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Computational Modeling System for
Carbon Fiber Repair and Sustainment
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Visualization of 10D Combustion
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10 dimensional data set describing the heat release wrt. to
various chemical species in a combustion simulation
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Design of a New Composite Materials

+ Features in experimental data
show unexpected structures
and are used to plan future
experiments.

Stakeholder: A. Karim, PNNL.
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Analysis of a 7-dimensional
space show three regions of
high value corresponding of
three “ways” of achieving a
high quality material that are
based on different
composition of the possible
materials.
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Design of a New Composite Materials

+ Features in experimental data
show unexpected structures
and are used to plan future
experiments.

Stakeholder: A. Karim, PNNL.
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Analysis of a 7-dimensional
space show three regions of
high value corresponding of
three “ways” of achieving a
high quality material that are
based on different
composition of the possible
materials.

A low value region shows a
large connected space
describing low quality material
that show NOT be

manufactured
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Design of a New Composite Materials
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Design of a New Composite Materials by
Further Sampling of Promising Regions
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Uncertainty Visualization

When is the last time you’ve seen an error
bar on an isosurface?
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Uncertainty in Machine Learning

Draws from a Bayesian neural network
posterior with various approximating
distributions.

Shown are predictive mean (thick blue line),
predictive uncertainty (shaded area, showing
2 standard deviations), and draws from the
posterior (thin black lines).

Yarin Gal. Uncertainty in Deep Learning

https://www.cs.ox.ac.uk/people/yarin.gal/website/
blog_2248.html
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(a) Dropout

(b) Multiplicative Gaus-
sian noise (MGN)
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More Information

www.Scl.utah.edu

cri@sci.utah.edu
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