propose a hierarchical version of the z-buffer to quickly reject parts of the
scene which are hidden. The scene is partitioned to an octree, and cells of the octree are rendered from front to
back (the reverse of the original painter algorithm, see e.g. [FYvDFH90, Rog97] or section 4 of chapter 4) to be
able to detect the occlusion of back objects by frontmost ones. Before it is rendered, each cell of the octreeis
tested for occlusion against the current z values. If the cell is occluded, it is rejected, otherwise its children are
treated recursively.

The z-buffer is organised in a pyramid to avoid to test all the pixels of the cell projection. Fig. 6.4 shows
the principle of the hierarchical z-buffer.

A
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hierarchical z-buffer scene octree

Figure 6.4: Hierarchical z-buffer.

The hierarchical z-buffer however requires many z-value queries to test the projection of cells and the
maintenance of the z-pyramid; this can not be performed efficiently on today’s graphics hardware. Zhang et
al. [ZMHH97, Zha98h] have presented a two pass version of the hierarchical z-buffer which they have suc-
cessfully implemented using available graphics hardware. They first render a subset of close and big objects
called occluders, then read the frame buffer and build a so-called hierarchical occlusion map against which they
test the bounding boxes of the objects of the scene. This method has been integrated in a massive model ren-
dering system system [ACW " 99] in combination with geometric simplification and image-based acceleration
techniques.

The strength of these methods is that they consider general occluders and handle occluder fusion, i.e. the
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occlusion by acombination of different objects.

The library Open GL Optimizer from Silicon Graphics proposes a form of screen space occlusion culling
which seems similar to that described by Zhang et al. Some authors [BMT98] also propose a modification to
the current graphics hardware to have access to z-test information for efficient occlusion culling.

4 Occluder shadow footprints

Many 3D scenes have in fact only two and a half dimensions. Such a sceneis called aterrain, i.e., afunction
z= f(x,y). Wonkaand Schmalstieg [WS99] exploit this characteristic to compute occlusions with respect to a
point using a z-buffer with atop view of a scene.
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Figure6.5: Occluder shadow footprints. A projection from aboveis used to detect occlusion. Objectsare hidden
if they are bel ow the occluder shadows. Thefootprints (with height) of the occluded regions are rasterized using
az-buffer. Depth isrepresented as grey levels. Note the gradient in the footprint due to the slope of the wedge.

Consider the situation depicted in Fig. 6.5 (side view). They call the part of the scene hidden by the
occluder from the viewpoint the occluder shadow (as if the viewpoint were a light source). This occluder
shadow is delimited by wedges. The projection of such a wedge on the floor is called the footprint, and an
occludee is hidden by the occluder if it lies on the shadow footprint and if it is below the edge.

The z-buffer is used to scan-convert and store the height of the shadow footprints, using an orthographic
top view (see Fig. 6.5). An object is hidden if its projection from above is on a shadow footprint and if it is
below the shadow wedgesi.g, if it is occluded by the footprintsin the top view.

5 Epipolar rendering

Epipolar geometry has been developed in computer vision for stereo matching (see e.g. [Fau93]). Assume that
the geometry of two camerasis known. Consider a point A in the first image (see Fig. 6.6). The possible point
of the 3D scene must lie on the line L going through A and viewpoint 1. The projection of the corresponding
point of the scene on the second image is constrained by the epipolar geometry: it must be onlineL, whichis
the projection of L onimage 2. The search for a correspondence can thus be restricted from a 2D search over
the entireimage to a 1D search on the epipolar line.

Mc Millan and Bishop [MB95] have taken advantage of the epipolar geometry for view warping. Consider
thewarping fromimage 2 toimage 1 (image 2 istheinitial image, and we want to obtainimage 1 by reprojecting
the points of image 2). We want to decide which point(s) is reprojected on A. These are necessarily points on
the epipolar line L. However, many points may project on A; only the closest hasto be displayed. This can be
achieved without actual depth comparison, by warping the points of the epipolar line L, in the order shown by
the thick arrow, that is, from the farthest to the closest. If more than one point projects on A, the closest will
overwrite the others. See also section 1.5 of chapter 8 for aline-space use of epipolar geometry.
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Figure 6.6: Epipolar geometry. L is the set of all points of the scene possibly projecting on A. L/, is the
projection on image 2. For a warping from image 2 to image 1, points of image 2 have to be reprojected to
image 1 in the order depicted by the arrows for correct occlusion.

6 Soft shadows using convolution
Soler and Sillion [SS98a, Sol98] have developed efficient soft shadow computations based on the use of con-

volutions. Some of theideas are also present in a paper by Max [Max91]. A simplification could be to see their
method as a “wise” blurring of shadow maps depending on the shape of the light source.

source

blocker
-
@ (b) (c)

Figure 6.7: Soft shadows computation using convolution. (a) Geometry of the scene. (b) Projection on a
parallel approximate geometry. (c) The shadow is the convolution of the projection of the blockers with the
inverse image of the source.

Consider an extended light source, a receiver and some blockers as shown in Fig. 6.7(a). This geometry is
first projected onto three paralel planes (Fig. 6.7(b)). The shadow computation for this approximate geometry
is equivalent to a convolution: the projection of the blocker(s) is convolved with the inverse projection of the
light source (see Fig. 6.7(c)). The shadow map obtained is then projected onto the receiver (thisis not necessary
in our figures since the receiver is parallel to the approximate geometry).

In the general case, the shadows obtained are not exact: the relative sizes of umbra and penumbra are not
correct. They are however not constant if the receiver is not parallel to the approximate geometry. The results
are very convincing (see Fig. 6.8).

For higher quality, the blockers can be grouped according to their distance to the source. A convolution
is performed for each group of blockers. The results then have to be combined; Unfortunately the correlation
between the occlusions of blockers belonging to different groupsis lost (see also [Gra92] for a discussion of
correlation problemsfor visibility and antialiasing).

This method has also been used in aglobal simulation system based on radiosity [SS98b].

7 Shadow coherence in image-space

Haines and Greenberg [HG86] propose a simple schemeto accel erate shadow computationin ray-tracing. Their
shadow cache simply stores a pointer to the object which caused a shadow on the previous pixel. Because of
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Figure 6.8: Soft shadows computed using convolutions (image courtesy of Cyril Soler, IMAGIS-GRAVIR)

coherence, it is very likely that this object will continue to cast a shadow on the following pixels.

Pearce and Jevans [PJ91] extend this idea to secondary shadow rays. Because of reflection and refrac-
tion, many shadow rays can be cast for each pixel. They thus store a tree of pointers to shadowing objects
corresponding to the secondary ray-tree.

Worley [Wor97] pushes the idea a hit further for efficient soft shadow computation. He first computes
simple hard shadows using one shadow-ray per pixel. He notes that pixels where shadow status changes are
certainly in penumbra, and so are their neighbours. He thus “spreads” soft shadows, using more shadow rays
for these pixels. The spreading operation stops when pixelsin umbraor completely lit are encountered.

Hart et al [HDG99] perform a similar image-space floodfill to compute a blocker map: for each pixel,
the objects casting shadows on the visible point are stored. They are determined using alow number of rays
per pixel, but due to the image-space flood-fill the probability to miss blockersis very low. They then use an
analytic clipping of the source by the blockersto compute the illumination of each pixel.
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Viewpoint-Space

Onnevoit bien qu’avec le cceur. L’essentiel estinvisible
pour les yeux.

Antoine de Saint-EXUPERY, Le Petit Prince

IEWPOINT-SPACE methods characterize viewpoints with respect to some visibility property.

We first present the aspect graph which partitions viewpoint space according to the qualitative

aspect of views. It isafundamental visibility data-structuresinceit encodesall possibleviews

of a scene. Section 2 presents some methods which are very similar to the aspect graph.

Section 3 deals with the optimization of a viewpoint or set of viewpoints to satisfy some
visihility criterion. Finally section 4 presents two methods which use visual eventsto determine the viewpoints
at which visibility changes occur.

1 Aspect graph

As we have seen in section 2 of chapter 2 and Fig. 2.8 page 14, model-based object recognition requires a
viewer-centered representation which encodes al the possible views of an object. This has led Koenderink
and Van Doorn [Kv76, Kv79] to develop the visual potential of an object which is now more widely known
as the aspect graph (other terminology are also used in the literature such as view graph, characteristic views,
principal views, viewing data, view classes or stable views).

Aspect graph approaches consist in partitioning viewpoint space into cells where the view of an object are
qualitatively invariant. The aspect graph is defined as follows:

e Each node represents a general view or aspect as seen form a connected cell of viewpoint space.
e Each arc represents avisual event, that is, atransition between two neighbouring general views.

The aspect graph is the dua graph of the partition of viewpoint space into cells of constant aspect. This
partition is often named viewing data or viewpoint space partition. Theterminology aspect graph and viewpoint
space partition are often used interchangeably although they refer to dual concepts.
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Even though all authors agree on the general definition, the actual meaning of general view and visual event
varies. First approximate approaches have considered the set of visible features as defining aview. However for
exact approaches the image structure graph has rapidly imposed itself. It is the graph formed by the occluding
contour or visible edges of the object. This graph may be |abeled with the features of the object.

It isimportant to understand that the definition of the aspect graph is very general and that any definition of
the viewing space and aspect can be exchanged. This makes the aspect graph concept a very versatile tool as
wewill seein section 2.

Aspect graphs have inspired a vast amount of work and it is beyond the scope of this survey to review all
the literature in this field. We refer the reader to the survey by Eggert et al. [EBD92] or to the articles we
cite and the references therein. Approaches have usually been classified according to the viewpoint space used
(perspective or orthographic) and by the class of objects considered. We will follow the latter, reviewing the
methods devoted to polyhedrabefore those related to smooth objects. But first of al, we survey the approximate
method which use a discretization of viewpoint space.

1.1 Approximate aspect graph

Early aspect graph approaches have used a quasi uniform tessellation of the viewing sphere for orthographic
projection. It can be obtained through the subdivision of an initial icosahedron as shown by Fig. 7.1. Sample
views are computed from the vertices of this tessellation (the typical number of sample views is 2000). They
are then compared, and similar views are merged. Very often, the definition of the aspect is the set of visible
features (face, edge, vertex) and not their adjacencies as it is usually the case for exact aspect graphs This
approach is very popular because of its simplicity and robustness, which explainsthat it has been followed by
many researchers e.g. [Goa83, FD84, HK85]. We will see that most of the recognition systems using aspect
graphs which have been implemented use approximate aspect graphs.

Figure 7.1: Quasi uniform subdivision of the viewing sphere starting with an icosahedron.

We will see in section 3.2 that this quasi uniform sampling scheme has also been applied for viewpoint
optimization problems.

A similar approach has been developed for perspective viewpoint space using voxels [WF0].

The drawback of approximate approaches is that the sampling density is hard to set, and approximate
approach may miss some important views, which has led some researchers to devel op exact methods.

1.2 Convex polyhedra

In the case of convex polyhedra, the only visual events are caused by viewpoints tangent to faces. See Fig.
7.2 where the viewpoint partition and aspect graph of a cube are represented. For orthographic projection, the
directions of faces generate 8 regions on the viewing sphere, while for perspective viewpoint space, the 6 faces
of the cube induce 26 regions.

The computation of the visual events only is not sufficient. Their arrangement must be computed, that is,
the decomposition of viewpoint space into cells, which implies the computation of the intersections between
the events to obtain the segments of events which form the boundaries of the cells. Recall that the arrangement
of n lines (or well-behaved curves) in 2D has O(n?) cells. In 3D the arrangement of n planes has complexity
O(n®) in size [dBvKOS97, O’R94, Ede87, BY 98].

The first agorithmsto build the aspect graph of 3D objects have dealt with convex polyhedra under ortho-
graphic [PD86] and perspective [SB90, Wat88] projection.
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Figure 7.2. Aspect graph of a convex cube. (@) Initia cube with numbered faces. (b) and (c) Partition of
the viewpoint space for perspective and orthographic projection with some representative aspects. (d) and
(e) Corresponding aspect graphs. Some aspects are present in perspective projection but not in orthographic
projection, for example when only two faces are visible. Note also that the cells of the perspective viewpoint
space partition have infinite extent.

1.3 General polyhedra

General polyhedra are more involved because they generate edge-vertex and triple-edge events that we have
presented in chapter 3. Since the number of triple-edge events can be as high as O(n %), the size of the aspect
graph of ageneral polygonis O(n®) for orthographic projection (since the viewing sphereis two dimensional),
and O(n®) for perspective projection for which viewpoint space is three-dimensional. However these bounds
may be very pessimistic. Unfortunately the lack of available data impede a redlistic analysis of the actual
complexity. Note also that we do not count here the size of the representative views of aspects, which can be
O(n?) each, inducing asize O(n®) for the orthographic case and O(n*?!) for the perspective case.

The cells of the aspect graph of ageneral polyhedron are not necessary convex. Partly because of the EEE
events, but also because of the EV events. Thisis different from the 2D case where al cells are convex because
in 2D visual events are line segments.

We detail here the algorithms proposed by Gigus and his co-authors [GM90, GCS91] to build the aspect
graph of general polyhedraunder orthographic projection.

In the first method [GM90], potential visual events are considered for each face, edge-vertex pair and triple
of edges. At this step, occlusion is not taken into account: objects lying between the generators of the events
are considered transparent. These potential events are projected on the viewing sphere, and the arrangement is
built using a plane sweep.

However, some boundaries of the resulting partition may correspond to false visual event because of occlu-
sion. For example, an object may lie between the edge and vertex of an EV event as shown in Fig. 7.3. Each
segment of cell boundary (that is, each portion of visual event) has to be tested for occlusion. False segment
are discarded, and the cells are merged.

Gigus Canny and Seidel [GCS91] propose to cope with the problem of false events before the arrangement
is constructed. They compute the intersection of all the event with the object in object space as shown in Fig.
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actual event

(@ (b)

Figure 7.3: False event (“transparent” event). Object R occludes vertex V from edge E, thus only a portion
of the potential visual event corresponds to an actua visual event. (@) In object space. (b) In orthographic
viewpoint space.

7.3(a), and only the unoccluded portion is used for the construction of the arrangement.

They aso propose to store and compute the representative view efficiently. They store only one aspect for
an arbitrary seed cell. Then all other views can be retrieved by walking along the aspect graph and updating
thisinitial view at each visual event.

(b)

Figure 7.4: Aspect graph of a L-shaped polyhedron under orthographic projection (adapted from [GM9Q]). (a)
Partition of the viewing sphere and representative views. (b) Aspect graph.

These a gorithms have however not been implemented to our knowledge. Fig. 7.4 shows the partition of
the viewing sphere and the aspect graph of a L-shaped polyhedron under orthographic transform.

Similar construction algorithms have been proposed by Stewman and Bowyer [ SB88] and Stewman [Ste91]
who also deals with perspective projection.

We will seein section 1.1 of chapter 8 that Plantingaand Dyer [PD90] have proposed a method to build the
aspect graph of general polyhedra which uses an intermediate line space data-structure to compute the visual
events.
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1.4 Curved objects

Methods to deal with curved objects were not developed till later. Seales and Dyer [SD92] have proposed the
use of a polygona approximation of curved objects with polyhedra, and have restricted the visual events to
those involving the silhouette edges. For example, an edge-vertex event EV will be considered only if E isa
silhouette edge from V (as thisis the case in Fig. 3.3 page 26). Thisis one example of the versatility of the
aspect graph definition: here the definition of the aspect depends only on the silhouette.

Kriegman and Ponce [KP90] and Eggert and Bowyer [EB90] have devel oped methods to compute aspect
graphs of solids of revolution under orthographic projection, while Eggert [Egg91] also dealswith perspective
viewpoint space. Objects of revolution are easier to handle because of their rotational symmetry. The problem
reducesto agreat circle on the viewing sphere or to one plane going through the axis of rotation in perspective
viewpoint space. The rest of the viewing data can then be deduced by rotational symmetry. Eggert et al.
[EB90, Egg91] report an implementation of their method.

The case of general curved object requires the use of the catalogue of singularities as proposed by Callahan
and Weiss [CW85]; they however developed no algorithm.

Petitjean and his co-authors [PPK 92, Pet92] have presented an agorithm to compute the aspect graph of
smooth objects bounded by arbitrary smooth algebraic surface under orthographic projection. They use the
catalogue of singularities of Kergosien [Ker81]. There approachis similar to that of Gigusand Malik [GM9Q].
They first trace the visual events of the “transparent” object (occlusion is not taken into account) to build a
partition of the viewing sphere. They then have to discard the false (also called occluded) events and merge
the corresponding cells. Occlusion is tested using ray-casting at the center of the boundary. To trace the visua
event, they derive their equation using a computer algebra system and powerful numerical techniques. The
degree of the involved algebraic systemsis very large, reaching millions for an object described by an equation
of degree 10. This agorithm has neverthel ess been implemented and an example of result isshownin Fig. 7.5.

Figure 7.5 Partition of orthographic viewpoint space for a dimple object with representative aspects. (adapted
from [PPK92]).

Similar methods have been developed by Sripradisvarakul and Jain [SJ89], Ponce and Kriegman [PK90]
while Rieger [Ri€92, Rie93] proposesthe use of symbolic computation and cylindrical algebraic decomposition
[Col75] (for agood introduction to algebraic decomposition see the book by Latombe [Lat91] p. 226).

Chen and Freeman [CF91b] have proposed a method to handle quadric surfaces under perspective projec-
tion. They use a sequence of growing concentric spheres centered on the object. They trace the visual events
on each sphere and compute for which radius the aspects change.

Finally PetitJean has studied the enumerative properties of aspect graphs of smooth and piecewise smooth
objects[Pet95, Pet96]. In particular, he gives bounds on the number of topologically distinct views of an object
using involved mathematical tools.
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1.5 Use of the aspect graph

The motivation of aspect graph research was model -based object recognition. The aspect graph providesinfor-
mations on all the possible views of an object. The use of this information to recognise an object and its pose
are however far from straightforward, one reason being the huge number of views. Once the view of an object
has been acquired from a camera and its features extracted, those features can not be compared to all possible
views of al objectsin a database: indexing schemes are required. A popular criterion is the number of visible
features (face, edge, vertex) [ESB95].

The aspect graph is then often used to build offline a strategy tree [HH89] or an inter pretation tree [Mun95].
At each node of an interpretation tree corresponds a choice of correspondence, which then recursively leads to
arestricted set of possible interpretation. For exampleif at a node of the tree we suppose that a feature of the
image corresponds to a given feature A of a model, this may exclude the possibility of another feature B to be
present because feature A and B are never visible together.

The information of the viewing space partition can then be used during pose estimation to restrict the
possible set of viewpoint [1ke87, ESB95]. If the observation is ambiguous, Hutchinson and Kak [HK89] and
Gremban and Ikeuchi [GI87] aso use the information encoded in the aspect graph to derive a new relevant
viewpoint from which the object and pose can be discriminated.

Dickinson et al. [DPR92] have used the aspect for object composed of elementary objects which they call
geons. They use an aspect graph for each geon and then use structural information on the assembly of geonsto
recognise the object.

However the aspect graph has not yet really imposed itself for object recognition. The reasons seem to
be the difficulty of robust implementation of exact methods, huge size of the data-structure and the lack of
obvious and efficient indexing scheme. One major drawback of the exact aspect graphsis that they capture all
the possible views, whatever their likelihood or significance. The need of anotion “importance” or scale of the
featuresis critical, which we will discussin section 1 of chapter 9.

For agood discussion of the pros and cons of the aspect graph, see the report by Faugeraset al. [FMA +92].

Applications of the aspect graph for rapid view computation have also been proposed since al possible
views have been precomputed [PDS90, Pla93]. However, the only implementation reported restricted the
viewpoint movement to a rotation around one axis.

Morerecently Gu and his coauthors[ GGH *99] have devel oped a data-structure which they call asilhouette
tree which isin fact an aspect graph for which the aspect is defined only by the exterior silhouette. It is built
using a sampling and merging approach on the viewing sphere. It is used to obtain images with a very fine
silhouette even if avery simplified version of the object is rendered.

Pellegrini [Pel99] has also used a decomposition of the space of direction similar to the aspect graph to
compute the form factor between two unoccluded triangles. The sphere S is decomposed into regions where
the projection of the two triangles has the same topology. This allows an efficient integration because no
discontinuity of the integration kernel occur in these regions.

A somehow related issue is the choice of agood viewpoint for the view of a3D graph. Visua intersections
should be avoided. Thesein fact correspond to EV or EEE events. Some authors [BGRT 95, HW98, EHW97]
thus propose some methods which avoid points of the viewing sphere where such events project.

2 Other viewpoint-space partitioning methods

The following methods exhibit a typical aspect graph philosophy even though they use a different terminol ogy.
They subdivide the space of viewpointsinto cellswhere aview is qualitatively invariant.

2.1 Robot Localisation

Deducing the position of a mobile robot from aview is exactly the same problem as determining the pose of an
object. Thedifferencesbeing that arange sensor is usually used and that the problem is mostly two dimensional
since mobile robots are usually naturally constrained on a plane.

Methods have thus been proposed which subdivide the plane into cells where the set of visible walls is
constant [GMR95, SON96, TA96]. See Fig. 7.6. Visual events occur when the viewpoint is aligned with a
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wall segments or along aline going through two vertices. Indexing is usually done using the number of visible
walls.

Figure 7.6: Robot self-localization. Partition of asceneinto cells of structurally invariant views by visual events
(dashed).

Guibas and his co-authors [GMR95] also propose to index the aspects in a multidimensional space. To
summarize, they associate to a view with m visible vertices a vector of 2m dimensions depending on the
coordinates of the vertices. They then use standard multidimensional search methods [dBvKOS97].

2.2 Visibility based pursuit-evasion

The problem of pursuit-evasion presented in section 3 and Fig. 2.14 page 18 can aso be solved using an
aspect-graph-like structure. Remember that the robot has to “clean” a scene by checking if an intruder is
present. “Contaminated” regions are those where the intruder can hide. We present here the solution devel oped
by Lavaleet al. [LLG"97, GLL™97, GLLL9g].

Yo
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Figure 7.7: Pursuit-Evasion strategy. (@) The contaminated region can be cleaned only if the visual event is
crossed. The status of the neighbouring regionsis coded on the gap edges. (b) The robot has moved to a second
cell, cleaning aregion. (c) Part of the graph of possible states (upper node correspond to cell in () while lower
nodes correspond to the cell in (b)). In thick we represent the goal states and the move from (@) to (b).

Consider the situation in Fig. 7.7(a). The view from the robot isin dark grey. The contaminated region can
be cleaned only when the indicated visual event is crossed asin Fig. 7.7(b).

The scene is partitioned by the visibility event with the same partition as for robot localization (see Fig.
7.6). For each cell of the partition, the structure of the view polygonisinvariant, and in particular the gap edges
(edges of the view which are not on the boundary of the scene). The status of the neighbouring regionsis coded
on these gap edges: 0 indicates a contaminated region while 1 indicates a cleaned one.

The state of the robot is thus coded by its current cell and the status of the corresponding gap edges. In
Fig 7.7(a) the robot status is (1,0), while in (b) it is (1). Solving the pursuit problem consists in finding the
succession of states of the robot which end at a state where all gap edgesare at 1. A graphis created with one
node for each state (that means 2™ states for a cell with m edges). Edges of the graph correspond to possible
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transition. A transition is possible only to neighbouring cells, but not to al corresponding states. Fig. 7.7
represents a portion of this graph.

The solution is then computed using a standard Dijkstra search. See Fig. 2.14 page 18 for an example.
Similar methods have a so been proposed for curved environments[LH99].

2.3 Discontinuity meshing with backprojections

We now turn to the problem of soft shadow computation in polygonal environments. Recall that the penumbra
region corresponds to zones where only a part of an extended light source is visible. Complete discontinuity
meshing subdivides the scene polygons into regions where the topology of the visible part of the source is
constant. In this regionstheillumination varies smoothly, and at the region boundary thereis aC 2 discontinuity.

Moreover a data-structure called backprojection encodes the topology of the visible part of the source as
represented in Fig. 7.8(b) and 7.9(b). Discontinuity meshing is an aspect graph method where the aspect is
defined by the visible part of the source, and where viewpoint space is the polygons of the scene.

source E

A discontinuity
surface

@ (b)

Figure 7.8: Complete discontinuity meshing with backprojections. (a) Example of an EV event intersecting the
source. (b) Inthick backprojection fromV (structure of the visible part of the source)

sou% £o

@ (b)

Figure 7.9: Discontinuity meshing. () Example of an EEE event intersecting the source. (b) In thick backpro-
jection from apoint on Ep (structure of the visible part of the source)

Indeed the method developed and implemented by Drettakis and Fiume [DF94] is the equivalent of Gigus
Canny and Seidel’s algorithm [GCS91] presented in the previous section. Visual events are the EV and EEE
event with one generator on the source or which intersect the source (Fig. 7.8(a) and 7.9(a)). An efficient
space subdivision acceleration is used to speed up the enumeration of potential visual events. For each vertex
generator VV an extended pyramid is build with the light source, and only the generatorslying inside this volume
are considered. Space subdivision is used to accelerate this test. A similar scheme is used for edges. Space
subdivisionisalso used to speed-up the discontinuity surface-object intersections. See Fig. 7.10 for an example
of shadows and discontinuity mesh.
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Figure 7.10. Complete discontinuity mesh of a 1000 polygons scene computed with Drettakis and Fiume’s
algorithm [DF94].

This method has been used for global illumination simulation using radiosity [DS96]. Both the mesh and
form-factor problem are aleviated by this approach, since the backprojection allows for efficient point-to-area
form factor computation (portion of the light leaving the light source arriving at a point). The experiments
exhibited show that both the quality of the induced mesh and the precision of the form-factor computation are
crucia for high quality shadow rendering.

2.4 Output-sensitive discontinuity meshing

Stewart and Ghali [SG94] have proposed an output-sensitive method to build a complete discontinuity mesh.
They use asimilar discontinuity surface-object intersection, but their enumeration of the discontinuity surfaces
isdifferent.

It is based on the fact that a vertex V can generate a visual event with an edge E only if E lies on the
boundary of the visible part of the source as seen fromV (see Fig. 7.8). A similar condition arises for EEE
events: the two edges closest to the source must belong to the backprojection of some part of the third edge,
and must be adjacent in this backprojection as shown in Fig. 7.9.

They use an update of the backprojections at visual events. They note that a visual event has effect only
on the parts of scene which are farther from the source than its generators. They thus use a sweep with planes
parallel to the source. Backprojections are propagated along the edges and vertices of the scene, with an update
at each edge-visua event intersection.

Backprojection have however to be computed for scratch at each peak vertex, that is, for each polyhedron,
the vertex which is closest to the source. Standard hidden surface removal is used.

The algorithm can be summarized as follows:

e Sort the vertices of the scene according to the distance to the source.
o At peak vertices compute a backprojection and propagate it to the beginning of the edges below.
e At each edge-visual event intersection update the backprojection.

e For each new backprojection cast (intersect) the generated visual event through the scene.

This agorithm has been implemented [SG94] and extended to handle degenerate configuration [ GS96]
which cause some C* discontinuitiesin the illumination function.
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3 Viewpoint optimization

In this section we present methods which attempt to chose a viewpoint or a set of viewpoints to optimize the
visibility of al or some of the features of a scene. The search is here exhaustive, all viewpoints (or a sampling)
aretested. The following section will present some methods which alleviate the need to search the whole space
of viewpoints. Some related results have aready been presented in section 4.5 and 5.5 of chapter 5.

3.1 Artgalleries

We present the most classical results on art gallery problems. The classic art gallery theorem is due to Chvatal
[Chv75] but he exhibited a complex proof. We here present the proof by Fisk [Fis78] which is much simpler.
We are given an art-gallery modeled by a simple (with no holes) 2D polygons.

Theorem: | 3] stationary guards are always sufficient and occasionally necessary to guard a polygonal
art gallery with n vertices.

A I

@ (b)

Figure7.11: Art galery. (8) Thetriangulation of asimple polygonis 3-colored with colors 1, 2 and 3. Color 3is
the less frequent color. Placing aguard at each vertex with color 3 permitsto guard the polygon with less than
L%J guards. (b) Worst-case scene. To guard the second spike, a camerais needed in the grey region. Similar
constraints for all the spikes thusimpose the need of at least | §] guards

The proof relies on the triangulation of the polygon with diagonals (see Fig. 7.11(a)). The vertices of such
a triangulation can always be colored with 3 colors such that no two adjacent vertices share the same color
(Fig. 7.11(a)). Thisimpliesthat any triangle has one vertex of each color. Moreover, each vertex can guard its
adjacent triangles.

Consider the color which colors the minimum number of vertices. The number of corresponding verticesis
lower than L%J , and each triangle has such a vertex. Thus al triangles are guarded by this set of vertices. The
lower bound can be shown with a scene like the one presented in Fig. 7.11(b).

Such a set of guards can be found in O(n) time using a linear time triangulation algorithm by Chazelle
[dBvKOS97]. The problem of finding the minimum number of guards has however been shown NP-hard by
Aggarwal [Aga84] and Lee and Lin [LL86].

For other results see the surveys on the domain [O’R87, She92, Urr98].

3.2 Viewpoint optimization

The methods which have been developed to optimize the placement of sensors or lights are all based on a
sampling approach similar to the approximate aspect graph.

We present here the methods devel oped by Tarbox and Gottschlich [TG95]. Their aim is to optimize the
placement of alaser and a camera (as presented in Fig. 2.12 page 16) to be able to inspect an object whose
pose and geometry are known. The distance of the camera and laser to the object is fixed, viewpoint space is
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thus a viewing sphere even if perspective projection is used. The viewing sphereis tessellated starting with an
icosahedron (Fig. 7.1 page 66). Sample points are distributed over the object. For each viewpoint, the visibility
of each sample point is tested using ray-casting. It is recorded in atwo dimensional array called the viewability
matrix indexed by the viewpoint and sample point. (Infact two matrices are used since the visibility constraints
are not the same for the camera and for the laser.)

The viewability matrix can be seen as a structure in segment space: each entry encodes if the segment
joining a given viewpoint and a given sample point intersects the object.

The set of viewpoints which can see a given feature is called the viewpoint set. For more robustness,
especiadly in case of uncertainties in the pose of the object, the viewpoints of the boundary of a viewpoint set
are discarded, that is, the corresponding entry in the viewability matrix is set to 0. For each sample point, a
difficulty-to-view is computed which depends on the number of viewpoints from which it isvisible.

A set of pairs of positions for the laser and the camera are then searched which resumes to a set-cover
problem. The first strategy they propose is greedy. The objective to maximize is the number of visible sample
points weighted by their difficulty-to-view. Then each new viewpoint tries to optimize the same function
without considering the already seen points until all points are visible from at least one viewpoint.

The second method uses simulated annealing (which is similar to a gradient descend which can “jump”
over local minima). An arbitrary number of viewpoints are randomly placed on the viewing sphere, and their
positions are then perturbated to maximize the number of visible sample points. If no solution is found for n, a
new viewpoint is added and the optimization proceeds. This method provides results with fewer viewpoints.

Similar methods have been proposed for sensor placement [MG95, TUWR97], data acquisition for mobile
robot on a 2D floorplan [GL99] and image-based representation [HLW96]. See Fig. 7.12 for an example of

sensor planning.
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Figure 7.12: Planning of a stereo-sensor to inspect an object (adapted from [TUWR97])

Stuerzlinger [ Stu99] al so proposesasimilar method for the image-based representation of scenes. Hisview-
point space is a horizontal plane at human height. Both objects and viewpoint space are adaptively subdivided
for more efficient results. He then uses simulated annealing to optimize the set of viewpoints.

3.3 Local optimization and target tracking

Yi, Haralick and Shapiro [ Y HS95] optimize the position of both a camera and a light source. The position of
the light should be such that features have maximal contrast in the image observed by the camera. Occlusion
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isnot really handled in their approach since they performed their experiments only on a convex box. However
their problemisin spirit very similar to that of viewpoint optimization for visibility constraints, so we include
it in this survey because occlusion could be very easily included in their optimization metric.

They use noinitia global computation such as the viewability matrix studied in the previous paragraph, but
instead perform alocal search. They perform a gradient descent successively on the light and camera positions.
This method does not necessarily convergeto a global maximum for both positions, but they claim that in their
experiments the function to optimize is well behaved and convex and that satisfactory results are obtained.

Local optimization has also been proposed [LGBL 97, FL98] for the computation of the motion of amobile
robot which has to keep a moving target in view. Assume the motion of the target is only partially predictable
(by bound on the velocity for example). A local optimization is performed in the neighbourhood of the pursuer
position in a game theoretic fashion: the pursuer has to take into account all the possible movements of the
target to decide its position at the next timestep. For a possible pursuer position in free space, al the possible
movements of the target are enumerated and the probability of its being visible is computed. The pursuer
position with the maximum probability of future visibility is chosen. See Fig. 7.13 for an example of pursuit.
The range of the sensor is taken into account.

Figure 7.13: Tracking of a mobile target by an observer. Theregionin which thetargetisvisibleisin light grey
(adapted from [LGBL97]).

They also propose another strategy for a better prediction [LGBL97]. The aim is here to maximize the
escape time of thetarget. For each possible position of the pursuer, its visibility regionis computed (theinverse
of ashadow volume). The distance of the target to the boundary of this visibility region defines the minimum
distance it has to cover to escape the pursuer (see Fig. 7.14).

The extension of these methods to the prediction of many timesteps is unfortunately exponential.

4 Frame-to-frame coherence

In section 1.5 we have presented applications of the aspect graph to updating a view as the observer continu-
ously moves. The cost induced by the aspect graph has prevented the use of these methods. We now present
methods which use the information encoded by visual eventsto update views, but which consider only a subset
of them.

4.1 Coherence constraints

Hubschman and Zucker [HZ81, HZ82] have studied the so-called frame-to-frame coherence for static scenes.
This approach is based on the fact that if the viewpoint moves continuously, two successive images are usually
very similar. They study the occlusions between pairs of convex polyhedra.
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Figure 7.14: Tracking of a mobile target by an observer. The region in light grey is the region in which the
target is visible from the observer. The thick arrow is the shortest path for the target to escape.

They note that a polyhedron will start (or stop) occluding another one only if the viewpoint crosses one of
their separating planes. This correspondsto EV visua events. Moreover this can happen only for silhouette
edges.

Each edge stores all the separating planes with all other polyhedra. These planes become active only when
the edgeis on the silhouette in the current view. Asthe viewpoint crosses one of the active planes, the occlusion
between the two corresponding polyhedrais updated.

This approach however failsto detect occlusions caused by multiple polyhedra (EEE events are not consid-
ered). Furthermore, a plane is active even if both polyhedra are hidden by a closer one, in which case the new
occlusion has no actual effect on the visibility of the scene; Transparent as well as opaque events are consid-
ered. Theselimitations however simplify the approach and makeit tractable. Unfortunately, no implementation
is reported.

4.2 Occlusion culling with visual events

Coorg and Teller [CT96] have extended their shadow-volume based occlusion culling presented in section 4.4
of chapter 5 to take advantage of frame-to-frame coherence.

The visibility of acell of the scene subdivision can change only when a visual event is crossed. For each
large occluder visibility changes can occur only for the neighbourhood of partially visible parts of the scene
(see Fig. 7.15). They thus dynamically maintain the visual events of each occluders and test the viewpoint
against them.

visibility event

Figure 7.15: Occlusion culling and visual events

They explain that this can be seen as alocal linearized version of the aspect graph. Indeed they maintain a
superset of the EV boundaries of the current cell of the perspective aspect graph of the scene.
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CHAPTER 8

Line-Space

Car il ne serafait que de pure lumiere
Puisée au foyer saint des rayons primitifs

Charles BAUDELAIRE, Les Fleurs du Mal

INE-SPACE methods characterize visibility with respect to line-object intersections. The
methodswe present in section 1 partition lines according to the objectsthey intersect. Section
2 introduces graphsin line-space, while section 3 discusses Plicker coordinates, a powerful
parameterization which allows the characterization of visibility using hyperplanesin 5D. Fi-
nally section 4 presents stochastic and probabilistic approachesin line-space.

1 Line-space partition

1.1 The Asp

Plantinga and Dyer [PD87, PD90, Pla88] devised the asp as an auxiliary data-structure to compute the aspect
graph of polygonal objects. The definition of the asp depends on the viewing space considered. We present the
asp for orthographic projection.

A duality is used which maps oriented lines into a 4 dimensional space. Lines are parameterized as pre-
sented in section 1.4 of chapter 3 and Fig. 3.2(a) (page 25) by their direction, denoted by two angles (6, ¢) and
the coordinates (u, v) on an orthogonal plane. The asp for 8 and ¢ constant is thus an orthographic view of the
scene from direction (6,¢). The asp of an object corresponds to the set of lines intersecting this object. See
Fig. 8.1(a) and (b).

Occlusionin aview correspondsto subtraction in the asp: if object A is occluded by object B, then the asp
of B has to be subtracted from the asp of A as shown in Fig. 8.1(c). In fact the intersection of the asp of two
objectsisthe set of lines going through them. Thusif object B isin front of object A, and these lines no longer
“see” A, they have to be removed from the asp of A.

The 1 dimensional boundaries of the asp correspond to the visual events necessary to build the aspect graph.
See Fig. 8.1(c) wherean EV event is represented. Sinceit isonly adlice of the asp, only one line of the event

79



80 CHAPTER 8. LINE-SPACE

@ (b) ©

Figure 8.1: Slice of the asp for ¢ = 0 (adapted from [PD90]). (a) and (b) Asp for onetriangle. The © dlicesin
white correspond to orthographic views of the triangle. When 6 = 90° the view of the triangle is a segment.
(c) Occlusion corresponds to subtraction in asp space. We show the asp of triangle A which is occluded by B.
Note the occlusion in the 6 dlices in white. We also show the outline of the asp of B. Thevisua event EV isa

point in asp asp space.

is present under the form of a point. Since occlusion has been taken into account with subtraction, the asp
contains only the opague events, transparent events do not have to be detected and discarded as in Gigus and
Malik’s method [GM90Q] presented in section 1.3. Unfortunately no full implementation is reported. The size
of the asp can be as high as O(n#), but as already noted, this does not give useful information about its practical
behaviour with standard scenes.

In the case of perspective projection, the asp is defined in the 5 dimensional space of rays. Occlusion is
a so handled with subtractions. Visual events are thus the 2 dimensional boundaries of the asp.

1.2 The 2D Visibility Complex

Pocchiolaand Vegter [PV 96b, PV 96a] have devel oped the 2D visibility complex whichisatopological structure
encoding the visibility of a 2D scene. The ideaisin away similar to the asp to group rays which “see” the
same objects. See [DP95] for a simple video presentation.

The central concept is that of maximal free segments. These are segments of maximal length that do not
intersect the interior of the objects of the scene. More intuitively, a maximal free segment has its extremities
on the boundary of objects, it may be tangent to objects but does not cross them. A line is divided in many
maximal free segment by the objects it intersects. A maximal free segment represents a group of colinear rays
which see the same objects. The manifold of 2D maximal free segmentsistwo-dimensional nearly everywhere,
except at certain branchings corresponding to tangents of the scene. A tangent segment has neighbours on both
sides of the object and below the object (see Fig. 8.2).

Thevisibility complex isthe partition of maximal free segmentsaccordingto the objectsat their extremities.
A face of the visibility complex is bounded by chains of segments tangent to one object (see Fig. 8.3).

Pocchiola and Vegter [PV96b, PV96a] propose optimal output sensitive construction algorithms for the
visibility complex of scenes of smooth objects. Riviere [Riv95, Riv97] has developed an optimal construction
algorithm for polygonal scenes.

The visibility complex implicitly encodes the visibility graph (see section 2 of chapter 5) of the scene: its



1. LINE-SPACE PARTITION 81

&

class of
segments

@ (b)

Figure 8.2: Topology of maximal free segments. (@) In the scene. (b) In a dual space where lines are mapped
into points (the polar parameterization of lineis used).

@ (b)

Figure 8.3: A face of the visibility complex. (a) In the scene. (b) In adual space.

vertices are the bitangents forming the visibility graph.

The 2D visibility complex has been applied to the 2D equivalent of lighting simulation by Orti et al.
[ORDP96, DORP96]. The form factor between two objects corresponds to the face of the complex grouping
the segments between these two objects. The limits of umbraand penumbraare the vertices (bitangents) of the
visibility complex.

1.3 The 3D Visibility Complex

Durand et al. [DDP96, DDP97b] have proposed a generalization of the visibility complex for 3D scenes of
smooth objects and polygons. The space of maximal free segments is then a 4D manifold embedded in 5D
because of the branchings. Faces of the complex are bounded by tangent segments (which have 3 dimensions),
bitangent segments (2 dimension), tritangent segments (1D) and finally vertices are segments tangent to four
objects. If polygons are considered, the 1-faces are the EV and EEE critical lines.

The visibility complex is similar to the asp, but the same structure encodes the information for both per-
spective and orthographic projection. It moreover provides adjacencies between sets of segments.

Langer and Zucker [LZ97] have developed similar topological concepts (particularly the branchings) to
describe the manifold of rays of a 3D scene in a shape-from-shading context.

See a so section 4 where the difference between lines and maximal free segmentsis exploited.

1.4 Ray-classification

Ray classification is dueto Arvo and Kirk [AK87]. The 5 dimensional space of raysis subdivided to accelerate
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ray-tracing computation. A ray is parameterized by its 3D origin and its direction which is encoded on a cube

for ssimpler calculations. Beams in ray-space are defined by an XYZ interval (an axis aligned box) and an
interval on the cube of directions (see Fig. 8.4).

@

4 4

(b) (©
Figure8.4: Ray classification. (a) interval in origin space. (b) interval in direction space. (c) Corresponding beam of rays.
The objects lying in the beam are computed using a cone approximation of the beam. They are also sorted

by depth to the origin box. Each ray belonging to the beam then needs only be intersected with the objects
inside the beam. Theray-intervalsarelazily and recursively constructed. See Fig. 8.5 for an example of result.

Figure 8.5: Image computed using ray classification (courtesy of Jim Arvo and David Kirk, Apollo Computer Inc.)

Speer [Spe92b] describes similar ideas and Kwon et al [KKCS98] improve the memory requirements of
ray-classification, basically by using 4D line space instead of 5D ray-space. This method is however still
memory intensive, and it is not clear that it is much more efficient that 3D regular grids.

The concept of the light buffer presented in section 2.2 of chapter 6 has been adapted for linear and area
light source by Poulin and Amanatides [PA91] and by Tanaka and Takahashi [TT95, TT97]. The rays going
through the source are also classified into beams. The latter paper uses an analytical computation of the visible
part of the light source using the cross-scanline method reviewed in section 6 of chapter 4.

Lamparter et al. [LMW?9O0] discretize the space of rays (using adaptive quadtrees) and rasterize the objects
of the scene using a z-buffer like method. Hinkenjann and Mller [HM96] propose asimilar schemeto classify
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segments using a 6 dimensional space (3 for each extremity of a segment).

1.5 Multidimensional image-based approaches

Recently there has been great interest in both computer vision and computer graphics for the study of the de-
scription of ascene through the use of amultidimensional functionin ray-space. A 3D scene can be completely
described by the light traveling through each point of 3D space in each direction. This defines a 5D function
named the plenoptic function by Adelson and Bergen [AB91].

The plenoptic function describes light transport in a scene, similar data-structures have thus been applied
for global illumination simulation [LF96, LW95, GSHG9§].

Gortler et al. [GGSC96] and Levoy and Hanrahan [LH96] have simplified the plenoptic function by as-
suming that the viewer is outside the convex hull of the scene and that light is not modified while traveling in
free-space. This defines a function in the 4 dimensional space of lines called lumigraph or light-field. This
space is discretized, and a color is kept for each ray. A view can then be extracted very efficiently from any
viewpoint by querying rays in the data structure. This data structure is more compact than the storage of one
view for each 3D point (which defines a 5D function) for the same reason exposed before: aray is relevant for
all the viewpointslying onit. Thereis thus redundancy if light does not vary in free-space.

A two plane parameterization is used both in the light-field [LH96] and lumigraph [GGSC96] approaches
(see Fig 3.2(b) page 25). Xu et al. [GGC97] have studied the form of some image features in this dual
space, obtaining results similar to those obtained in the aspect graph literature [PD90, GCS91]. Camahort et
al. [CLF98] have studied the (non) uniformity of this parameterization and proposed alternatives based on
tessellations of the direction sphere. Their first parameterization is similar to the one depicted in Fig. 3.2(a)
using a direction and an orthogonal plane, while the second uses parameterization line using two points on
a sphere bounding the scene. See section 4 and the book by Santalo [San76] for the problems of measure
and probability on sets of lines. See aso the paper by Halle [Hal 98] where images from multiple viewpoints
(organised on a grid) are rendered simultaneously using epipolar geometry.

Chrysanthou et al. [CCOL98] have adapted the lumigraph methods to handle ray occlusion query. They
re-introduce a fifth dimension to handle colinear rays, and their scheme can be seen as a discretization of the
3D visibility complex.

Wang et al. [WBP98] perform an occlusion culling preprocessing which uses concepts from shaft culling,
ray classification and lumigraph. Using atwo-plane parameterization of raysleaving agiven cell of space, they
recursively subdivide the set of rays until each beam can be classified as blocked by a single object or too small
to be subdivided.

2 Graphs in line-space

In this section we present some methods which build a graph in line space which encodes the visua events of
ascene. As opposed to the previous section, only one and zero dimensional sets of lines are considered.

2.1 The Visibility Skeleton

Durand et al [DDP97c, DDP97a] have defined the visibility skeleton which can be seen either asasimplification
of the 3D visibility complex or as agraph in line space defined by the visual events.

Consider the situation represented in Fig. 8.6(a). A visual event V1V, and the corresponding critical line set
are represented. Recall that it is a one dimensional set of lines. It is bounded by two extremal stabbing lines
V1V and V1V3. Fig. 8.6(b) shows another visual event VoE, which is adjacent to the same extremal stabbing
line. Thisdefines agraph structurein line space represented in Fig. 8.6(c). Thearcsarethe 1D critical line sets
and the nodes are the extremal stabbing lines. Other extremal stabbing lines include lines going through one
vertex and two edges and lines going through four edges (see Fig. 8.7).

Efficient access to the arcs of this graph is achieved through a two dimensiona array indexed by the poly-
gons at the extremity of each visual event. The visibility skeleton is built by detecting the extremal stabbing
lines. The adjacent arcs are topologically deduced thanks to a catalogue of adjacencies. This avoids explicit
geometric calculations on the visual events.
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Figure8.6: (@) An EV critical line set. It is bounded by two extremal stabbing lines V1V, and V;V3. (b) Other
EV critical line sets are adjacent to V1Vs. (c) Corresponding graph structure in line space.

Figure 8.7: Four linesin general position are stabbed by two lines (adapted from [Tel92b])

The visibility skeleton has been implemented and used to perform global illumination simulation [DDP99].
Point-to-area form factors can be evaluated analytically, and the limits of umbra and penumbra can be quickly
computed considering any polygon as alight source (as opposed to standard discontinuity meshing where only
asmall number of primary light sources are considered).

2.2 Skewed projection

McKenna et O’Rourke [MO88] consider a scene which is composed of lines in 3D space. Their am is to
study the class of another line in a sense similar to the previous section if the original lines are the edges of
polyhedron, or to compute the mutually visible faces of polyhedra.

They use a skewed projection to reduce the problem to 2D computations. Consider a pair of linesL 1 and
L, asdepictedin Fig. 8.8. Consider the segment joining the two closest points of the lines (shown dashed) and
the plane P orthogonal to this segment and going through its mid-point. Each point on P defines a unique line
going through L1 and L,. Consider athird line Ls. It generates EEE critical lines. The intersections of these
critical lines with plane P lie on an hyperbolaH.

The intersections of the hyperbolae defined by all other lines of the scene allow the computation of the
extremal stabbing lines stabbing L1 and L,. The computation of course hasto be performed in the O(n?) planes
defined by all pairs of lines. A graph similar to the visibility skeleton is proposed (but for sets of lines). No
implementation is reported.

The skewed projection duality has also been used by Jaromczyk and Kowaluk [JK88] in a stabbing context
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Figure 8.8: Skewed projection.

and by Bern et al. [BDEG90] to update aview along alinear path (the projectionis used to compute the visual
events at which the view has to be updated).

3 Plucker coordinates

3.1 Introduction to Plicker coordinates

Lines in 3D space can not be parameterized continuously. The parameterizations which we have introduced
in section 1.4 of chapter 3 both have singularities. In fact there cannot be a smooth parameterization of lines
in 4D without singularity. One intuitive way to see this is to note that it is not possible to parameterize the S 2
sphere of directions with two parameters without a singularity. Nevertheless, if S 2 is embedded in 3D, thereis
atrivial parameterization, i.e. x,y,z. However not al triples of coordinates correspond to apoint on S 2.

Similarly, oriented linesin space can be parameterized in a 5D space with the so-called Pl ticker coordinates
[PIU65]. The equations are given in appendix 11, here we just outline the principles. One nice property of
Plicker coordinates is that the set of lines which intersect a given line a is a hyperplanein Plicker space (its
dual IT,; The same notation isusually used for the dual of aline and the corresponding hyperplane). It separates
Pliicker space into oriented lines which turn around ¢ clockwise or counterclockwise (see Fig. 8.9).

Q9 Y Q
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@ @ (©
Figure 8.9: In Plicker space the hyperplane corresponding to a line a separates lines which turn clockwise and
counterclockwise around a. (The hyperplaneis represented as a plane because a five-dimensional spaceis hard
toillustrate, but note that the hyperplaneis actually 4D).

As for the embedding of S?2 which we have presented, not all 5-uples of coordinates in Pliicker space cor-
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respond to areal line. The set of linesin this parameterization lie on a quadric called the Pl ticker hypersurface
or Grassman manifold or Klein quadric.

Now consider a triangle in 3D space. All the lines intersecting it have the same orientation with respect
to the three lines going through its edges (see Fig. 8.10). This makes stabbing computations very elegant
in Plicker space. Linear calculations are performed using the hyperplanes corresponding to the edges of the
scene, and the intersection of the result with the Pliicker hypersurfaceis then computed to obtain real lines.

3D space Plicker space

Plicker
hypersurface
(4D)

Figure 8.10: Lines stabbing a triangle. In 3D space, if the edges are well oriented, all stabbers rotate around
the edges counterclockwise. In Pliicker space this correspondsto the intersection of half spaces. To obtain real
lines, the intersection with the Pliicker hypersurface must be considered. (In fact the hyperplanes are tangent
to the Pliicker hypersurface)

Let us give a last example of the power of Plicker duality. Consider three linesin 3D space. The lines
stabbing each line lie on its (4D) hyperplanesin Pliicker space. The intersection of the three hyperplaneis a
2D plane in Plicker space which can be computed easily. Once intersected with the Pliicker hypersurface, we
obtain the EEE critical line set asillustrated Fig. 8.11.

3D space Plucker space

hyperplanes (4D)

b
a
c
EEE EEE (1D)
NS
/ Plucker
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(4D)

Figure 8.11: Three lines define a EEE critical line set in 3D space. This corresponds to the intersection of
hyperplanes (not halfspaces) in Plicker space. Note that hyperplanes are 4D while their intersection is 2D.
Unfortunately they are represented similarly because of the lack of dimensions of this sheet of paper.(adapted
from [Tel92h)).

More detailed introductions to Pliicker coordinates can be found in the books by Sommerville [Som51] or
Stolfi [Sto91] and in the thesis by Teller [Tel92b] 1. See also Appendix 11.

LPiiicker coordinates can also be extended to use the 6 coordinates to describe forces and motion. See e.g. [MS85, PPR99)
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3.2 Use in computational geometry

Pliicker coordinates have been used in computational geometry mainly to find stabbers of sets of polygons, for
ray-shooting and to classify lines with respect to sets of lines (given a set of lines composing the scene and two
query lines, can we continuously move the first to the second without intersecting the lines of the scene).

We give an overview of a paper by Pellegrini [Pel93] which deals with ray-shooting in a scene composed
of triangles. He builds the arrangement of hyperplanesin Pliicker space corresponding to the scene edges. He
shows that each cell of the arrangement corresponds to lines which intersect the same set of triangles. The
whole 5D arrangement has to be constructed, but then only cells intersecting the Plicker hypersurface are
considered. He uses results by Clarkson [Cla87] on point location using random sampling to build a point-
location data-structure on this arrangement. Shooting a ray then consists in locating the corresponding line in
Pliicker space. Other results on ray shooting can be found in [Pel90, PS92, Pel94].

This method is different in spirit from ray-classification where the object-beam classification is calculated
in object space. Here the edges of the scene are transformed into hyperplanesin Pliicker space.

The first use of Pliicker space in computational geometry can be found. in a paper by Chazelle et al.
[CEG'96]. The orientation of lines in space also has implications on the study of cycles in depth order as
studied by Chazelle et al. [CEG'92] who estimate the possible number of cyclesin a scene . Other references
on lines in space and the use of Pliicker coordinates can be found in the survey by Pellegrini [Pel97b].

3.3 Implementations in computer graphics

Teller [Tel924] has implemented the computation of the antipenumbra cast by a polygonal source through a
sequence of polygonal openings portals (i.e. the part of space which may be visible from the source). He
computes the polytope defined by the edges of all the openings, then intersects this polytope with the Pliicker
hypersurface, obtaining the critical line sets and extremal stabbing lines bounding the antipenumbra (see Fig.
8.12 for an example).

Figure 8.12: Antipenumbra cast by a triangular light source through a sequence of three polygonal openings.
EEE boundariesarein red (image courtesy of Seth J. Teller, University of Berkeley).

He however later noted [TH93] that this algorithmis not robust enough for practical use.

Nevertheless, in this same paper he and Hanrahan [TH93] actually used Pliicker coordinates to classify the
visibility of objects with respect to parts of the scene in a global illumination context for architectural scenes
(see section 7 of chapter 5). They avoid robustness issues because no geometric construction is performed in
5D space (like computing the intersection between two hyperplanes), only predicates are evaluated (“is this
point above this hyperplane?”).

4 Stochastic approaches

This section surveys methods which perform visibility cal culation using a probabilistic sampling in line-space.
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4.1 Integral geometry

Themost relevant tool to study probability over sets of linesisintegral geometry introduced by Santalo [San76].
Defining probabilitiesand measurein line-spaceis not straightforward. The most natural constraint istoimpose
that this measure be invariant under rigid motion. This defines a unique measure in line-space, up to a scaling
factor.

Probabilities can then be computed on lines, which is a valuable tool to understand ray-casting. For exam-
ple, the probability that aline intersects a convex object is proportional to its surface.

An unexpected result of integral geometry is that a uniform sampling of the lines intersecting a sphere can
be obtained by joining pairs of points uniformly distributed on the surface of the sphere (note that this is not
truein 2D).

Theclassic parameterization of linesx = az+ p, y = bz+ g (similar to the two plane parameterization of Fig.
3.2(b) page 25) has density % . If a,b, p, g are uniformly and randomly sampled, this formulaexpresses
the probability that alineis picked. It also expressesthe variation of sampling density for light-field approaches
described in section 1.5. Regions of line space with large values of a, b will be more finely sampled. Intuitively,
sampling is higher for lines that have a gazing angle with the two planes used for the parameterization.

Geometric probability is also covered in the book by Solomon [Sol 78].

4.2 Computation of form factors using ray-casting

Most radiosity implementations now use ray-casting to estimate the visibility between two patches, as intro-
duced by Wallace et al. [WEH89]. A number of rays (typically 4 to 16) are cast between a pair of patches. The
number of rays can vary, depending on the importance of the given light transfer. Such issueswill be treated in
section 1.1 of chapter 9.

The integra geometry interpretation of form factors has been studied by Sbert [Sbe93] and Pellegrini
[Pel97a]. They show that the form factor between two patches is proportional the probability that a line in-
tersecting the first one intersects the second. This is the measure of lines intersecting the two patches divided
by the measure of lines intersecting the first one. Shert [ Sbe93] proposes some estimators and derives expres-
sions for the variance depending on the number of rays used.

4.3 Global Monte-Carlo radiosity

Buckalew and Fussel [BF89] optimize the intersection calculation performed on each ray. Indeed, in global
illumination computation, all intersections of a line with the scene are relevant for light transfer. As shown
in Fig. 8.13, the intersections can be sorted and the contribution computed for the interaction between each
consecutive pair of objects. They however used a fixed number of directions and a deterministic approach.

Shert [Sbe93] introduced global Monte-Carlo radiosity. Asin the previous approach all intersections of a
line are taken into account, but a uniform random sampling of linesis used, using pairs of points on a sphere.

Related results can be found in [Neu95, SPP95, NNB97]. Efficient hierarchical approaches have also been
proposed [TWFP97, BNN*98].

4.4 Transillumination plane

Lines sharing the same direction can be treated simultaneously in the previous methods. This resultsin a sort
of orthographic view where light transfers are computed between consecutive pairs of objects overlappingin
the view, as shown in Fig. 8.14.

The plane orthogonal to the projection direction is called the transillumination plane. An adapted hidden-
surface removal method has to be used. The z-buffer can be extended to record the z values of al objects
projecting on a pixel [SKFNC97], or an analytical method can be used [Pel99, Pel974].
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Figure 8.13: Global Monte-Carlo radiosity. The intersection of the line in bold with the scene alows the
simulation of light exchanges between the floor and the table, between the table and the cupboard and between
the cupboard and the ceiling.

Figure 8.14: Transillumination plane. The exchangesfor one direction (here vertical) are all evaluated simulta-
neously using an extended hidden surface removal agorithm.
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CHAPTER 9

Advanced issues

Au reste, il n’est pas inutile de remarquer que tout
ce qu’on démontre, soit dans I’optique, soit dans la
perspective sur les ombres des corps, est exact a la
vérité du coté mathéematique, mais que si on traite cette
matiere physiquement, elle devient alorsfort différente.
L’explication des effets de lanature dépend presque tou-
jours d’une géomeétrie si compliquée qu’il est rare que
ces effets s’accordent avec ce que nous en aurions at-
tendu par nos calculs.

FORMEY, article sur I’ombre de I’Encyclopédie.

E NOW TREAT two issues which we believe crucial for visibility computations and which
unfortunately have not received much attention. Section 1 deals with the control of the
precision of computations either to ensure that a required precision is satisfied, or to
simplify visibility information to make it manageable. Section 2 treats methods which
attempt to take advantage of temporal coherence in scenes with moving objects.

1 Scale and precision

Visibility computationsare often involved and costly. We have surveyed some approximate methodswhich may
induce artifacts, and some exact methods which are usually resource-intensive. It is thus desirable to control
the error in the former, and trade-off time versus accuracy in the latter. Moreover, all visibility information is
not always relevant, and it can be necessary to extract what is useful.

1.1 Hierarchical radiosity: a paradigm for refinement

Hierarchical radiosity [HSA9]] is an excellent paradigm of refinement approaches. Computational resources
are spent for “important” light exchanges. We briefly review the method and focus on the visibility problems
involved.

91
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In hierarchical radiosity the scene polygons are adaptively subdivided into patches organised in a pyramid.
The radiosity is stored using Haar wavelets [SDS96]: each quadtree node stores the average of its children.
The light exchanges are simulated at different levels of precision: exchangeswill be simulated between smaller
elements of the quadtree to increase precision as shown in Fig. 9.1. Clustering improves hierarchical radiosity
by using afull hierarchy which groups clusters of objects[SAG94, Sil95].

A
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24
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Figure 9.1: Hierarchical radiosity. The hierarchy and the exchanges arriving at C are represented. Exchanges
with A are simulated at a coarser level, while those with B are refined.

The crucial component of a hierarchical radiosity system is the refinement criterion (or oracle) which
decidesat whichlevel alight transfer will besimulated. Originally, Hanrahan et al. [HSA91] used aradiometric
criterion (amount of energy exchanged) and a visibility criterion (transfers with partial visibility are refined
more). This results in devoting more computational resources for light transfers which are important and in
shadow boundary regions. See also [GH96].

For a deeper analysis and treatment of the error in hierarchical radiosity, see e.g., [ATS94, LSG9%, GH96,
So198, HS99].

1.2 Other shadow refinement approaches

The volumetric visibility method presented in section 1.3 of chapter 5 is also well suited for a progressive
refinement scheme. An oracle hasto decide at which level of the volumetric hierarchy the transmittance hasto
be considered. Sillion and Drettakis [SD95] use the size of the features of the shadows.

The key observation is that larger object which are closer to the receiver cast more significant shadows, as
illustrated by Fig. 9.2. They moreover take the correlation of multiple blockers into account using an image-
based approach. The objects inside a cluster are projected in a given direction onto a plane. Bitmap erosion
operators are then used to estimate the size of the connected portions of the blocker projection. This can be
seen as afirst approximation of the convolution method covered in section 6 of chapter 6 [SS98al.

Soler and Sillion [SS96b, Sol98] propose a more complete treatment of this refinement with accurate error
bounds. Unfortunately, the bounds are harder to derivein 3D and provide looser estimates.

The refinement of shadow computation depending on the relative distances of blockers and source has also
been studied by Asensio [Ase92] in aray-tracing context.

Telea and van Overveld [Tv97] efficiently improve shadows in radiosity methods by performing costly
visibility computations only for blockers which are close to the receiver.

1.3 Perception

Thegoal of most image synthesis methodsisto produceimageswhichwill be seen by human observers. Gibson
and Hubbold [GH97] thus perform additional computation in a radiosity method only if they may induce a
change which will be noticeable. Related approaches can be found in [Mys98, BM 98, DDP99, RPG99].
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Figure 9.2: Objects which are larger and closer to the receiver cast more significant shadows. Note that the | eft
hand sphere casts no umbra, only penumbra.

Perceptual metrics have also been applied to the selection of discontinuities in the illumination function
[HWP97, DDP99].

1.4 Explicitly modeling scale

One of the major drawbacks of aspect graphs [FMA 792] is that they have been defined for perfect views: all
features are taken into account, no matter the size of their projection.

The Scale-space aspect graph has been developed by Eggert et al. [EBD 93] to cope with this. They
discuss different possible definitions of the concept of “scale”. They consider that two features are not distin-
guishable when their subtended angle is less than a given threshold. This defines a new sort of visual event,
which correspondsto the visual merging of two features. These are circlesin 2D (the set of pointswhich form
agiven anglewith asegment isacircle). See Fig. 9.3.

Figure 9.3: Scale-space aspect graph in 2D using perspective projection for the small object in grey. Features
which subtend an angle of less than 4° are considered indistinguishable. The circles which subdivide the plane
are the visual events where features of the object visualy merge.

Scale (the angle threshol d) definesanew dimension of the viewpoint space. Fig. 9.3infact representsadlice
scale = 4° of the scale-space aspect graph. Cells of this aspect graph have a scale extent, and their boundaries
change with the scale parameter. This approach allows an explicit model of the resolution of features, at the
cost of an increases complexity.
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Shimshoni and Ponce [SP97] developed the finite resolution aspect graph in 3D. They consider ortho-
graphic projection and a single threshold. When resolution is taken into account, some accidental views are
likely to be observed: An edge and a vertex seem superimposed in the neighbourhood of the exact visual event.
Visual events are thus doubled asillustrated in Fig. 9.4.

A
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Figure 9.4: Finite resolution aspect graph. (a) The EV event is doubled. Between the two events (viewpoint 2
and 3), E andV arevisually superimposed. (b) The doubled event on the viewing sphere.

For the objects they test, the resulting finite resolution aspect graph is larger. The number events discarded
because the generators are merged does not compensate the doubling of the other events. However, tests on
larger objects could exhibit different results.

See also the work by Weinshall and Werman on the likelihood and stability of views [WW97].

1.5 Image-space simplification for discontinuity meshing

Stewart and Karkanis [ SK98] propose a finite resolution construction of discontinuity meshes using an image-
space approach. They compute views from the vertices of the polygonal source using a z-buffer. Theimageis
segmented to obtain avisibility map. The features present in the images are used as visual event generators.

This naturally eliminates small objects or features since they aggregate in the image. Robustness problems
are also avoided because of the image-space computations. Unfortunately, only partial approximate disconti-
nuity meshes are obtained, no backprojection computation is proposed yet.

2 Dynamic scenes

We have already evoked temporal coherence in the case of a moving viewpoint in a static scene (section 4.2
of chapter 7). In this section we treat the more general case of a scene where objects move. If the motions
are continuous, and especialy if few objects move, there is evidence that computation time can be saved by
exploiting the similarity between consecutive timesteps.

In most cases, the majority of the objects are assumed static while asubset of objects actually move. We can
distinguish cases where the motion of the objectsis known in advance, and those where no a priori information
is known, and thus updates must be computed on a per frame basis.

Different approaches can be chosen to take advantage of coherence:

e The computation is completely re-performed for a sub-region of space;

e The dynamic objects are deleted (and the visibility information related to them is discarded) then re-
inserted at their new position;

e A validity time-interval is computed for each piece of information;
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e Thevisbility informationis “smoothly updated”.

2.1 Swept and motion volumes

A swept volume is the volume swept by an object during a time interval. Swept volumes can also be used to
bound the possible motion of an object, especialy in robotics where the degrees of freedom are well defined
[AA95]. These swept volumes are used as static blockers.

A motion volume is a simplified version of swept volumes similar to the shafts defined in section 6.1 of
chapter 5. They are simple volume which enclose the motion of an object. Motion volumes were first used in
radiosity by Baum et al. [BWCG86] to handle the motion of one object. A hemicube is used for form-factor
computation. Pixels where the motion volume project are those which need recomputation.

Shaw [Sha97] and Drettakis and Sillion [DS97] determine form factors which require recomputation using
a motion volume-shaft intersection technique.

Sudarsky and Gotsman [SG96] use motion volumes (which they call temporal bounding volumes) to per-
form occlusion culling with moving objects. They alleviate the need to update the spatia data-structure (BSP
or octree) for each frame, because these volumes are used in place of the objects, making computations valid
for more than one frame.

2.2 4D methods

Some methods have been proposed to speed-up ray-tracing animations using a four dimensional space-time
framework developed by Glassner [Gla88]. The temporal extent of ray-object intersections is determined,
which avoids recomputation when a ray does not intersect a moving object. See also [MDC93, CCD91] for
similar approaches.

Ray-classification has also been extended to 6D (3 for the origin of aray, 2for its direction, and 1 for time)
[Quagd6, GPI1].

Globa Monte-Carlo radiosity presented in section 4.3 of chapter 8 naturally extendsto 4D as demonstrated
by Besuievsky et al [BS96]. Each ray-static object intersection is used for the whole length of the animation.
Only intersections with moving objects require recomputation.

23 BSP

BSP trees have been developed for rapid view computation in static scenes. Unfortunately, their construction
is a preprocessing which cannot be performed for each frame.

Fuchs et al. [FAG83] consider pre-determined paths and place bounding planes around the paths. Torres
[Tor90] builds amulti-level BSP tree, trying to separate objects with different motion without splitting them.

Chrysanthou and Slater [CS92, CS95, CS97] remove the moving objects from the database, update the BSP
tree, and then re-introduce the object at its new location. The most difficult part of this method is the update of
the BSP tree when removing the object, especially when the polygons of the object are used at a high level of
the tree as splitting planes. In this case, al polygonswhich are below it in the BSP-tree have to be updated in
thetree. This approach was also used to update limits of umbraand penumbra[CS97].

Agarwal et al. [AEG98] propose an algorithm to maintain the cylindrical BSP tree which we have presented
in section 1.4 of chapter 5. They computethe eventsat which their BSP actually needs astructural change. This
happens when a triangle becomes vertical, when an edge becomes parallél to the yz plane, or when atriangle
enters or leaves a cell defined by the BSP tree.

2.4 Aspect graph for objects with moving parts

Bowyer et al. [EB93] discuss the extension of aspect graphsfor articul ated assemblies. The degrees of freedom
of the assembly increase the dimensionality of viewpoint space (which they call aspect space). For example, if
the assembly has only one translational degree of freedom and if 3D perspective is used, the aspect graph has
to be computed in 4D, 3 dimensions for the viewpoint and one for tranglation. Thisis similar to the scale-space
aspect graph presented in section 1.4 where scal e increases dimensionality.



96 CHAPTER 9. ADVANCED ISSUES

Accidental configurations correspond to values of the parameters of the assembly where the aspect graph
changes. They occur at a generalization of visual eventsin the higher dimensional aspect space. For example
when two faces become parallel.

Two extensions of the aspect graph are proposed, depending on the way accidental configurations are
handled. They can be used to partition aspect space like in the standard aspect graph definition. They can aso
be used to partition first the configuration space (in our example, it would result in intervals of the trandlational
parameter), then a different aspect graph is computed for each cell of the configuration space partition. This
latter approachis more memory demanding since cells of different aspect graphsare shared in thefirst approach.
Construction algorithms are just sketched, and no implementation is reported.

2.5 Discontinuity mesh update

Loscos and Drettakis [LD97] and Worall et al. [WWP95, WHP98] maintain a discontinuity mesh while one
of the blockers moves. Limits of umbra and penumbra move smoothly except when an object starts or stops
casting shadows on another one. Detecting when a shadow limit goes off an object is easy.

To detect when a new discontinuity appears on one object, the discontinuities cast on other objects can be
used asillustrated in Fig. 9.5.
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Figure9.5: Dynamic update of limits of shadow. The situation where shadows appear on the moving object can
be determined by checking the shadows on the floor. This can be generalized to discontinuity meshes (after
[LD97]).

2.6 Temporal visual events and the visibility skeleton

In chapter 2 and 3 of [Dur99], we have presented the notion of atemporal visual event. Temporal visual events
permit the generalization of the results presented in the previous section. They correspond to the accidental
configurations studied for the aspect graph of an assembly.

Temporal visual events permit the update of the visibility skeleton while objects movein the scene. Thisis
very similar to the static visibility skeleton, since temporal visual events describe adjacencies which determine
which nodes and arcs of the skeleton should be modified.

Similarly, a catalogue of singularities has been developed for moving objects, defining atemporal visibility
complex.
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Conclusions of the survey

Ils ont tous gagné !

Jacques MARTIN

URVEYING work related to visibility reveals a great wealth of solutions and techniques. The

organisation of the second part of this thesis has attempted to structure this vast field. We

hope that this survey will be an opportunity to derive new methods or improvements from

techniques developed in other fields. Considering a problem under different anglesis a pow-

erful way to open one’s mind and find creative solutions. We again invite the reader not to
consider our classification as restrictive; on the contrary, we suggest that methods which have been presented
in one space be interpreted in another space. In what follows, we give a summary of the methods which we
have surveyed, before presenting a short discussion.

1 Summary

In chapter 2 we have presented visibility problems in various domains. computer graphics, computer vision,
robotics and computational geometry.

In chapter 3 we have propose a classification of these methods according to the space in which the com-
putations are performed: object space, image space, viewpoint space and line-space. We have described the
visual events and the singularities of smooth mappings which explain “how” visibility changesin a scene: the
appearance or disappearance of objects when an observer moves, the limits of shadows, etc.

We have briefly surveyed the classic hidden-part removal methods in chapter 4.

In chapter 5 we have dealt with object-space methods. The two main categories of methods are those which
use a “regular” spatia decomposition (grid, hierarchy of bounding volumes, BSP trees), and those which use
frusta or shafts to characterize visibility. Among the latter class of methods, the main distinction is between
those which are interested in determining if a point (or an object) lies inside the frustum or shaft, and those
which compute the boundaries of the frustum (e.g., shadow boundaries). Fundamental data-structureshhave also
been presented: The 2D visibility graph used in motion planning links al pairs of mutually visible vertices of a
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planar polygonal scene, and the visual hull of an object A represents the largest object with the same occlusion
propertiesas A.

I mages-space methods, surveyed in chapter 6 perform computation directly in the plane of the final image,
or use an intermediate plane. Most of them are based on the z-buffer algorithm.

Chapter 7 has presented methods which consider viewpoints and the the visibility properties of the corre-
sponding views. The aspect graph encodes all the possible views of an object. The viewpoints are partitioned
into cells where a view is qualitatively invariant, that is, the set of visible features remains constant. The
boundaries of such cells are the visual events. This structure has important implications and applications in
computer vision, robotics, and computer graphics. We have also presented methods which optimize the view-
point according to the visibility of a feature, as well as methods based on visual events which take advantage
of temporal coherence by predicting when aview changes.

In chapter 8 we have surveyed work in line or ray space. We have presented methods which partition the
rays according to the object they see. We have seen that visual events can be encoded by linesin line-space. A
powerful dualisation has been studied which maps lines into five dimensional points, allowing for efficient and
elegant visibility characterization. We have presented some elements of probability over sets of lines, and their
applicationsto lighting simulation.

Finally, in the previous chapter we have discussed two important issues. precision and moving objects. We
have studied techniqueswhich refine their computationswhere appropriate, aswell as techniqueswhich attempt
to cope with intensive and intricate visibility information by culling too fine and unnecessary information.
Techniques devel oped to deal with dynamic scenes include swept or motion volumes, 4D method (where time
is the fourth dimension), and smooth updates of BSP trees or shadow boundaries.

Table 10.1 summarizes the techniques which we have presented, by domain and space.

2 Discussion

A large gap exists between exact and approximate methods. Exact methods are often costly and prone to
robustness problems, while approximate methods suffer from aliasing artifacts. Smooth trade-off and efficient
adaptive approximate solutions should be developed. This requires both to be able to refine a computation and
to efficiently determine the required accuracy.

Visibility with moving objects and temporal coherence have received little attention. Dynamic scenes are
mostly treated as successions of static timesteps for which everything is recomputed from scratch. Solutions
should be found to efficiently identify the cal cul ations which actually need to be performed after the movement
of objects.

As evoked in the introduction of this survey, no practical guide to visibility techniquesreally exists. Some
libraries or programs are available (see for example appendix 12) but the implementation of reusable visibility
code in the spirit of C-GAL [FGK 796] would be a major contribution, especially in the case of 3D visibility.
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Some Notions in Line Space

Plicker coordinates

Consider adirected line ¢ in 3D defined by two points P(Xp, yp, zp) and Q(Xq, Yq,Zg). The Pliicker coordinates
[PIU65] of ¢ are:

o XPYQ — YPXQ
1 XpZQ — ZpXQ
T2 _ Xp —XQ
T3 YPZQ — ZPYQ
T4 Zp—1g
Tys Yo—Yr

(The signs and order may vary with the authors). These coordinates are homogenous, any choice of P and Q
will give the same Pliicker coordinates up to a scaling factor (Plicker spaceisthusa 5D projective space).
The dot product between two lines a and b with Pliicker duals I, and Iy, is defined by

ITa ©® Tl = TaoThs + Ta1Tlhs + Ta2Ttha + TaaTlho + TasTh1 + Ta3zTh2

The sign of the dot products indicates the rel ative orientation of the two lines. If the dot product is null, the
two linesintersect. The equation 15 ® I, = 0 defines the hyperplane associated with a.
The Plucker hypersurface or Grassman manifold or Klein quadric is defined by

In,oI11, =0
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CHAPTER 12

Online Ressources

1 General ressources

An index of computer graphics web pages can be found at
http://www-imagis.imag.fr/"Fredo.Durand/book.html

A lot of computer vision ressources are listed at
http://www.cs.cmu.edu/ cil/vision.html
A commented and sorted vision bibliography:
http://iris.usc.edu/Vision-Notes/bibliography/contents.html
An excellent Compendium of Computer Vision:
http://www.dai.ed.ac.uk/CVonline/

For roboticsrelated pages, see
http://www-robotics.cs.umass.edu/roboti cs.html
http://www.robohoo.com/

Many sites are dedicated to computational geometry, e.g.:
http://www.ics.uci.edu/~eppstein/geom.html
http://compgeom.cs.uiuc.edu/"jeffe/compgeom/

Those interested in human and animal vision will find several links at:
http://www.visi onscience.com/.

An introduction to perception is provided under the form of an excellent web book at:
http://www.yorku.caleye/

2 Available code.

CGAL isarobust and flexible computational geometry librairy
http://www.cs.ruu.nl/CGAL
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Nina Amenta maintains some links to geometrical softwares:
http://www.geom.umn.edu/software/cglist/welcome.html

The implementation of L uebke and George’s online portal occlusion-culling techniqueis available at:
http://www.cs.virginia.edu/"Tuebke/visibility.html

Electronic articles on shadows, portals, etc.:
http://www.flipcode.com/features.htm

Information on Open GL, including shadow computation:
http://reality.sgi.com/opengl/

Visibility graph programs can be found at:
http://www.cs.ul eth.cal/"wismath/vis.html
http://cs.smith.edu/"hal ef /research.html
http://willkuere.informatik.uni-wuerzburg.de/ lupinho/java.html

Many ray-tracer are available e.g.:
http://www.povray.org/
http://www-graphics.stanford.edu/- cek/rayshade/rayshade.html
http://www.rz.tu-ilmenau.de/“juhu/GX/intro.html (with different acceleration schemes, including ray-
classification)

A radiosity implementation:
http://www.ledalite.com/software/software.htm

RenderPark provides many global illumination methods, such as radiosity or Monte-Carlo path-tracing:
http://www.cs.kuleuven.ac.be/cwis/research-/graphics RENDERPARK/

Aspect graphs:
http://www.dai .ed.ac.uk/staff/-personal pages/eggertd/software.html

BSP trees:
http://www.cs.utexas.edu/users/atc/

A list of info and links about BSP:
http://www.ce.unipr.it/ marchini/jaluit.ntml

Mel Slater’s shadow volume BSP:
ftp://ftp.dcs.gmw.ac.uk/people/mel /BSP/
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