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Abstract

We present a method for compressing non-manifold polygonal meshes, i.e., polygonal meshes with singularities,
which occur very frequently in the real-world. Most efficient polygonal compression methods currently available
are restricted to a manifold mesh: they require converting a non-manifold mesh to a manifold mesh, and fail to
retrieve the original model connectivity after decompression.

The present method works by converting the original model to a manifold model, encoding the manifold model
using an existing mesh compression technique, and clustering, orstitching together during the decompression
process vertices that were duplicated earlier to faithfully recover the original connectivity. This paper focuses on
efficiently encoding and decoding the stitching information. Using a naive method, the stitching information would
incur a prohibitive cost, while our methods guarantee a worst case cost of O(logm) bits per vertex replication,
wherem is the number of non-manifold vertices. Furthermore, when exploiting the adjacency between vertex
replications, many replications can be encoded with an insignificant cost.

By interleaving the connectivity, stitching information, geometry and properties, we can avoid encoding repeated
vertices (and properties bound to vertices) multiple times; thus a reduction of the size of the bit-stream of about 10%
is obtained compared with encoding the model as a manifold. 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Three-dimensional polygonal meshes are used pervasively in manufacturing, architectural, Geographic
Information Systems, warfare simulation, medical imaging, robotics, and entertainment industries. In
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particular, polygons (especially, triangles) are required for generating three-dimensional renderings using
available three-dimensional computer graphics architectures.

The sizes of such meshes have been steadily increasing, and there is no indication that this trend will
change. For instance, a polygonal model representing a Boeing 777 airplane contains on the order of
1 Billion polygons, excluding polygons associated with the rivet models [2]. Other particularly large
meshes include architectural models. Geometry compression deals with the compression of polygonal
meshes for transmission and storage.

Many real-world polygonal meshes arenon-manifold, that is, contain topological singularities, (e.g.,
edges shared by more than two triangles)4 . In fact, on a database of 303 meshes used for MPEG-4 core
experiments and obtained on the Web (notably at the www.ocnus.com site), we discovered that more than
half of the meshes (162 precisely) were non-manifolds.

As discussed in Section 2, most of the methods currently available for geometry compression require
a manifold connectivity5 . Meshes can be converted from a non-manifold connectivity to a manifold
connectivity, but then the original connectivity is lost. At the time this paper is written, we are aware of
three publications addressing connectivity-preserving non-manifold mesh compression [1,13,23].

We describe a method for compressing non-manifold polygonal meshes and recovering their exact
connectivity after decompression. Excerpts of this paper were published in [7]. Our method compares
in compression efficiency and speed with the most efficient manifold-mesh compression methods,
thus extending [9,12–14,22], and even allows some savings by avoiding duplicate encodings of vertex
coordinates and properties, as reported in Section 12.

Although it may be questionable to assign unique texture coordinates or normals to a non-manifold
vertex, we do not make any assumption of integrity or consistency in the original data, but only strive to
encode and transmit it integrally. Specifically, our method will process any polygonal mesh represented
as a VRML IndexedFaceSet [21], or as indicated in the MPEG-4 specifications [11].

Throughout this paper, we will demonstrate the algorithms using a simple mesh example composed
of two tetrahedra sharing a common face. This mesh has seven faces and five vertices as illustrated in
Fig. 1. Three of these vertices are non-manifold vertices (vertices 0, 1 and 2 in Fig. 2). See Appendix A
for a precise definition of a non-manifold vertex.

The present method works by converting the original mesh to a set of manifold meshes as exemplified
by Fig. 2, encoding the manifold meshes using an existing mesh compression technique, and clustering
together during the decompression process the vertices that were duplicated earlier to faithfully recover
the original connectivity (see Fig. 3). To convert a non-manifold mesh to a manifold mesh, we duplicate
non-manifold vertices as described in detail in [8] and briefly recalled in Section 3. Other methods could
be used as well. During the conversion process, we record the information necessary to cluster the vertices
that were duplicated. We call this information avertex clustering.

1.1. Motivation

The basic idea in this paper is to encode both the manifold meshes and vertex clustering as a substitute
for the non-manifold mesh.

4 Specifically, a manifold polygonal mesh is such that each vertex of the mesh is a manifold vertex, i.e., the neighborhood
of each vertex can be continuously deformed to a disk (to a half disk at the boundary). See Appendix A for details.

5 We callconnectivitythe graph of polygon-vertex incidences.



A. Guéziec et al. / Computational Geometry 14 (1999) 137–166 139

Fig. 1. The seven faces (a) composing a non-man-
ifold mesh (b) that we will use as an example
throughout this paper.

Fig. 2. Converting a non-manifold mesh (a) to a
manifold mesh (b) by cutting through non-manifold
vertices, i.e., replicating non-manifold vertices (ver-
tices 0, 1 and 2) [8].

Fig. 3. To encode a non-manifold mesh, we encode a corresponding manifold mesh, and which vertices must be
clustered to recover the original connectivity.

A naive approach for doing this would operate by transmitting the manifold meshes using existing
mesh compression methods, and then transmitting the specification of pairs of indices to vertices that
must be clustered. This approach has two important drawbacks: firstly, the(x, y, z) coordinates and
properties of vertices that were duplicated during the non-manifold to manifold conversion will be
encoded and transmitted multiple times. The cost associated with this duplication depends on the input
mesh: on a sample of 14 meshes that we used for experiments, we estimated this cost to be in average
on the order of 10% of the total bit-stream size (see Section 12). Secondly, the specification of pairs of
vertex indices is costly: 2 logn bits for each pair, whereinn is the number of vertices in the mesh after
non-manifold to manifold conversion.
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Table 1
To encode the information necessary to cluster some
vertices and recover the polygon–vertices incidence
relationship of the original model, one simple approach
(which we are not using, but explain for comparison)
would be to transmit a table such as this, with one row
per cluster. This table relates to the example of Figs. 1–3

Number of vertices in cluster Vertex references

3 0 6 7

3 2 5 9

3 1 3 10

Fig. 4. Overall compressed syntax for a non-manifold mesh.

Another approach consists of devising special codes to indicate which vertices are copies of previously
transmitted vertices, specifying which vertex they should be clustered to. This method avoids duplicate
transmission of vertex coordinates and properties, but incurs a cost of logn bits for each vertex that was
previously transmitted.

A refined version of this approach would transmit a table with one row per cluster, as in Table 1. We
denote bym the number of clusters. (If each non-manifold vertex must be replicated during the non-
manifold-to-manifold mesh conversion process as discussed in Section 3,m is the same as the number
of non-manifold vertices in the original mesh.) For instance,m = 3 in Fig. 2. Each entry of the table
would indicate the number of vertices in the cluster and their references: this is shown in Table 1 for
the example that we are using. If the total number of vertex replications isr (r = 9 in Fig. 2), and the
maximum number of vertices in one cluster isc, the total cost of this approach ism logc+ r logn.

In this paper, we improve considerably upon this second method, to incur a worst-case cost of at most
logm bits for each vertex that was previously transmitted, wherem is the number of clusters, which is
typically much smaller thann. Moreover, this is a worst-case cost, as we will show in Section 5 that for
many vertices, the clustering information is implicit, and requires zero bits to encode. This is achieved
using the concept ofstitches, which are defined and fully described in Section 5.

1.2. Representation for compression

The mesh is compressed as indicated in Fig. 4. For each manifold connected component, the
connectivity is encoded, followed with optionalstitches, and geometry6 and properties. Stitches are
used to recover the vertex clustering within the current component and between vertices of the current

6 The vertex coordinates.
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component and previous components. In this way, for each cluster, geometry and properties are only
encoded and decoded for the vertex of the cluster that is encountered first (in decoder order of traversal).

1.3. Overview

In Section 2 we review related work. We review in Section 3 an algorithm for producing manifold
meshes starting with a non-manifold mesh. Section 4 describes a method for compressing manifold
meshes. Sections 5–8 develop methods for representing a vertex clustering using stitches. In Section 9 we
give details on the encoding process and describe a proposed bit-stream syntax for stitches. In Section 10
we study the decoding process. Our algorithms are analyzed in Section 11. In Section 12 we provide
compression results on a variety of non-manifold meshes.

2. Related work

2.1. Non-manifold mesh compression

Connectivity-preserving non-manifold mesh compression algorithms were proposed by Popovic and
Hoppe [13] and Bajaj et al. [1]. Hoppe’s Progressive Meshes [10] use a base mesh and a series of
vertex insertions (specifically, inverted edge contractions) to represent a manifold mesh. While the main
functionality is progressive transmission, the encoding is fairly compact, using 30–50 bits per vertex with
arithmetic coding [10]. This method was extended in [13] to represent arbitrary simplicial complexes,
manifold or not, using about 50 bits per vertex (asymptotically the cost of this method is O(n logn) bits,n
being the number of vertices). This method of [13] works by devising special codes to encode all possible
manifold or non-manifold attachments of a new vertex (and sustaining edges and triangles) to an existing
mesh. A code must be supplied for each vertex that is encoded. Our present method improves upon [13]
by achieving significantly smaller bit-rates (about 10 bits per vertex or so) and reducing encoding time
(admittedly, an off-line process) by more than four orders of magnitude (without levels-of-detail).

Bajaj et al.’s “DAG of rings” mesh compression approach [1] partitions meshes in vertex and triangle
layers that can represent a non-manifold mesh. A vertex layer is a set of vertices with the same topological
distance to an origin vertex. A vertex layer is a graph that may contain non-manifold vertices, which
correspond to branching points. Encoding the various branches requires indices that are local to the
vertex layer. In this paper, we encode the same information by indexing among a subset of them non-
manifold vertices (those present in a stack). With the variable-length method described in Section 7, we
obtain additional savings by exploiting the adjacency between non-manifold vertices.

Another advantage of our approach is that we define a compressed syntax that can be used to
cluster vertices. This syntax can be used for encoding some changes of topology (such as aggregating
components) in addition to representing singularities.

Abadjev et al. [23] use a technique related to [10,13], and introduce a hierarchical block structure in
the file format for parallel streaming of texture and geometry.

2.2. Manifold-mesh compression

For completeness, we now discuss previous work on compressing manifold meshes, which is related
to our approach of Section 4.
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Deering [5] introduced geometry compression methods, originally to alleviate 3D graphics rendering
limitations due to a bottleneck in the transmission of information to the graphics hardware (in the bus).
His method uses vertex and normal quantization, and exploits a mesh buffer to reuse a number of vertices
recently visited and avoid re-sending them. Deering’s work fostered research on 3D mesh compression
for other applications. Chow [3] extended [5] with efficient generalized-triangle-strip building strategies.

The Topological Surgery single-resolution mesh compression method of Taubin, Rossignac et al. [19,
20] represents a connected component of a manifold mesh as a tree of polygons (which are each
temporarily decomposed into triangles during encoding and recovered after decoding). The tree is
decomposed into runs, whose connectivity can be encoded at a very low cost. To recover the connectivity
and topology, this tree is completed with a vertex tree, providing information to merge triangle edges.
The method of [19] also encodes the vertex coordinates (geometry) and all property bindings defined in
VRML’97 [21].

Touma and Gotsman [22] traverse a triangular (or polygonal) mesh and remove one triangle at a time,
recording vertexvalences7 as they go and recording triangles for which a boundary is split in two as a
separate case.

Gumhold and Strasser [9] and Rossignac [14] concentrate on encoding the mesh connectivity. They
use mesh traversal techniques similar to [22], but instead of recording vertex valences, consider more
cases depending on whether triangles adjacent to the triangle that is being removed have already been
visited. Another relevant work for connectivity compression is by Denny and Sohler [6].

Li and Kuo’s [12] “dual graph” approach traverses polygons of a mesh in a breadth-first fashion, and
uses special codes to merge nearby (topologically close) polygons (serving the same purpose as the
vertex graph in the approach of [19]) and special commands to merge topologically distant polygons (to
represent a general connectivity-not only a disk).

3. Cutting a non-manifold mesh to produce manifold meshes

We briefly recall here the method of Guéziec et al. [8] that we are using. For each edge of the polygonal
mesh, we determine whether the edge is singular (has three or more incident faces) or regular (with two
incident faces). Edges for which incident faces are inconsistently oriented are also considered to be
singular for the purpose of this process of converting a non-manifold to a manifold. For eachsingular
vertex of the polygonal mesh, the number of connectedfansof polygons incident to it is determined.8

For each connected fan of polygons, a copy of the singular vertex is created (thereby duplicating singular
vertices). The resulting mesh is a manifold mesh. The correspondences between the new set of vertices
comprising the new vertex copies and the old set of vertices comprising the singular vertices is recorded
in a vertex clustering array. This process is illustrated in Fig. 2.

This method admits a number of variations that moderately alter the original mesh connectivity
(without recovering it after decoding) in order to achieve a decreased size of the bit-stream: polygonal
faces with repeated indices may be removed. Repeated faces (albeit with potentially different properties
attached) may be removed. Finally, the number of singular edges may be reduced by first attempting to

7 Number of incident polygons.
8 A fan of polygons at a vertex is a set of polygons incident to a vertex and connected with regular edges. A singular vertex

is simply a vertex with more than one incident fans.
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invert the orientation of some faces in order to reduce the number of edges whose two incident faces are
inconsistently oriented.

An interesting alternative for converting a non-manifold mesh to a manifold mesh by vertex replication
was recently introduced by Rossignac and Cardoze [16]. Rossignac and Cardoze minimize the number
of vertex replications when converting non-manifold solids to manifold solid representations. In the
Rossignac and Cardoze method, an edge cannot be uniquely identified with a pair of vertices: for instance
two edges (and four faces) can share the same two endpoints. In the method of Section 4 however, we
have used the assumption that an edge could be uniquely identified using two vertices, which allows
a simple representation and encoding for a vertex graph, and does not require to output a list of edges
when decoding the compressed representation of the mesh: the edges are implicitly represented by the
polygon-vertices incidence relation.

4. Compressing manifold meshes

The method described in this section extends the Topological Surgery method [19], and is explained
in detail in [11]. In [19] the connectivity of the mesh is represented by a tree spanning the set of vertices,
a simple polygon, and optionally a set of jump edges. To derive these data structures a vertex spanning
tree is first constructed in the graph of the mesh and the mesh is cut through the edges of the tree. If
the mesh has a simple topology, the result is a simple polygon. However, if the mesh has boundaries
or a higher genus, additional cuts along jump edges are needed to obtain the simple polygon. This
simple polygon is then represented by a triangle spanning tree and a marching pattern that indicates
how neighboring triangles are connected to each other. The connectivity is then encoded as a vertex
tree, a simple polygon and jump edges. In this paper the approach is slightly different. First, a triangle
spanning tree is constructed. Then the set of all edges that are not cut by the triangle tree are gathered
into a graph. This graph, called Vertex Graph, spans the set of vertices, and may have cycles. Cycles are
caused by boundaries or handles (for higher genus models). The vertex graph, triangle tree, and marching
pattern are sufficient to represent the connectivity of the mesh.

In [19], geometry and properties are coded differentially with respect to a prediction. This prediction
is obtained by a linear combination of ancestors in the vertex tree. The weighting coefficients are
chosen to globally minimize the residues, i.e., the difference between the prediction and the actual
values. In this paper the principle of linear combination is preserved but the triangle tree is used
instead of the vertex tree for determining the ancestors. Note that the “parallelogram prediction” [22]9

is a special case of this scheme, and is achieved through the appropriate selection of the weighting
coefficients.

Coding efficiency is further improved by the use of an efficient adaptive arithmetic coder [18].
Arithmetic coding is applied to all data, namely connectivity, geometry and properties.

Finally, the data is ordered so as to permit efficient decoding and on-the-fly rendering. The vertex
graph and triangle tree are put first into the bit stream. The remaining data, i.e., marching pattern,
geometry, and properties, is referred to as triangle data and is put next into the bit stream. It is organized
on a per-triangle basis, following a depth-first traversal of the triangle tree. Therefore a new triangle

9 Which extends a current triangle to form a parallelogram, with the new parallelogram vertex being used as a predictor.
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may be rendered every time a few more bits, corresponding to the data attached to the triangle, are
received.

5. Representing the vertex clustering using stitches

5.1. Decoding order and father–child relationship:v_father

The methods developed in the present paper rely on the availability of two main elements: (1) a
decoding order for the mesh vertices, and (2) for the variable-length method described in Section 7, a
father–child relationship between vertices allowing to define paths of vertices. We next suppose that this

father–child relationship is recorded in an array calledv_father, representing a function{1, . . . , n} v_father−→
{1, . . . , n}, wheren is the number of vertices.

All of the manifold mesh compression methods reviewed in Section 2 can provide these two elements,
which makes the methods of this paper widely applicable: an order in which vertices are decoded is
always available, and a father–child relationship can by default be realized by each vertex pointing to the
vertex decoded just before as its father (the first vertex being its own father).

Our assumption is that the information consigned inv_father is implicit (provided “for free” by the
manifold mesh compression method), and requires no specific encoding. In the following we assume
without loss of generality that vertices are enumerated in the decoder order of traversal. (If this is not the
case, we can perform a permutation of the vertices.)

Preferably, thev_father array will contain additional information, that can be exploited by our
algorithms. For instance, Fig. 5 showsv_father for the example of Fig. 2, obtained using the Topological
Surgery method [11]. In the particular case of Topological Surgery,v_father represents a digraph whose
nodes are mesh vertices, edges are mesh edges, and such that each node has out-degree one:v_father is a
forest that also admits self-loops.

Fig. 5. (a)v_father (father–child) relationship for the example of Fig. 2, as generated by the Topological Surgery
method. Since we are only concerned with topology, in this figure and the following figures, we are representing
the mesh of Fig. 2 in wireframe mode, where dashed lines represent edges shared by two back-facing triangles.
(b) In the particular case of Topological Surgery,v_father is a forest that also admits self-loops. In the following,
we will omit to draw self-loops.
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5.2. Stitches

A stitch is an operation that clusters a given number of vertices along two specified (directed)paths
of vertices, wherein a path of vertices is defined by following a father–child relationship. There is no
ambiguity in following this path, which corresponds to going towards the root of a tree. A stitch as
defined above is also called aforward stitch. A stitch is specified by providing a pair of vertices and a
length. The vertex clustering is accomplished by performing a series of stitches.

We may sometimes want to go down the father–child tree as opposed to up the tree (towards the root).
This is a priori ambiguous, but the following definition removes the ambiguity: areversestitch works
by starting with two vertices, following the path defined by the father–child relationship for the second
vertex and storing all vertices along the path in a temporary structure, and clustering vertices along the
path associated with the first vertex together with the stored vertices visited in reverse order.

We introduce two methods, called Stack-Based and Variable-Length, for representing (or decompos-
ing) the vertex clustering in a series of stitches. These are two alternate methods that the encoder should
choose from. The latter method presents more challenges but allows a much more compact encoding,
as reported in Section 12. We define a bit-stream syntax that supports both possibilities, and it is not
required that the encoder use the more advanced feature.

5.3. Vertex clustering array:v_cluster

Both the stack-based and variable-length methods take as input a vertex clustering array, which for

convenience we denote byv_cluster ({1, . . . , n} v_cluster−→ {1, . . . , n}).
To access vertices throughv_cluster, we propose the convention thatv_cluster always indicate the

vertex with the lowest decoder order: supposing that vertices 1 and 256 belong to different components
but cluster to the same vertex, it is better to writev_cluster[1] = v_cluster[256] = 1 thanv_cluster[1] =
v_cluster[256] = 256. As the encoder and decoder build components gradually, at some point Vertex 1
will be a “physical” vertex of an existing component, while Vertex 256 will be in a yet-to-be-encoded
component. Accessing Vertex 1 through Vertex 256 would increase code complexity.

The stack-based and variable-length methods are developed in the following sections. The variable-
length method exploits the information in thev_father forest while the stack-based method does not.
The stack-based method can be explained and implemented without requiring the notion of stitches: the
stitches used for the stack-based method all have zero length, and associate a vertex of higher decoder
order with a vertex of lower decoder order. However, stitches are at the core of the variable-length method,
which is more efficient. It is useful to combine the two methods in a single framework and using a single
compressed syntax.

6. Stack-based method

We wish to encode efficientlym clusters that affectr replicated vertices, while the rest of then− r
vertices are not affected. (We can also say that their cluster size is 1.) The main idea behind this method
is that provided that we can keep a stack of cluster representatives, only logm bits will be necessary for
each of ther vertices to indicate which cluster they belong to. We can compress this information even
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Fig. 6. Stack-based method applied to the example of Fig. 1. To represent stitches pictorially, we are using “lassos”
and “wiggles”.

further if only a portion of them cluster representatives are present in a stack at a given time, by using as
many indices as elements present in the stack.

For this purpose, we use astack-buffer, similarly to Deering [5] and other manifold mesh compression
modules (see [11]). A “stack” would only support “push” and “pop” operations. We denote by “stack-
buffer” a data structure that supports the “get” operation as well as direct indexing into the stack for “get”
and “pop” operations.

We push, get and pop in the stack-buffer the vertices that cluster together. Connected components can
be computed for the vertex clustering, such that two vertices belong to the same component if they cluster
to the same vertex. In the decoding order, we associate astitching commandto each vertex. If the size
of the vertex’s component is one, the command is NONE. (This is one of then− r unaffected vertices.)
Otherwise, the command is either PUSH, or GET(v), or POP(v) depending on the decoding order of the
vertices in a given component, where v is an index local to the stack-buffer. The vertex that is decoded
first is associated with a PUSH; all subsequently decoded vertices are associated with a GET(v) except
for the vertex decoded last, that is associated with a POP(v), whereby v is removed from the stack-buffer.

For the example of Fig. 1 we illustrate the association of commands to vertices in Fig. 6. Each vertex is
labeled using its decoder order, and the corresponding command is displayed in the vicinity of the vertex.

In order to achieve this local indexing to the set of clusters and thus avoid incurring a logn cost when
encoding vertex repetitions, we need to provide a code (stitching command) for each vertex: NONE,
PUSH, GET or POP. As discussed in Section 9, the NONE command uses one bit, which may be further
compressed using arithmetic coding [18] (when considering the sequence of commands). An alternative
to this one-bit-per-vertex cost would be to provide a list of cluster representatives, each requiring a logn

index to encode. We have not selected this approach.
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In addition to providing lower bit rates, another advantage of our approach is that the command
that is associated with each vertex may be used to decide whether or not to encode its coordinates
and properties: geometry and properties may only be encoded for NONE and PUSH vertices. We can
thus easily interleave connectivity and geometry in the bitstream, allowing incremental decoding and
rendering (see Section 4). This can be done without the overhead of encoding a table of clusters.

One drawback of the stack-based method is that it requires to send one stitching command different
from NONE (either PUSH, GET or POP) for each of ther vertices that are repeated (that cluster to a
singular vertex). In the next section, we explain how the variable-length method exploits the situation
when cluster members are adjacent in thev_father forest in order to replace as many PUSH, GET and
POP commands as possible with a NONE command (that requires only one bit).

7. Variable-length method

7.1. Principle of the method

If we take a closer look at Fig. 5 we realize that the clusters (2,5) and (1,3) are such that 1 is the father
of 2 and 3 is the father of 5. This is an example of a situation where we can add length to a stitch as
defined in Section 5: stitch vertex 5 to vertex 2, with a stitch length of 1. A pictorial representation of this
stitch is provided in Fig. 7(a). We will thus push 2 in the stack; Vertex 5 will be associated with a GET(2)
command and a stitch length of 1. This will have the effect of fetching the fathers of 2 and 5, 1 and 3,
and clustering them. (If the length was 2, we would fetch the fathers of 1 and 3 and cluster them as well,
and so on.) The advantage of this is that vertex 1 and vertex 3 do not require a specific PUSH, GET, or
POP command: we can associate them with a NONE command, which requires significantly fewer bits.

With a suitablev_father father–child relationship, we expect the above situation to occur frequently. In
particular, in Topological Surgery, all edges of a mesh boundary except one belong tov_father. Since we
expect a lot of stitching to occur along boundaries, the paths defined byv_father will be very valuable.

Fig. 7. Three stitches of variable length and direction encode the vertex clustering of Fig. 3: (a) length 1,
(b) length 0, (c) length 2 and reverse direction.
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Using the example of Fig. 3, we illustrate in Fig. 7 how variable length stitches can be used to represent
the complete vertex clustering: three stitches are applied to representv_cluster: one (forward) stitch of
length 1 that was discussed above, one stitch of length zero (6, 0), and one reverse stitch of length 2
(10, 6). According to the definition provided in Section 5, the reverse stitch is performed as follows: we
retrieve the father of 6, 5, and the father of 5, 3. We cluster 10 with 3, then the father of 10, 9, with 5 and,
finally, the father of 9, 7, with 6.

In the remainder of this section, we explain how to discover such stitches from the knowledge of the
v_cluster andv_father arrays.

7.2. Discovering the variable-length stitches

A good working hypothesis states that: the longer the stitches, the fewer the commands, and the smaller
the bit-stream size. We propose a greedy method that operates as follows. We generate the longest stitch
starting at each vertex, and we perform the stitches in order of decreasing length. The justification of
this is that, assuming all stitches have the same direction, redundant encodings can be avoided. This is
illustrated in Fig. 8: when a stitch is not extended to its full possible length (stitch 1), another stitch
(stitch 2) could encode redundant information, unless it is broken up in smaller stitches. However, if all
stitches are always extended to their full possible length, subsequent stitches may simply be shortened if
necessary to avoid redundancy (instead of broken up).

We can thus safely apply all the (forward) stitches one after the other in order of decreasing length:
for each stitch, we simply recompute its length appropriately (for instance, stitch 2 in Fig. 8 should be of
length 1, and not 3). (When reverse stitches are introduced, however, the situation is more complex, as
illustrated in Fig. 12 and discussed in Section 8.)

The method first computes for each vertex that clusters to a singular vertex the longest possible
forward stitch starting at that vertex: a length and one or several candidate vertices to be stitched with are
determined. As illustrated in Fig. 9(a), starting with a vertexv0, v0 ∈ {1, . . . , n}, all other vertices in the
same cluster are identified, andv_father is followed for all these vertices. From the vertices thus obtained,
the method retains only those belonging to the same cluster asv_father[v0]. This process is iterated until

(a) (b) (c)

Fig. 8. Justification of the longest-stitch-first strategy: Supposing stitch 2 is performed after stitch 1 (a), the stitching
information in light gray (b) will be encoded twice. (c) With our strategy this cannot happen, since stitch 1 can,
and will, be prolonged to a stitch of length 4, and stitch 2 will be shortened to a length of 1.
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Fig. 9. Computing the longest possible stitch starting at a vertexv0. Ovals indicate clusters. (a) Forward stitch of
length 3 withv1. (b) Backward stitch of length 4 withv2.

the cluster contains a single vertex. The ancestors of vertices remaining in the previous iteration (vf is
the successor ofv0 ending the stitch in Fig. 9(a)) are candidates for stitching (v1 in Fig. 9(a)). Special
care must be taken with self-loops inv_father in order for the process to finish and the stitch length to
be meaningful. Also, in our implementation we have assumed thatv_father did not have loops (except
self-loops). In casev_father has loops we should make sure that the process finishes.

Starting withvf, the method then attempts to find a reverse stitch that would potentially be longer. This
is illustrated in Fig. 9(b), by examining vertices that cluster withv_father[vf], such asv2. The stitch can
be extended in this way several times. However, since nothing prevents a vertexv and itsv_father[v] from
belonging to the same cluster, we must avoid stitchingv0 with itself.

All potential stitches are inserted in a priority queue, indexed with the length of the stitch. The method
then empties the priority queue and applies the stitches in order of decreasing length until the vertex
clustering is completely represented by stitches.

The next section discusses details of the variable-length method, that are important for a successful
implementation. These details are not necessary, however, to understand the rest of this paper starting
with Section 9.

8. Details of the variable-length method

8.1. Decoder order of connected components

The representation method must respect and use the decoder order of connected components of the
manifold mesh. As mentioned in Section 1, independently of the number of vertices that cluster to a given
vertex, geometry and properties for that vertex are encoded only once, specifically for the first vertex of
the cluster that is decoded. Connectivity, stitches, geometry and properties are encoded and decoded on
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Fig. 10. Potential problems with variable-length stitches. (a) The clustering between components 1 and 2 is decoded
only when component 3 is. (b) To successfully encode these two stitches we must substitute vertices 12 with 7 in
the first one. (c) No possible re-combination using endpoints 3, 7 and 12 is possible.

a component-per-component basis to allow progressive decoding and visualization (see Fig. 4(c)). This
implies that after decoding stitches corresponding to a given component, say componentm, the complete
clustering information (relevant portion ofv_cluster) for componentm as well as between componentm
and the previously decoded components 1, . . . ,m − 1 should be available. If this is not so, there is a
mismatch between the geometry and properties that were encoded (too few) and those that the decoder
is trying to decode, with potentially adverse consequences.

The stack-based method generates one command per vertex, for each cluster that is not trivial (cardinal
larger than one), and will have no problem with this requirement. However, when applying the variable-
length search for longest stitches on all components together, the optimum found by the method could
be as in Fig. 10(a), where three components may be stitched together with two stitches, one involving
components 1 and 3 and the second involving components 2 and 3.

Assuming that the total number of manifold components isc, our solution is to iterate onm, the
component number in decoder order, and form between 2 andc, perform a search for longest stitches on
components 1,2, . . . ,m.

8.2. Decoder order of vertices

The longest stitch cannot always be performed, because of incompatibilities with the decoder order
of vertices: a vertex can only be stitched to one other vertex of lower decoder order. The example in
Fig. 10(b) illustrates this: the (12,3) and (12,7) stitches cannot be both encoded. However, the (12,3)
stitch may be substituted with (7,3) which is an equally long stitch, and therefore listed in the priority
queue. The case of Fig. 10(c) requires more work, because no possible re-combination is possible using
endpoints 3, 7 and 12.

Since problems only involve vertices that start the stitch, it is possible to split the stitch in two stitches,
one being one unit shorter and the other being of length zero. Both stitches are entered in the priority
queue.
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Fig. 11. Vertices marked with an “o” and an “x”
may be stitched together, since this corresponds to
the longest possible stitches. However, the complete
clustering of four vertices (circled with the black
curve) is not completely represented in this fashion.

Fig. 12. A reverse stitch (between vertices marked
with an “x”) may be interrupted, because of a
previous forward stitch, and vice versa.

For stitches of length zero, the incompatibility with the decoder order of vertices can always be
resolved. In Fig. 10(b), for stitching 3 vertices, we can consider three stitching pairs, only one of which
is being rejected. Since for stitches of length zero the direction of the stitch does not matter, all other
stitching pairs are valid.

8.3. Generating enough stitches

The method generates the longest stitch starting at each vertex. It is possible that this may not provide
enough stitches to encode all the clusters. This is illustrated in Fig. 11. In this case the method can finish
encoding the clusters using zero-length stitches similarly to the stack-based method.

8.4. Competing forward and reverse stitches

Finally, because forward and reverse stitches “compete” with each other, the situation illustrated in
Fig. 12 may occur: an isolated pair of vertices along a forward stitch may have been clustered by the
operation of a reverse stitch that was performed earlier. To avoid redundancy, as the pair of vertices was
already clustered, no subsequent stitch should incorporate them. Our method will detect this situation
and split the stitch performed last in two shorter stitches.

Once a working combination of stitches is found, the last step is to translate them to stitching
commands. This is the object of the next section which also specifies a bit-stream syntax.
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9. Stitches encoding

To encode the stitching commands in a bit-stream, we propose the following syntax, that accommo-
dates commands generated by both the stack-based and variable-length methods. To specify whether
there are any stitches at all in a given component, a Boolean flaghas_stitchesis used. In addition to
the PUSH, GET and POP commands, a vertex may be associated with a NONE command, as discussed
above. In general, because a majority of vertices are expected to be non-singular, most of the commands
should be NONE. Three bits calledstitching_command, pop_or_getandpop are used for coding the
commands NONE, PUSH, GET and POP as shown in Fig. 13.

A stitch_length unsigned integer is associated with a PUSH command. Astack_index unsigned
integer is associated with GET and POP commands. In addition, GET and POP have the following
parameters:differential_length is a signed integer representing a potential increment or decrement with
respect to the length that was recorded with a previous PUSH command or updated with a previous GET
and POP (usingdifferential_length). push_bit is a bit indicating whether the current vertex should be
pushed in the stack,10 and reverse_bit indicates whether the stitch should be performed in a reverse
fashion.

We now explain how to encode (translate) the stitches obtained in the previous sections in compliance
with the syntax that we defined. Both encoder and decoder maintain ananchor_stack across manifold
connected component for referring to vertices (potentially belonging to previous components). For the
stack-based method, the process is straightforward: in addition to the commands NONE, PUSH, GET
and POP encoded using the three bitsstitching_command, pop_or_getandpop, a PUSH is associated
with stitch_length= 0. GET and POP are associated with astack_indexthat is easily computed from
theanchor_stack.

For the variable-length method, the process can be better understood by examining Fig. 14. In
Fig. 14(a) we show a pictorial representation of a stitch. A vertex is shown with an attached string of
edges representing a stitch length, and astitch_to arrow pointing to ananchor. Both vertex and anchor
are represented in relation to the decoder order of (traversal of) vertices.

The stitch_to relationship defines a partition of the vertices associated with stitching commands. In
Fig. 14(b) we isolate a component of this partition. For each such component, the method visits the
vertices in decoder order (v0, v1, v2, v3 in Fig. 14(b)). For the first vertex, the command is a PUSH.
Subsequent vertices are associated with a GET or POP depending on remainingstitch_to relationships;
for vertices that are also anchors, apush_bit is set. Incremental lengths andreverse_bits are also
computed. Fig. 14(c) shows the commands associated with Fig. 14(b). For the example of Fig. 1 that we
have used throughout this paper, the final five commands different from NONE are gathered in Table 2.

After the commands are in this form, the encoder operates in a manner completely symmetric to the
decoder which is described in detail in Section 10, except that the encoder does not actually perform the
stitches while the decoder does. Fig. 15 lists pseudo-code for the encoder.

10 Since POP and GET have an associatedpush_bit there are fewer PUSH than POP commands (although this seems
counter-intuitive). We have tried exchanging the variable length codes for PUSH and POP, but did not observe smaller bit-
streams in practice; we attributed this to the arithmetic coder.
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Fig. 13. Syntax for stitches. “X”s indicate variables associated with each command.

Fig. 14. Translating stitches to the bit-stream syntax.

Table 2
Five commands (different from NONE) encoding the complete clustering of Fig. 3. The stack-
based encoding shown in Fig. 6 requires nine

stitch stack differential push reverse
Vertex Command _length _index _length _bit _bit

0 PUSH 0

1 PUSH 1

5 POP 1 0 0 0

6 POP 0 0 1 0

0 POP 0 2 0 1
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encoded(anchor_stack){
if(has_stitches ==true){

encode has_stitches ;
for (i=nV0; i< nV1; i++){ //nV0 is the first vertex
// of the current component, and nV1 –1 is the last vertex

encode stitching_command ;
if(stitching_command ){

encode pop_or_get ;
if (pop_or_get ){

encode pop ;
encode stack_index ,
retrieve stitching_anchor from anchor_stack;
if (pop ){

remove stitching_anchor from anchor_stack;
} // end if
encode incremental_length ;
if(incremental_length !=0){

encode incremental_length_sign ;
} // end if
decode push_bit ;
if(push_bit )

push i to the back of anchor_stack
retrieve stitch_length at stiching_anchor;
total_length = stitch_length + incremental_length ;
if(total_length > 0)

encode reverse_bit ;
save total_length at stitching_anchor;

} // end if(pop_or_get )
encode stitch_length ;
push i to the back of anchor_stack;

} // end if(stitching_command )
} // end for

}

Fig. 15. Pseudo-code for the stitches encoder.

10. Stitches decoding

The decoder reconstructs thev_cluster information that should be applied to vertices to reconstruct
the polygonal mesh. The following pseudo-code shown in Fig. 16 summarizes the operation of the
stitches decoder: if the Booleanhas_stitchesin the current connected component is true, then for each
vertex of the current component in decoder order, a stitching command is decoded. If the Boolean
valuestitching_command is true, then the Boolean valuepop_or_get is decoded; if the Boolean value
pop_or_get is false, an unsigned integer is decoded, and associated to the current vertexi as an anchor
(to stitch to). The current vertexi is then pushed to the back of theanchor_stack. If pop_or_get is true,
then the Boolean valuepop is decoded, followed with the unsigned integer valuestack_index.
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decode_stitches_for_a_connected_component (anchor_stack){
if (has_stitches == true)

for(i = nV0; i < nV1; i++){{ //nV0 is the first vertex
// of the current component, and nV1 –1 is the last vertex

decode stitching_command ;
if(stitching_command ){

decode pop_or_get ;
if(pop_or_get ){

decode pop ;
decode stack_index ;
retrieve anchor from anchor_stack;
if(pop ){

remove stitching_anchor from anchor_stack;
} // end if
decode incremental_length ;
if (incremental_length !=0){

decode incremental_length_sign ;
} // end if
decode push_bit ;
if(push_bit )

push i to the back of anchor_stack
retrieve stitch_length at anchor;
total_length = stitch_length + incremental_length ;
if(total_length > 0)

decode reverse_bit ;
stitch i to anchor for length of total_length and in reverse if (reverse_bit );

} // end if(pop_or_get )
decode stitch_length ;
push i to the back to anchor_stack;
save stitch_length at anchor i;

} // end if(stitching_command )
} // end for

}
Fig. 16. Pseudo-code for the stitches decoder.

Usingstack_index, ananchor is retrieved from theanchor_stack. This is theanchor that the current
vertex i will be stitched to. If thepop Boolean variable is true, then theanchor is removed from the
anchor_stack. Then, an integerdifferential_length is decoded as an unsigned integer. If it is different
from zero, its sign (Booleandifferential_length_sign) is decoded, and is used to update the sign of
differential_length. A push_bit Boolean value is decoded. Ifpush_bit is true, the current vertexi is
pushed to the back of the anchor_stack. An integerstitch_length associated with theanchor is retrieved.
A total_length is computed by addingstitch_length anddifferential_length; if total_length is greater
than zero, areverse_bit Boolean value is decoded. Then thev_cluster array is updated by stitching the
current vertexi to the stitchinganchor with a length equal tototal_length and potentially using a reverse
stitch. The decoder uses thev_father array to perform this operation. To stitch the current vertexi to the
stitchinganchor with a length equal tototal_length, starting from bothi and theanchor at the same time,
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we follow vertex paths starting with bothi and theanchor by looking up thev_father entriestotal_length
times, and for each corresponding entries(i,anchor), (v_father[i],v_father[anchor]), (v_father[v_father[i]],
v_father[v_father[anchor]]), . . . we record in thev_cluster array that the entry with the largest decoder
order should be the same as the entry with the lowest decoder order. For instance, if(j > k), then
v_cluster[j] = k elsev_cluster[k] = j. v_cluster defines a graph that is a forest. Each time an entry in
v_cluster is changed, we perform path compression on the forest by updatingv_cluster such that each
element refers directly to the root of the forest tree it belongs to.

If the stitch is a reverse stitch, then we first follow thev_father entries starting from theanchor for a
length equal tototal_length (from vertices 6 through 3 in Fig. 7), recording the intermediate vertices in a
temporary array. We then follow thev_father entries starting from the vertexi and for each corresponding
entry stored in the temporary array (from the last entry to the first entry), we updatev_cluster as explained
above.

11. Analysis

11.1. Correctness

We wish to determine if both the stack-based and variable-length methods can be used in combination
with a manifold mesh encoding technique to encode any non-manifold mesh.

We first observe that a non-manifold mesh can always be converted to a set of manifold meshes by
cutting through singular vertices and edges (including edges for which incident faces have an inconsistent
orientation). The cut is performed by duplication of vertices. The inverse operation is to aggregate
(cluster) the vertices that were duplicated. We may thus determine whether any clustering of some or
all of the vertices of a mesh can be represented with either stack-based or variable-length method.

The stack-based method may clearly represent any clustering by virtue of the construction of Section 6
which we recall here briefly: a clustering of vertices is a partition of the set of vertices. Vertices may be
globally enumerated. Inside each component of the partition, we may enumerate the vertices according
to the global order. The first vertex is associated with a PUSH, the last vertex with a POP, and all
intermediate vertices with a GET.

The variable-length method may also represent any clustering, for the simple reason that the variable-
length method is a generalization of the stack-based method (if all stitches have a length of zero).

11.2. Computational complexity

We focus here on the computational complexity associated with the encoding and decoding of stitches;
studying the computational complexity of manifold mesh encoding and decoding belongs to the relevant
publications [1,9,12,14,22], and we only summarize the current analysis here: the authors of the above-
referenced publication report a computational complexity that is linear in the number of mesh vertices
and triangles for most methods, with for some methods a non-linear storage cost as pointed out in [17].

We now concentrate first on the computational complexity of encoding stitches, followed with the
computational complexity of decoding.

The complexity is determined by the use of a stack-buffer. A subset ofm vertices among then vertices
of the mesh are replicated, and there are a total ofr replications. Theser vertices are pushed and popped
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inside a stack-buffer. We assume that at a given time, no more thank vertices are stored in the stack
buffer. We necessarily havek 6m. We need to determine the complexity of maintaining a stack-buffer
allowing to index elements with indices between 0 andk − 1. As vertices are added to the stack-buffer,
we can use the depth in the stack as an index for vertices. However, when vertices are removed from the
stack, we need to reassign unused indices without perturbing the indices of vertices that are still present
in the stack (which need to be accessed directly using their original index). A queue may be used to track
unused indices and reassign them (in any order). The cost of inserting or removing an element from the
queue is constant. However, there is no guarantee to always assign the smallest index possible, which
could have negative effects on the size of the encoding. This area is open for further investigation. We
have thus established that stack-buffer operations may be performed in constant time.

However, indices between 0 andk− 1 must be inserted in the bit-stream. Since we cannot assume any
particular coherence between the indices, the worst-case cost of encoding these indices will be O(logk).
Thus, the cost of processing allr vertices subjected to clustering will be bounded with O(r logk), and
thus O(r logm) in the worst case.

In the case of the variable-length method, the process of determining the longest stitch starting at each
of them vertices has a worst-case complexity of O(m2), while the process of sorting stitches has no
non-linear contribution (sorting integers can be done in linear time using Bucket Sort [4]).

In summary, encoding can be performed in O(n+m logm) time for the stack-based method, while the
worst case for the variable-length method is bounded by O(n+m2).

In terms of decoding, except for the caveat formulated below, there is no difference in worst-case
complexity between the two methods which is O(n+m logm), where againn is the number of vertices
of the mesh andm is the number of vertices amongstn that are subjected to clustering.

In the case of the variable-length method, we note that a bad encoder could provoke situations as
depicted in Fig. 8(b), where the clustering between vertices is redundantly encoded. We have assumed
for our complexity estimate above that the encoder would not do this. However, the bit-stream syntax
does not provide guarantees against this behavior.

11.3. Storage cost

The worst-case storage cost associated with the stitching is as follows. For the encoding, the stack-
based method has a worst-case storage cost ofm (maximum depth of the stack). The variable-length
method has a worst-case storage cost of O(mc), wherec is the maximum number of vertices in a cluster
as defined in Section 1. This cost corresponds to the storage of the set of candidate stitches.

For the decoding, both methods have a worst-case storage cost ofm.

12. Experimental results

12.1. Test meshes

We report detailed data on a set of 14 meshes, and at the same time general statistics on a set of 303
meshes that were used for validation experiments during the MPEG-4 standardization process [11].

The 14 meshes are illustrated in Fig. 17. They range from having a few vertices (5) to about 65,000.
The meshes range from having very few non-manifold vertices (2 out of 5056 or 0.04%) to a significant
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Fig. 17. Test meshes.

proportion of non-manifold vertices (up to 88 % for the Sierpinski.wrl model). One mesh was manifold
and all the rest of the meshes were non-manifold. (The manifold mesh will be easily identified by the
reader in Table 3.) One model (Gen_nm.wrl) had colors and normals per vertex. It was made non-
manifold by adding triangles. The Engine model was originally manifold, and made non-manifold by
applying a clustering operation as described in [15]. We synthesized the models Planet0.wrl, Saturn.wrl,
Sierpinski.wrl, Tetra2nm.wrl. All other models were obtained from various sources and originally non-
manifolds.

12.2. Test conditions

The following quantization parameters were used: geometry (vertex coordinates) was quantized to
10 bits per coordinate, colors to 6 bits per color, and normals to 10 bits per normal. The coordinate
prediction was done using the “parallelogram prediction” [22], the color prediction was done along the
triangle tree, and there was no normal prediction. Using 10 bits per coordinate, there are no noticeable
differences between the original and decoded models in most cases. In the case of the Engine model,
however, some quantization artifacts are visible when using 10 bits per coordinate, that disappear when
using 16 bits per coordinate. We illustrate two of the larger test models before compression and after
decompression in Figs. 18 and 19.

12.3. Test results

Table 3 provides compressed bit-stream sizes for the 14 meshes and compares the bit-stream sizes
when meshes are encoded as non-manifolds or as manifolds (i.e., without the stitching information, and
with redundent coordinates for the vertices that are repeated). There is an initial cost for each mesh on
the order of 40 bytes or so, independently of the number of triangles and vertices.

In case of smooth meshes, the connectivity coding, prediction and arithmetic coding seem to divide
by three or so the size of quantized vertices: for instance, starting with 10 bits per vertex of quantization,
a typical bit-stream size would be on the order of 10 bits per vertex and 5 bits per triangle (assuming a
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Fig. 18. (a) Symmetric-brain model before compression. (b) After decompression: starting 10 bits of quantization
per vertex coordinate the complete compressed bit-stream uses 17.2 bits per vertex.

Fig. 19. (a) Engine model before compression. (b) After decompression (starting with 10 bits of quantization per
vertex coordinate). Some artifacts may be seen at this level of quantization. (c) After decompression (16 bits). No
visible artifacts remain.

manifold mesh without too many boundaries). In case of highly non-manifold or non-smooth meshes,
starting with 10 bits per vertex of quantization, a typical bit-stream size would be on the order of 20 bits
per vertex and 10 bits per triangle (smooth meshes seem to compress roughly twice as much).

The previous estimates apply to both manifold and non-manifold compression. Table 3 indicates that
when compressing a non-manifold as a non-manifold (i.e., recovering the connectivity using stitches) the
total bit-stream size can be reduced by up to 20% (21% for the “tetra 2nm. wrl” model). This is because
when encoding stitches, vertices that will be stitched together are encoded only once (such vertices were
duplicated during the non-manifold to manifold conversion process). The same applies to per-vertex
properties.



160 A. Guéziec et al. / Computational Geometry 14 (1999) 137–166

Table 3
Compression results. “bpv” stands for “bits per vertex” and bpt for “bits per triangle”

Model Uncompressed Number of Number of Compressed as Compressed as Non-manifold
size vertices triangles non-manifold manifold versus manifold

bytes bytes bpv bpt bytes ratio savings

Bart.wrl 392,030 5,056 9,000 7,243 11.46 6.43 8,105 0.89 11%

Briggso.wrl 130,297 1,584 3,160 4,080 20.61 10.32 4,129 0.98 2%

Engine.wrl 4,851,671 63,528 132,807 139,632 17.58 8.41 167,379 0.83 17%

Enterprise.wrl 859,388 12,580 12,609 28,224 17.95 17.91 29,553 0.95 5%

Gen_nm.wrl 49,360 410 820 2,566 50.06 25.03 2625 0.97 3%

Lamp.wrl 254,043 2,810 5,054 3,726 10.61 5.90 3954 0.94 6%

Maze.wrl 87,391 1,412 1,504 4,235 24.0 22.53 4855 0.87 13%

Opt-cow.wrl 204,420 3,078 5,804 7,006 18.02 9.66 7,006 1 0%

Planet0.wrl 1,656 8 12 82 82 54.6 96 0.85 15%

Saturn.wrl 61,155 770 1,536 1,998 20.75 10.40 2,197 0.91 9%

Sierpinski.wrl 4,702 34 64 193 45.64 24.12 252 0.76 4%

Superfemur.wrl 1,241,052 14,065 28,124 30,964 17.61 8.81 31,378 0.98 2%

Symmetric_brain.wrl 3,092,371 34,416 66,688 73,789 17.15 8.85 73,640 1.002−0.2%

Tetra2nm.wrl 489 5 7 66 105.6 75.42 83 0.79 21%

The main results are gathered in Table 4. In Table 4, we first report the relative part (in %) of stitching
information and connectivity. We observe that stitches can have a huge impact on the bitstream (up to
125% the size of connectivity). Thus, it is worthwhile to concentrate on an efficient encoding of stitches.

We then compare the relative efficiencies of the naive method that was described in Section 1.1 (encode
a table of the repetitions such as Table 1), the stack-based method and the variable-length method. In
order to have a fair comparison we measure the number of bits per replicated vertex that are used to
encode the stitches. For the naive method, we use the formular log2n, wherer is the number of repeated
vertices, andn is the total number of vertices. Note that this formula underestimates the true formula
m log2 c + r log2n, and also does not model for the overhead of inserting data in a functional bitstream
(that can be decoded incrementally, etc.): the formula thus reflects a theoretical best-case prediction. For
the stack-based and variable-length methods, we report data obtained by producing bitstreams with and
without the stitching data.

As expected, the variable-length method outperforms the stack-based method, which outperforms the
naive method. In several cases, the variable-length method allows an order-of-magnitude improvement
over the (theoretical) performance of the naive method.

We also report in this paper some statistics on a set of 303 models that were used for validation
experiments during the MPEG-4 standardization process. Among 303 meshes, 162 were found to be non-
manifold. We measured the average ratio of vertex replications(r/n) among the 303 models and found it
to be equal to 0.39: on average, 39% of the vertices are repeated. While this seems quite high, we note that
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Table 4
Relative importance of stitches and comparison between encoders. We report the relative part (in %) of stitches and
the rest of the connectivity, and observe that stitches represent an important part. We also compare (in number of
bits per replicated vertex) the naive method (using the formular log2n), the stack-based encoder and the variable-
length encoder. Note that the formula underestimates the cost of the naive method, and disregards the overhead
associated to putting data in a bit-stream

Connectivity Connectivity Stitches/ Naive Stack Variable-

and stiches connectivity length

Model name n r in bytes bits/r

bart 5058 4 294 303 3% 13 22 18

briggso 1631 90 448 509 14% 11 7.2 5.42

engine 83583 23173 17068 38432 125% 17 10.47 7.38

gen_nm 422 24 112 134 20% 9 7.33 7.33

lamp 3070 388 315 429 36% 12 6.02 2.35

maze 2028 1232 615 1121 82% 11 3.56 3.29

planet0 14 9 45 50 11% 4 4.44 4.44

saturn 866 144 195 209 7% 10 5.72 0.78

sierpinski 64 60 57 80 40% 7 3.07 3.07

superfemur 14558 863 3699 4609 25% 14 8.50 8.44

brain 34708 548 7582 8154 8% 16 9.08 8.35

tetra2nm 11 9 42 47 12% 4 5.33 4.44

r is in general significantly larger thanm, the number of non-manifold vertices: for instance for the model
of Fig. 2,m= 3, r = 9 andr/n= 0.82. This average is kept high by a few models consisting of a majority
of non-manifold vertices. The median, computed on the 162 non-manifold meshes isr/n= 0.147: 15%
of the vertices are repeated.

In Fig. 20, we compare the efficiency of the variable-length method and the naive method for
representing the stitching information in the 162 above mentioned non-manifold meshes. Fig. 20 shows a
scatter plot of the number of bits per replicated vertex as a function of the ratior/n. For the naive method,
we have used the formular log2n, which as discussed above represent a theoretical best-case estimate.
For the variable-length method, we have plotted data obtained by producing bitstreams with and without
the stitching information. This data indicates that the variable-length method outperforms significantly
the (theoretical behavior of the) naive method.

Table 5 gathers overall encoding and decoding timings11 . We observe a decoding speed of 10,000–
13,000 vertices per second on a commonly available 233 MHz Pentium II laptop computer. For many
meshes it has been reported that the number of triangles is about twice the number of vertices: this

11 Which are, perhaps, more relevant for [11,19], the present methods representing only one module.
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Fig. 20. Efficiency of the variable-length method versus the naive method for encoding the vertex replications:
scatter plot obtained from 162 non-manifold models among 303 test models. They-axis represents the number
of encoded bits per replicated vertex, while thex-axis represents the ratio of vertex replications in log-scale. For
the naive method, we have used the formular log2n (theoretical best-case performance). For the variable-length
method, we have plotted measured data. Based on this data, the variable-length method outperforms significantly
the naive method.

is exact for a torus, and is approximate for many large meshes with a relatively simple topology. In
this case we observe a decoding speed of 20,000–25,000 triangles per second. When considering non-
manifold meshes the assumption that the number of triangles is about twice the number of vertices
does not necessarily hold, depending on the number of singular and boundary vertices and edges of
the model (for instance, consider the Enterprise.wrl model). This is why for non-manifold meshes, or
meshes with a significant number of boundary vertices, when measuring computational complexity the
number of vertices is probably a better measure of shape complexity than the number of triangles. The
speed reported above is observed with most meshes, including meshes with one or several properties
(such as gen_nm.wrl), with the exception of meshes with fewer than 50 vertices or so, which would
not be significant for measuring per-triangle or per-vertex decompression speeds (because of various
overheads).

While these results appear to be at first an order of magnitude slower than those reported in [9], we
note that Gumhold and Strasser decode the connectivity only (which is only one functionality, and a small
portion of compressed data) and observe their timings on a different computer (175 MHz SGI/02). Also,
our decoder was not optimized so far (more on this in Section 13). Timings reported are independent of
whether the mesh is a manifold mesh or not. There is thus no measured penalty in decoding time incurred
by stitches.
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Table 5
Encoding and decoding times in seconds measured on an IBM Thinkpad 600
233 MHz computer. The stack-based method was used. The encoding times
include non-manifold to manifold conversion

Non-manifold Encoding Decoding Vertices Triangles

model CPU time in seconds Decoded/second

Bart.wrl 0.64 0.38 13,300 23,700

Briggso.wrl 0.24 0.14 11,300 22,600

Engine.wrl 12.35 7.88 8,100 16,900

Enterprise.wrl 1.29 1.12 11,200 11,300

Gen_nm.wrl 0.10 0.04 10,300 20,500

Lamp.wrl 0.39 0.25 11,200 20,200

Maze.wrl 0.18 0.12 11,800 12,500

Cow.wrl 0.43 0.23 13,400 25,200

Planet0.wrl 0.02 0.02 400 600

Saturn.wrl 0.14 0.08 9,600 19,200

Sierpinski.wrl 0.03 0.02 1,700 3,200

Superfemur.wrl 2.12 1.36 10,300 20,700

Symmetric-brain.wrl 7.34 3.20 10,800 20,800

Tetra2nm.wrl 0.02 0.02 250 350

13. Summary and future work

We have described a method for compressing non-manifold polygonal meshes that combines an
existing method for compressing a manifold mesh and new methods for encoding and decoding stitches.
These latter methods comply with a new bit-stream syntax for stitches that we have defined.

While our work uses an extension of the Topological Surgery method for manifold compression [11],
there are no major obstacles preventing the use of other methods such as [1,9,12,14,22].

13.1. Main results

We have demonstrated in this paper that compressing non-manifolds (while preserving their non-
manifold connectivity) is highly desirable, and not very costly. Non-manifold models are frequent (more
than half the models in our database). According to our experiments, non-manifold compression has
no noticeable effect on decoding complexity. Furthermore, compared with encoding a non-manifold
as a manifold, our method permits savings in the compressed bit-stream size (of up to 20%, and in
average of 8.4%), because it avoids duplication of vertex coordinates and properties. This is in addition
to achieving the functionality of compressing a non-manifold without perturbing the connectivity.
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We have also demonstrated in this paper that encoding the stitching information efficiently is
important. Our results indicate that the size of the stitching information may be comparable to the size of
the connectivity. A naive method as discussed in Section 1.1 is not adequate for encoding the stitching
information. Our methods can guarantee a worst case cost of O(log2m) bits per vertex replication,m
being the number of non-manifold vertices, while for many replications, the cost is actually logl/ l bits,
wherel is the length of the stitch (this is the amortized cost of encoding the length of the stitch).

We presented two different encoders: a simple encoder, and a more complex encoder that uses the
full potential of the syntax. The results we reported indicate that the additional complexity of the
variable-length encoder is justified. Other encoders may be designed in compliance with the syntax.
One particularly interesting open question is: is there a provably good optimization strategy to minimize
the number of bits for encoding stitches?

Perhaps more importantly, our methods hides completely the issues of mesh singularities to the users
of the technology. These are arguably complex issues that creators and users of 3D content may not
necessarily want to learn more about, in order to understand how the models would have to be freed
of singularities (and thus altered) in order to be properly transmitted or stored in compressed form.
The bitstream syntax and decoder described in this paper is part of the MPEG-4 standard on 3-D Mesh
Coding. Using this technology, there will be no alteration of the connectivity, whether non-manifold or
manifold.

13.2. Future work

Stitches allow more than connectivity-preserving non-manifold compression: merging components
and performing all other topological transformations corresponding to a vertex clustering are possible.
How to exploit these topological transformations using our stitching syntax (or other syntaxes) is another
open area.

The software that was used to report results in this paper was by no means optimized. Optimization
must thus be done in harmony with all the functionalities of compression (e.g., streamed and hierarchical
transmission) and will be the subject of future work. The decoder may be optimized in the following ways
(other optimizations are possible as well): (1) limiting modularity and function calls between modules,
once the functionalities and syntax are frozen; (2) optimizing the arithmetic coding, which is a bottleneck
of the decoding process (every single cycle in the arithmetic coder matters); (3) performing a detailed
analysis of memory requirements, imposing restrictions on the size of mesh connected components, and
limiting the number of cache misses in this way.
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Fig. 21. Regular, boundary and singular (or non-manifold) vertices of a polygonal mesh.

Appendix A. Manifold and non-manifold polygonal meshes

For our purposes, a three-dimensional polygonal mesh comprises a set of vertices{vi} and a set of
faces{fj }. Each vertex has coordinates inR3. Each face is specified with a tuple of at least three vertex
indices. The face is said to beincidenton such vertices. Anedgeis a pair of vertices listed consecutively
in at least one face.

We callconnectivityof a mesh, the set of ordered subsets of indices provided by the set of faces{fj },
modulo circular permutation. We use the wordgeometryto mean the set of vertex coordinates{vi}.

We call the subset of faces of{fj } that share a vertexv the star of v, notedv?. The link of a vertex
is a graph consisting of the edges of the star ofv not incident tov (see Fig. 21). Aregular vertexhas a
simply connected link; otherwise the vertex is asingular vertexor non-manifold vertex. We call an edge
incident on one single face aboundary edge, an edge incident on exactly two faces aregular edge, and
an edge incident on three or more faces asingular edge. A regular vertex incident to a boundary edge is
called aboundary vertex. These cases are illustrated in Fig. 21. A mesh is amanifold if each vertex is a
regular vertex; otherwise it is anon-manifold. Additional definitions (notably orientability) are provided,
for instance, in [8].
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