# 2D Vector Field Visualization 

Thanks to Prof. Hansen for integration slides

## Vectors

- Directional information
- Wind, mechanical forces (earthquakes)
- Flows
- Harder: more than one pixel per vector
- Clutter


## Glyphs

- Place symbols over vector field
- Regularly spaced
- Randomly spaced
- Scale
- Watch out for clutter

- (demo: vector_vis.vt: basic, masking)


# Div, grad, curl and all that 

- We've seen grad
- For 2D vector fields, div and curl are scalars
- Use that for additional info
- "Layers" in the visualization


## Streamlines

- Lines that are everywhere tangent to the vector field - $f(0)=x_{0}, \dot{f}(x)=u(x)$
- That's a diff. eq.
- Solving for $f(x)$ is an initial value problem
- (demo: vector_vis.py, streamlines)



## Streamlines are cool

- Streamlines give us a lot of information about the field
- Partition flow
- Help portray divergence


## Computing Streamlines

- Approximate curve by sequence of line segments
- Naive: compute each segment by jumping in the direction of current vector
- This is the Euler integrator, and it is bad
- Can we do better?


## Euler vs. Runge-Kutta

- Euler: accurate if streamlines are lines
- But error accumulation is typically catastrophic (Why?)
- Runge-Kutta: accurate on higher-order streamlines
- Family of schemes


## Euler's Method

- Let Stock $=\mathrm{X}$

Let flow $=\mathrm{f}(\mathrm{t}, \mathrm{X})$
[function of time, Stock]
-Compute $X(t)$ from $X(t-d t)$ and time.

$$
\begin{aligned}
& \mathrm{n} \Delta \mathrm{X}=\mathrm{dt} * \mathrm{f}(\mathrm{t}-\mathrm{dt}, \mathrm{X}(\mathrm{t}-\mathrm{dt})) \\
& { }^{\mathrm{n}} \mathrm{X}(\mathrm{t})=\mathrm{X}(\mathrm{t}-\mathrm{dt})+\Delta \mathrm{X}
\end{aligned}
$$

Euler's Method Assume flow $=\mathrm{f}(\mathrm{t})$.

Euler's Method Assume flow $=\mathrm{f}(\mathrm{t})$.


Euler's Method
Assume flow $=\mathrm{f}(\mathrm{t})$.

$$
\xrightarrow[t(t-d t)]{\Delta x=d t t_{t}}
$$

Euler's Method
Assume flow = f( t$)$.

$$
\begin{aligned}
& f(t-d t) \\
& \Delta X \\
& \Delta X=d t{ }^{*} f(t-d t) \\
& \xrightarrow{t-d t a t} \\
& \text {. dt. }
\end{aligned}
$$

## Euler's Method

## Assume flow $=\mathrm{f}(\mathrm{t})$.



## Euler Integration Error

*Error $=\Delta \mathrm{X}$ - area under flow curve

## Euler Integration Error

*Error $=\Delta X$ - area under flow curve

Error $=$

## Euler Integration Error

*Error $=\Delta X$ - area under flow curve

Error $=\Delta \mathrm{X}$

## Euler Integration Error

*Error $=\Delta \mathrm{X}$ - area under flow curve


## Euler Integration Error

*Error $=\Delta X$ - area under flow curve


## Runge-Kutta 2

เ Let Stock $=X$, flow $=f(t, X)$

- Estimates for stock updates:

$$
\begin{aligned}
& \text { n } \mathrm{F} 1=\mathrm{dt} * \mathrm{f}(\mathrm{t}-\mathrm{dt}, \mathrm{X}(\mathrm{t}-\mathrm{dt})) \\
& \mathrm{n} \mathrm{~F} 2=\mathrm{dt} * \mathrm{f}(\mathrm{t}, \mathrm{X}(\mathrm{t}-\mathrm{dt})+\mathrm{F})
\end{aligned}
$$

$$
\Delta \Delta X=1 / 2 *(F 1+F 2)
$$

$$
\otimes X(t)=X(t-d t)+\Delta X
$$

Runge-Kutta 2 Assume flow $=f(\mathrm{t})$.

Runge-Kutta 2
Assume flow $=f(t)$.
$\mathrm{f}(\mathrm{t}-\mathrm{dt})$ $\xrightarrow{f(t)}$ O-dt
$\mathrm{flov}=f(\mathrm{t})$
dt.

Runge-Kutta 2
Assume flow $=f(t)$.
$f(t-d t)$



$\xrightarrow{t-d t} d t \xrightarrow{t}$

Runge-Kutta 2
Assume flow $=f(t)$.
$f(t-d t)$
 $f(t)$--

dt

Runge-Kutta 2
Assume flow $=f(t)$.
$f(t-d t)$

$f(t)$

. dt .
Like Trapezoid Method.

## RK2 Integration Error

*Error $=\Delta \mathrm{X}$ - area under flow curve

## RK2 Integration Error

*Error $=\Delta \mathrm{X}$ - area under flow curve

Error =

## RK2 Integration Error

*Error $=\Delta \mathrm{X}$ - area under flow curve

Error $=$

$$
\Delta X
$$

## RK2 Integration Error

*Error $=\Delta X$ - area under flow curve

Error $=$
$\Delta X$

## RK2 Integration Error

*Error $=\Delta X$ - area under flow curve

## Runge-Kutta 4

*Let Stock $=X$, flow $=f(t, X)$
$\diamond$ Estimates for stock updates:
n $\mathrm{F} 1=\mathrm{dt}$ * $\mathrm{f}(\mathrm{t}-\mathrm{dt}, \mathrm{X}(\mathrm{t}-\mathrm{dt}))$
n $\mathrm{F} 2=\mathrm{dt} * \mathrm{f}(\mathrm{t}-1 / 2 \mathrm{dt}, \mathrm{X}(\mathrm{t}-\mathrm{dt})+1 / 2 * F 1)$
${ }^{n} \mathrm{~F} 3=\mathrm{dt} * f(\mathrm{t}-1 / 2 \mathrm{dt}, \mathrm{X}(\mathrm{t}-\mathrm{dt})+1 / 2 * F 2)$
${ }^{n} \mathrm{~F} 4=\mathrm{dt} * \mathrm{f}(\mathrm{t}, \mathrm{X}(\mathrm{t}-\mathrm{dt})+\mathrm{F} 3)$
$* \Delta X=1 / 6 *(F 1+2 * F 2+2 * F 3+F 4)$
$\forall X(\mathrm{t})=\mathrm{X}(\mathrm{t}-\mathrm{dt})+\Delta \mathrm{X}$

Runge-Kutta 4 Assume flow $=f(t)$.

Runge-Kutta 4
Assume flow $=f(t)$.


Runge-Kutta 4
Assume flow $=f(t)$.


## Runge-Kutta 4 Assume flow $=\mathrm{f}(\mathrm{t})$.



## Steady vs. unsteady

- Flows change with time
- For every timestep, a different vector

- But, what about streamlines, then?


## Pathlines and Streaklines

- Pathlines: look at a single speck of dust as it moves through field
- demo
- Streaklines: plume of smoke
- No VTK support for these :(


## Streaklines in real life



## Streaklines in real life


$R=32$

$R=55$

$R=65$

$R=73$

$R=102$

.
$R=16 \mathrm{r}$

## Pathlines and Streaklines

- Streaklines still never cross one another (why?)
- But pathlines, in general, do


## Line Integral Convolution

- Basic idea: Integrate noise along streamlines
- demo: http://www.javaview.de/demo/ PaLIC.html



## IBFV

- LIC gives direction, but not magnitude - IBFV: "animated LIC, kind of"
- http://www.win.tue.nl/~vanwijk/ibfv/

