2D Vector Field Visualization

Thanks to Prof. Hansen for integration slides

Vectors

• Directional information

• Wind, mechanical forces (earthquakes)

• Flows

• Harder: more than one pixel per vector

• Clutter

Glyphs

• Place symbols over vector field

- Regularly spaced
- Randomly spaced
- Scale
- Watch out for clutter

• (demo: vector_vis.vt: basic, masking)

Div, grad, curl and all that

- We've seen grad
- For 2D vector fields, div and curl are scalars
- Use that for additional info
 - "Layers" in the visualization

Streamlines

- Lines that are everywhere tangent to the vector field
 f(0) = x₀, f(x) = u(x)
- That's a diff. eq.
- Solving for f(x) is an **initial value problem**
- (demo: vector_vis.py, streamlines)

Streamlines are cool

- Streamlines give us a lot of information about the field
 - Partition flow
 - Help portray divergence

Computing Streamlines

- Approximate curve by sequence of line segments
- Naive: compute each segment by jumping in the direction of current vector
 - This is the **Euler integrator**, and it is bad
- Can we do better?

Euler vs. Runge-Kutta

• Euler: accurate if streamlines are lines

- But error accumulation is typically catastrophic (Why?)
- Runge-Kutta: accurate on higher-order streamlines
 - Family of schemes

Euler's Method

Let Stock = X
Let flow = f(t, X) [function of time, Stock]
Compute X(t) from X(t-dt) and time.
ΔX = dt * f (t-dt, X(t-dt))
X(t) = X(t-dt) + ΔX

Euler's Method

Assume flow = f(t).

\mathbf{A} Error = $\Delta \mathbf{X}$ – area under flow curve

Error = ΔX

Error = ΔX – area under flow curve

Error = ΔX

Error = ΔX – area under flow curve

Runge-Kutta 2

• Let Stock = X, flow = f(t,X) • Estimates for stock updates: $P_{1} = dt * f(t-dt, X(t-dt))$ $P_{2} = dt * f(t, X(t-dt) + F1)$ • $\Delta X = \frac{1}{2} * (F1 + F2)$ • $X(t) = X(t-dt) + \Delta X$

Error = ΔX – area under flow curve

Runge-Kutta 4

• Let Stock = X, flow = f(t,X)Estimates for stock updates: F1 = dt * f(t-dt, X(t-dt))n F2 = dt * $f(t-\frac{1}{2}dt, X(t-dt) + \frac{1}{2}*F1)$ $F3 = dt * f(t-\frac{1}{2}dt, X(t-dt) + \frac{1}{2}*F2)$ n F4 = dt * f(t, X(t-dt) + F3) $\Delta X = 1/6 * (F1 + 2*F2 + 2*F3 + F4)$ $X(t) = X(t-dt) + \Delta X$

Steady vs. unsteady

• Flows change with time

• For every timestep, a different vector

• But, what about streamlines, then?

Pathlines and Streaklines

- Pathlines: look at a single speck of dust as it moves through field
 - demo
- Streaklines: plume of smoke
 - No VTK support for these :(

Streaklines in real life

NASA Dryden Flight Research Center Photo Collection http://www.dfrc.nasa.gov/gallery/photo/index.html NASA Photo: ECN-33298-03 Date: 1985

1/48-scale model of an F-18 aircraft in Flow Visualization Facility (FVF)

NASA

Dryden Flight Research Center ECN 33298-47 Photographed 1985 F-18 water tunnel test in Flow Visualization Facility NASA/Dryden

Streaklines in real life

R = 32

R = 73

R = 55

R = 102

R = 65

R = 161

Pathlines and Streaklines

- Streaklines still never cross one another (why?)
- But pathlines, in general, do

Line Integral Convolution

- Basic idea: Integrate noise along streamlines
- demo: <u>http://www.javaview.de/demo/</u> <u>PaLIC.html</u>

IBFV

LIC gives direction, but not magnitude
IBFV: "animated LIC, kind of"

http://www.win.tue.nl/~vanwijk/ibfv/