

CS-5630 Scientific Visualization

Basics of Vector Field Topology

Xavier Tricoche SCI Institute

Examples

Basics of Vector Field Topelogy

Motivation

- Abstract representation of flow field
- Characterization of global flow structures
- Basic idea (steady case):
 - Interpret flow in terms of streamlines
 - Classify them w.r.t. their limit sets
 - Determine regions of homogenous behavior
- Graph depiction
- Fast computation

- Limit sets of a point $\mathbf{x} \in \mathbb{R}^n$
 - $\omega(\mathbf{x})$: omega limit set of $\mathbf{x} = point$ (or curve) reached after forward integration by streamline seeded at \mathbf{x}
 - $-\alpha(\mathbf{x})$: alpha limit set of $\mathbf{x} =$ point (or curve) reached after **backward** integration by streamline seeded at \mathbf{x}
- Sources (α) and sinks (ω) of the flow
- Basin: region of influence of a limit set

• Phase portrait

Basics of Vector Field Top blogy

• Limit sets

Basics of Vector Field Top[®]logy

• Flow direction

Basics of Vector Field Topology

• ω -basin of sink

Basics of Vector Field Top8logy

• α -basin of source

Basics of Vector Field Top9logy

- Equilibrium
 - $-\vec{v}(\mathbf{x}_0) = \vec{0}$
 - Streamline reduced to a single point
- Remarks
 - Asymptotic flow convergence / divergence
 - Streamlines "intersect" at critical points
- Type of critical point determines local flow pattern around it

- Jacobian has full rank
 No zero eigenvalue
- Major cases

CS-5630 Scientific Visualization

 Type determined by Jacobian's eigenvalues:

- Positive real part: repelling (source)

CS-5630 Scientific Visualization

Basics of Vector Field Topblogy

Basics of Vector Field Top

Critical Point Extraction

Cell-wise analysis

- Solve linear / quadratic equation to determine position of critical point in cell
- Compute Jacobian at that position
- Compute eigenvalues
- If type is saddle, compute eigenvectors

Closed Orbits

- Curve-type limit set
- Sink / source behavior
- Poincaré map:

- Defined over cross section
- Map each position to next intersection with cross section along flow
- Discrete map
- Cycle intersects at fixed point
- Hyperbolic / non-hyperbolic

CS-5630 Scientific Visualization

Basics of Vector Field Top

Closed Orbit Extraction

- Poincaré-Bendixson theorem:
 - If a region contains a limit set and no critical point, it contains a closed orbit

Basics of Vector Field Topbogy

Closed Orbit Extraction

- Detect closed cell cycle
- Check for flow exit along boundary
- Find exact position with Poincaré map

Basics of Vector Field Topbogy

Closed Orbit Extraction

Results

Basics of Vector Field Topbogy

Topological Graph

• Graph

- Nodes: critical points
- Edges: separatrices and closed orbits
- Remark
 - All streamlines in a given region have same α and ω -limit set

Problem

 Definition does not account for bounded domain

Topological Graph

Basics of Vector Field Top²⁰ogy

Local Topology

- Classification w.r.t. asymptotic convergence
- On bounded domain: streamlines leave domain in finite time
- Extend definition of topology
 - Inflow boundaries = sources
 - Outflow boundaries = sinks
 - Bounded by half-saddles
 - Additional separatrices

Basics of Vector Field Top&logy

Local Topology

Basics of Vector Field Top&ogy

Applications

- Can be combined with
 - Texture-based flow visualization
 - Color-coding of associated quantity
 - Topology-based streamline seeding

Applications

- Can be applied to the gradient of a related scalar field (cf. Morse theory)
- Jacobian matrix is symmetric!
 - Eigenvalues are real: rotation free
 - Linear critical points are saddle and nodes
 - Interpretation as height field

What about transient flows?

- Parameter dependent topology:
 - -Critical points move, appear, vanish, transform

-Graph connectivity changes

 Structural stability (Peixoto): topology is stable w.r.t. small but arbitrary changes of parameter(s) if and only if

1) Number of critical points and closed orbits is finite and all are

hyperbolic2) No saddle-saddle connection

CS-5630 Scientific Visualization

Bifurcations

- Transition from one stable structure to another through unstable state
- Bifurcation value: parameter value inducing the transition
- Local vs. global bifurcations

Local Bifurcations

- Transformation affects local region
- Fold bifurcation: saddle + sink/source

CS-5630 Scientific Visualization

Basics of Vector Field Top 7 logy

Local Bifurcations

- Transformation affects local region
- Hopf bifurcation: sink/source + closed orbit

Basics of Vector Field Top

Global Bifurcations

- Affects overall topological connectivity
- Basin bifurcation

Global Bifurcations

- Modifies overall topological connectivity
- Homoclinic bifurcation

Saddle-saddle connection

CS-5630 Scientific Visualization

Basics of Vector Field Top Bogy

Global Bifurcations

- Modifies overall topological connectivity
- Periodic blue sky

CS-5630 Scientific Visualization

Basics of Vector Field Topology

Cell-wise Tracking

prism cell

- Time-wise interpolation
- Cell-wise tracking over 2+1D grid
- Detect local bifurcations

Cell-wise Tracking

Basics of Vector Field Top&logy

Cell-wise Tracking

Basics of Vector Field Top3dogy

Cell-wise Tracking

Basics of Vector Field Top3dogy

Feature Flow Field

• Feature Flow Field

 Track path of critical points by streamline integration in vector field defined over (n+1)D space-time domain

$$\vec{f}(x, y, t) = \begin{pmatrix} u(x, y, t) \\ v(x, y, t) \end{pmatrix} \vec{g}(x, y, t) = \nabla u \times \nabla v$$

- The value of \vec{f} (e.g. $\vec{0}$) is constant along streamlines of \vec{g}

Feature Flow Field

Basics of Vector Field Top39ogy

3D Flow Topology

Critical points

Both line and surface separatrices exist

CS-5630 Scientific Visualization

Basics of Vector Field Top 8 logy

3D Cycles

- Similar principle as in 2D
 - Isolate closed cell chain in which streamline integration appears captured
 - Start stream surface integration along boundary of cell-wise region
 - Use flow continuity to exclude reentry cases

3D Cycles

Basics of Vector Field Top 89 ogy

3D Topology Extraction

- Cell-wise critical point extraction:
 - Compute root of linear / trilinear expression
 - Compute Jacobian at found position
 - If type is saddle compute eigenvectors
- Extract closed streamlines
- Integrate line-type separatrices
- Integrate surface separatrices as stream surfaces

3D Topology Extraction

Basics of Vector Field Topology

CS-5630 Scientific Visualization

Basics of Vector Field Top&ogy

Basics of Vector Field Top6logy

Basics of Vector Field Topblogy

Basics of Vector Field Topblogy