
Journal of Flow Visualization & Image Processing, x(x): 1–18 (2017)

EXPLORATORY LAGRANGIAN-BASED
PARTICLE TRACING USING DEEP
LEARNING

Mengjiao Han,∗ Sudhanshu Sane, & Chris R. Johnson

University of Utah, SCI Institute, Salt Lake City, UT 84112, USA

*Address all correspondence to: Mengjiao Han, E-mail: mengjiao@sci.utah.edu

Time-varying vector fields produced by computational fluid dynamics simulations are often pro-
hibitively large and pose challenges for accurate interactive analysis and exploration. To address
these challenges, reduced Lagrangian representations have been increasingly researched as a means
to improve scientific time-varying vector field exploration capabilities. This paper presents a novel
deep neural network-based particle tracing method to explore time-varying vector fields represented
by Lagrangian flow maps. In our workflow, in situ processing is first utilized to extract Lagrangian
flow maps, and deep neural networks then use the extracted data to learn flow field behavior. Using
a trained model to predict new particle trajectories offers a fixed-small memory footprint and fast
inference. To demonstrate and evaluate the proposed method, we perform an in-depth study of per-
formance using a well-known analytical data set, the Double Gyre. Our study considers two flow
map extraction strategies as well as the impact of the number of training samples and integration
durations on efficacy, evaluates multiple sampling options for training and testing, and informs hy-
perparameter settings. Overall, we find our method requires a fixed-memory footprint of 10.5 MB
to encode a Lagrangian representation of a time-varying vector field while maintaining accuracy.
For post hoc analysis, loading the trained model costs only two seconds, significantly reducing the
burden of I/O when reading data for visualization. Moreover, our parallel implementation can infer
one hundred locations for each of two thousand new pathlines across the entire temporal resolution
in 1.3 seconds using one NVIDIA Titan RTX GPU.

KEY WORDS: Lagrangian Representation, Flow Visualization, Deep Learning

1. INTRODUCTION

Numerical flow visualization plays a critical role in enabling scientists to understand fluid phe-
nomena and improve computational fluid dynamics models. Although simulations typically pro-
duce time-varying vector fields, analysis and visualization are often limited to single time slices
due to I/O constraints and memory requirements. Performing accurate time-varying flow visu-
alization using traditional methods requires a high temporal resolution of the vector field data.
A potential solution to perform accurate time-varying flow visualization is to consider a La-
grangian representation of the vector field. Lagrangian representations have been demonstrated
to offer strong accuracy-storage propositions compared to traditional techniques (Agranovsky

1065–3090/17/$35.00 © 2017 by Begell House, Inc. 1

2 Mengjiao Han, Sudhanshu Sane, & Chris R. Johnson

et al. (2014); Sane et al. (2021a)). The approach involves two phases: in situ and post hoc. La-
grangian representations are extracted from computational simulations using in situ processing
and explored during post hoc analysis. In this paper, we study the use of deep learning methods
to perform post hoc exploration of time-varying vector fields using reduced Lagrangian repre-
sentations computed in situ as training data.

In recent years, the scientific visualization community has seen an increased adoption of
deep learning (Berger et al. (2018); Engel and Ropinski (2020); Han and Wang (2019); Han
et al. (2020); He et al. (2019); Hong et al. (2019); Leventhal et al. (2019); Weiss et al. (2019)),
including multiple research projects that consider vector field data (Guo et al. (2020); Han et al.
(2018, 2019); Jakob et al. (2020); Kim et al. (2019); Liu et al. (2019); Sahoo and Berger (2021)).
With respect to exploratory Lagrangian-based particle advection schemes, the use of deep learn-
ing has not previously been studied to the best of our knowledge. Prior strategies have relied on
constructing search structures over the data to identify sets of precomputed particle trajectories
that can be interpolated across intervals of time. Search structures such as k-d trees and Delau-
nay triangulations can be computationally expensive to compute for each interval and memory
intensive for large data sets (Chandler et al. (2014); Hlawatsch et al. (2010); Sane et al. (2019)).
Our study shows that, by leveraging deep learning, we can limit the memory footprint of the ex-
tracted data. Importantly, once the model is trained, it provides quick inference of new particle
trajectories during post hoc analysis and exploration.

Overall, we contribute the first deep neural network-based method to encode Lagrangian
flow maps and enable exploratory particle tracing in time-varying flow fields. Our study demon-
strates the performance of the method across varying hyperparameter settings as well as multiple
Lagrangian representation configurations. Our trained model requires a fixed-memory footprint
of 10.5 MB, potentially offering a potentially significant data reduction for high-resolution flow
maps and alleviating I/O costs during exploration. Further, the trained model can infer new tra-
jectories accurately and at rates supporting interactive exploration. Lastly, we consider a widely
studied analytical data set, the Double Gyre, as well as, a second vector field targeted to machine
learning applications to demonstrate our approach.

2. RELATED WORK

This section provides background on Lagrangian analysis, the use of reduced Lagrangian repre-
sentations, and the use of machine learning for flow visualization tasks.

2.1 Lagragian Analysis

Lagrangian analysis is a powerful tool, widely adopted by the ocean modeling community
(Van Sebille et al. (2018)), to explore time-varying vector fields generated by simulations. In
response to growing data set sizes, reduced Lagrangian representations have been increasingly
researched as a solution to enable time-varying vector field exploration across various applica-
tion domains. Reduced Lagrangian representations are computed using in situ processing and
explored during post hoc analysis. By utilizing in situ processing, Lagrangian representations
are computed using the complete spatial and temporal resolution of the simulation data. Studies
have demonstrated reduced Lagrangian representations offer strong accuracy-storage proposi-
tions for exploration in temporally sparse settings (Agranovsky et al. (2014); Rapp et al. (2019);
Sane et al. (2021a)) as well as directly support feature extraction (Froyland and Junge (2018);

Journal of Flow Visualization & Image Processing

Exploratory Lagrangian-Based Particle Tracing Using Deep Learning 3

Froyland and Padberg-Gehle (2015); Hadjighasem et al. (2017); Jakob et al. (2020); Schlueter-
Kuck and Dabiri (2017)). Additionally, previous research has demonstrated the traditional Eu-
lerian paradigm performs poorly in under-resolved temporal settings (Agranovsky et al. (2014);
Da Costa and Blanke (2004); Qin et al. (2014); Rockwood et al. (2019); Sane et al. (2018,
2021a)).

In the Lagrangian specification of a time-varying vector field, information is encoded us-
ing particle trajectories. Thus, the Lagrangian representation consists of a collection of parti-
cle trajectories spanning the spatial domain and can be defined as a flow map. The flow map
F t
t0
(x0) : Rd × R × R → Rd describes where a massless particle starting at position x0 ∈ Rd

and time t0 ∈ R moves in the time interval [t0, t] ⊂ R (Garth et al. (2007)).
Research related to reduced Lagrangian representations that enable time-varying vector

fields has advanced along multiple axes. These include in situ sampling techniques (Agranovsky
et al. (2014); Rapp et al. (2019); Sane et al. (2019, 2021b)), post hoc reconstruction strate-
gies (Agranovsky et al. (2015); Bujack and Joy (2015); Chandler et al. (2014); Hlawatsch et al.
(2010)), theoretical and empirical error analysis (Chandler et al. (2016); Hummel et al. (2016);
Sane et al. (2018)), feature extraction (Froyland and Junge (2018); Froyland and Padberg-Gehle
(2015); Hadjighasem et al. (2017); Jakob et al. (2020); Schlueter-Kuck and Dabiri (2017)), and
application to various domains (Nardini et al. (2017); Sane et al. (2021a); Siegfried et al. (2019)).
In this paper, we study the use of deep learning to perform post hoc reconstruction. Specifically,
we propose and evaluate the use of multi-layer perceptrons (MLPs) to learn the time-varying vec-
tor field behavior from previously computed particle trajectories. With deep learning, a model
can be trained once and then be interactively queried at the time of exploration without the sig-
nificant memory requirements of prior approaches. Our study focuses on the impact of various
hyperparameters and extraction configurations on the efficacy of post hoc reconstruction as well
as the overall computational cost.

2.2 Flow Visualization Using Machine Learning

In recent years, machine learning techniques have been increasingly researched by the fluid dy-
namics community (Brunton et al. (2020)). Similarly, with respect to scientific visualization,
specifically, flow visualization, the use of machine learning to perform several tasks has in-
creased. For example, it has been widely used to detect flow field features such as eddies and
vortices (Bai et al. (2019); Deng et al. (2019); Duo et al. (2019); Lguensat et al. (2018); Liu et al.
(2019); Ströfer et al. (2018); Wang et al. (2021); Yi (2018)). Kim and Günther (2019) utilized the
convolutional neural networks (CNNs) to extract a robust frame of reference for unsteady two-
dimensional (2D) vector fields. Hong et al. (2018) used the long short-term memory (LSTM) to
improve data access patterns for improved computational performance during distributed mem-
ory particle advection. Li et al. (2015) employed the support vector machine (SVM) to segment
streamlines based on user-identified features. For the widely studied task of selecting a represen-
tative set of particle trajectories (Sane et al. (2020)), recent state-of-the-art techniques by Han
et al. (2018) and Lee and Park (2021) have used deep-learning-based clustering approaches.
Further, modern techniques to reconstruct steady state vector fields using a set of streamlines
employ machine learning (Han et al. (2019); Sahoo and Berger (2021)).

Jakob et al. (2020) upsampled 2D finite-time lyapunov exponent (FTLE) scalar fields de-
rived from Lagrangian flow maps using an efficient subpixel convolutional neural network (ES-
PCN) by Shi et al. (2016) and SRCNN by Dong et al. (2015). In our study, we use the Lagrangian
representations of 2D time-varying vector fields as data to train neural networks built with MLPs.

Volume x, Issue x, 2017

4 Mengjiao Han, Sudhanshu Sane, & Chris R. Johnson

We then infer new particle trajectories from the model to support the exploration use case. Our
study shows that the application of deep learning to particle tracing can offer the significant
benefits of reduced memory requirement and accurate trajectory inference.

3. LAGRANGIAN ANALYSIS USING DEEP LEARNING

We designed our network to learn the flow behavior encoded by the Lagrangian representation
of the time-varying vector field. Figure 1a shows the workflow of in situ training data generation
process, network training process, and the post hoc inference process. In the in situ extraction
phase, Lagrangian flow maps are computed by advecting particles using the full spatial and
temporal resolution of the time-varying vector field. We considered two approaches to extract
flow maps,

• Lagrangianlong: extract a single flow map consisting of long particle trajectories with
a uniform temporal sampling of each integral curve.

• Lagrangianshort: extract multiple short flow maps with each flow map consisting of a
set of seed locations and a set of end locations for each seed, where each end location
in a set corresponds to the displacement from the seed location over non-overlapping
intervals of time.

In our paper, we follow the notation used by Agranovsky et al. (2014). We refer to the cycles
where the end location is saved out as file cycles.

To begin the post hoc analysis phase, the network fetches flow maps from the database, pre-
processes them, and loads data as training samples (Section 3.1). The network architecture is
built with MLP that are a series of fully connected layers (Section 3.2). The loss function is set
to the L1 loss, which is calculated as the error between the target end location and the predicted
end location. During the training process, the model takes two parameters, particle start locations
and queried file cycles as inputs, and outputs the corresponding end locations. Weights of the
model are updated by backpropagation of the loss to find the optimized weights (Section 3.3).
Finally, new trajectories can be infered from the trained model (Section 3.4).

3.1 Training Data Generation

We stored extracted Lagrangian flow maps in the form of training data for the model. We consid-
ered two strategies to sample the time-varying vector field. The first strategy, Lagrangianlong,
involves computing long trajectories with uniform sampling along the curve. Reconstruction of
new trajectories using long precomputed trajectories is more accurate when the propagation of
error is eliminated after every interpolation step (Hummel et al. (2016); Sane et al. (2019)).
However, the quality of domain coverage may be reduced as the integration time increases due
to divergence in the flow field (Chandler et al. (2016)). The second strategy, Lagrangianshort,
involves computing sets of short trajectories with only the start and end location after non-
overlapping intervals of time stored. Although such an approach offers improved domain cover-
age (Agranovsky et al. (2014)), the particle trajectory reconstruction may be less accurate due to
error propagation (Bujack and Joy (2015)).

For both approaches, the first step is placing sample seeds in the domain. In this paper, we
denote the number of seeds by N . To understand the impact of the seed placement strategy on
the model inference performance, we studied three strategies: (1) seeding along a uniform grid

Journal of Flow Visualization & Image Processing

Exploratory Lagrangian-Based Particle Tracing Using Deep Learning 5

(uniform), (2) seeding using a pseudorandom number sequence (random), and (3) seeding
using a Sobol quasirandom sequence (sobol). Specifically, we considered reconstruction accu-
racy near features of interest and boundaries. Although placing uniform seeds can provide good
domain coverage and fast interpolation during post hoc analysis, it does not optimize infor-
mation per byte stored. Thus, in many practical cases, the Lagrangian representation can be
unstructured and would typically incur a higher interpolation cost during post hoc analysis. By
considering random and sobol seeding, we were able to demonstrate the fast inference of new
trajectories from unstructured Lagrangian flow maps. We compare these three seeding choices
in Section 4.2.1.

After seeds are placed, particle trajectories are computed by displacing particles from time t
to t+ δ, where δ indicates an advancement by one simulation time step. Following the notation
in Agranovsky et al. (2014), we refer to one simulation advancement as a cycle, the cycle on
which the simulation saves data as a file cycle, and the number of cycles between file cycles as
the interval in the following sections. Given a total temporal duration T , the total number of file
cycles n can be calculated by

n = floor(T/(δ ∗ C)) (1)

where C represents the file cycle interval. Thus, the list of file cycles is C0:n−1 =
[C, 2C, 3C, ..., nC]. To generate Lagrangianlong flow maps, seeds are placed once at the
beginning at time t0 = 0 and traced until T , i.e., the entire temporal duration. Intermediate loca-
tions are recorded along each trajectory at every file cycle. To generate Lagrangianshort flow
maps, particle tracing starts at time t0 = 0 and terminates at time t1 = t0 + δ ∗ C. Then, the
location at t1 is saved, and seeds are reset for the tracing until the next file cycle. This process is
repeated until the last file cycle.

The training data sets are saved in the NPY file format for efficient loading in Python. We
created a three-dimentional (3D) array, with dimensions of [n + 1, N, 3], for saving start seed
locations and corresponding end locations at various file cycles. When loading the data sets, the
data are organized into training samples, as shown in Equation 2. One training sample contains
start location starti (where i = 0, 1, ...N−1), the queried file cycleCj (where j = 0, 1, ...n−1),
and the target end location at the queried file cycle targeti,j (where i = 0, 1, ...N − 1 and
j = 0, 1, ...n − 1). The start location and the queried file cycle are inputs to the network. The
target end locations are used for calculating the loss (Equation 3). In addition to training data,
we generated validation data by using 0.1 ∗ N seeds (10% of training samples) and following
the same process.

Inputs ={{start0, C0, target0,C0},
{start0, C1, target0,C1}, ...,
{start0, Cn−1, target0,Cn−1}, ...,
{startN−1, Cn−1, targetN−1,Cn−1 , }}

(2)

3.2 Network Architecture

The network architecture, shown in Figure 1b, consists of a latent encoderE and a latent decoder
D. The latent encoder E and decoder D are built with MLP, a series of fully connected layers.
The latent encoder E takes a particle’s start location start and a queried file cycle Cj as inputs.
These two parameters are separately fed into two sequences of fully connected layers of size (64,
128, 256, 512) and (16, 32, 64, 128, 256, 512). The two outputs are then concatenated together

Volume x, Issue x, 2017

6 Mengjiao Han, Sudhanshu Sane, & Chris R. Johnson

as a latent vector. Next, the latent decoder D that is also a series of fully connected layers of
size (512, 256, 128, 64) is followed by the latent vector being mapped to predicted end location
pred at the queried file cycle. We added layer normalization (Ba et al. (2016)) after each fully
connected layer except output layers to stabilize the training process. Moreover, we used the
rectified linear unit (ReLU) (Nair and Hinton (2010)) as the activation function for each output
from the fully connected layer.

3.3 Training Process

Algorithm 1: Training Process
Input: Data set shown in Equation 2

Initial weights of the network w
Output: Optimized weights w
Load training data set
for each epoch do

for each batch of training samples do
model.train()
pred = model(start, queried file cycle)
loss = L1 Loss(pred, target)
Backpropagation and update weight w

end
for each batch of validation samples do

model.eval()
pred = model(start, queried file cycle)
loss = L1 Loss(pred, target)

end
call learning rate scheduler adjust the learning rate if needed

end

We implemented our neural network using Pytorch (Paszke et al. (2019)). The training pro-
cess, shown in Algorithm 1, aims to find the optimized weights w of the network. The weights
are initialized by Pytorch. We created a custom Pytorch Dataset class to load and store all train-
ing samples. We then loaded the Pytorch Dataset object into a Pytorch DataLoader for iterating
through the training samples. At the beginning of each epoch, the training samples are shuffled
and split into batches. Given a batch of training samples, the forward process computes the out-
put following the network architecture and computes the loss as defined by the loss function.
The backpropagation process is done automatically using Pytorch by calling loss.backward(),
and the weights are updated by the optimizer. For our experiments, we trained the network for
100 epochs using the Adam optimizer (Kingma and Ba (2014)) with the hyperparameters of
β1 = 0.9, β2 = 0.999, and ε = 1e− 6. Further, in our training process, we set the initial learn-
ing rate to 10−5 and used a learning rate scheduler (Contributors (2019)), provided by Pytorch
to reduce the current learning rate by a factor of 2 if the validation loss had not decreased for
five epochs. We applied L1 loss as loss functions in our method. L1 loss calculates the mean
absolute error between target and predicted end locations by the network (Equation 3).

L1 Loss = |target− pred| (3)

Journal of Flow Visualization & Image Processing

Exploratory Lagrangian-Based Particle Tracing Using Deep Learning 7

3.4 Inference Process

Besides varying generation processes for Lagrangianlong and Lagrangianshort, the inference
process when using the model trained by data from these two approaches also varies. When using
Lagrangianlong, interpolations are performed by always considering the new seed start location
at t0 = 0. The end location inferred by the model results from the provided start location and
the queried file cycle. In contrast, when using Lagrangianshort, new particle trajectories are
“stitched” together by advancing the new seed across intervals. Here, the inference is performed
by considering the location of the seed particle at the previous file cycle and the target file cycle.
Since every inference except the first uses previously inferred results, errors might propagate
along new trajectories when using Lagrangianshort (Hummel et al. (2016); Sane et al. (2019)).
We refer to the absolute error introduced by the model for any single inference as local error
and to the error accumulated along particle trajectories that are “stitched” together as global
error. Similar to other Lagrangian-based advection schemes, our inference process currently is
limited to interpolating the locations along a particle trajectory at file cycles, and in the case of
Lagrangianlong, it is limited to particles starting at t0 = 0.

To measure the accuracy of new particle trajectories inferred by the model, we calculated
the average of aggregated Euclidean distance between the target ground truth and the model
predicted along each trajectory (Equation 4).

errori =
1
n

n∑
j=0

L2(targetj − predj) (4)

where i represents the index of the new seed and n is the number of end locations (file cycles)
along the trajectories (Equation 1).

4. RESULTS

In this section, we first describe the data set used for our experiments (Section 4.1). Next, we
present an evaluation of sampling strategies and hyperparameters (learning rate, batch size) used
during training data generation (Section 4.2), followed by a report of the performance of our
proposed network for training and inferences (Section 4.3). Finally, to evaluate the accuracy
of the model across Lagrangian flow map extraction parameter settings, we quantitatively and
qualitatively evaluate the impact of varying the number of seeds (Section 4.4) and file cycle
intervals (Section 4.5).

4.1 Data Set

We conducted our study by considering a standard benchmark data set frequently used to study
fluid dynamics and, in particular, flow visualization tools and techniques: the 2D unsteady Dou-
ble Gyre Shadden et al. (2005). The model of the unsteady Double Gyre flow field is widely
studied for the computation of hyperbolic Lagrangian coherent structures (LCS) in flow data. For
all the training data generated, we considered a total temporal duration of [0, 10] with δ = 0.01.

Volume x, Issue x, 2017

8 Mengjiao Han, Sudhanshu Sane, & Chris R. Johnson

The Double Gyre flow field is defined by equation 5 within the spatial domain [0, 2]× [0, 1].

ψ(x, y, t) = Asin(πf(x, t))sin(πy)

f(x, t) = a(t)x2 + b(t)x

a(t) = εsin(ωt)

b(t) = 1− 2εsin(ωt)
where A = 0.1, ω = pi/5 and ε = 0.25

(5)

Our training data generation process used the analytical solution (Equation 5) for particle
advection during Lagrangian flow map computation. We show the velocity field at time 0 (Fig-
ure 2a) and the FTLE (Figure 2b) of the Double Gyre data set. The ridges of the FTLE scalar
field are used to approximate Lagrangian Coherent Structures in the flow. We extended the 2D
Double Gyre data sets to 3D by adding the same z-axis to every seed. The size of training data
sets increases linearly with a larger number of seeds and shorter intervals. In our experiments,
the minimum and maximum sizes of the reduced Lagrangian representation training data were
2.6MB and 24.2MB, respectively. We did not observe significant improvements of accuracy
using more training data for this data set. We generated all the training data sets using a desk-
top equipped with an Intel(R) Xeon(R) W-3275M CPU (56 cores; 256GB memory) and one
NVIDIA Titan RTX GPU. We computed the particle trajectories of the Lagrangian flow maps in
parallel using the TBB library (Intel (2007)).

4.2 Evaluation of Seeding Strategy and Hyperparameters Settings

Our model was implemented using the Pytorch library (Paszke et al. (2019)) and trained on dual
RTX 3090s GPUs. We considered two methods of extracting training data sets (Section 3.1):
Lagrangianlong and Lagrangianshort. We studied the impact of seeding strategy as well as
the learning rate and batch size for each flow map extraction approach.

4.2.1 Seeding Strategy

To generate training data, we evaluated three seed placement strategies: (1) seeding along a uni-
form grid (uniform), (2) seeding using a pseudorandom number sequence (random), and (3)
seeding using a Sobol quasirandom sequence (sobol). For this experiment, we sampled the time-
varying Double Gyre vector field domain using 2,000 seeds and a fixed file cycle interval of 30.
All models were trained with a batch size of 200 and a learning rate of 0.001. For the uniform
sampling experiment, we used a [50× 40] grid. Further, besides applying these three seed place-
ment strategies to generate training data sets, we also considered the strategies for testing seeds.
Figure 3 presents error maps produced by various combinations of seed placement strategies for
training and testing data, as well as outcomes considering two flow map extractions strategies.
Comparing error maps evaluated by using Lagrangianlong for sampling time-varying vector
field (Figure 3a), we found that the Sobol quasirandom sequence (sobol) was slightly better than
the pseudorandom number sequence (random). They both produced more accurate results for
the testing seeds that were not on the boundary. The uniform seeding (uniform) was more accu-
rate only when the testing seeds were also uniform. Moreover, the Sobol quasirandom sequence
(sobol) performed better than the pseudorandom number sequence (random) when sampling
the time-varying vector field using Lagrangianshort, and they were both better than the uni-
form seeding (uniform) (Figure 3b) except for seeds on the boundary. We chose the Sobol

Journal of Flow Visualization & Image Processing

Exploratory Lagrangian-Based Particle Tracing Using Deep Learning 9

quasirandom sequence (sobol) as the seeding strategy in all our following experiments. Further
work is required to identify sampling strategies that optimize the quality of the training data.

4.2.2 Learning Rate and Batch Size

The learning rate is a critical hyperparameter for a deep neural network. We examined
four settings of the learning rate: 10−2, 10−3, 10−4, and 10−5 for Lagrangianlong and
Lagrangianshort. For all experiments, the training data sets were generated with 5,000 seeds
and a file cycle interval of 30 using the sobol seed placement method with the Double Gyre data
set. The batch size was set to 200. The learning rate of 10−2 resulted in the model failing to con-
verge; therefore, we did not use it for comparison. We found the learning rates of 10−3 and 10−4

were better for our model when the training data sets were generated using the Lagrangianlong

flow map extraction strategy (Figure 4(a)). The learning rates of 10−3, 10−4, and 10−5 resulted in
a similar loss when the model was trained using data sets generated using the Lagrangianshort

approach (Figure 4(b)).
To identify the optimal combination of batch size with the learning rates of 10−3 and

10−4, we conducted a set of experiments. Our experiments considered three options for batch
size, two options for total number of training samples, and both flow map extraction strategies
(Lagrangianlong and Lagrangianshort). Figure 5) presents violin plots of the error for re-
constructed trajectories. Although we found the choice of learning rate and flow map extraction
strategy could significantly impact accuracy, varying the batch size did not result in a significant
change of accuracy for a fixed learning rate and flow extraction strategy.

4.3 Network Training and Inference

Table 1 reports time spent training the model, memory consumption for saving the trained model,
and the inference time to generate new trajectories with the trained model. As expected, the train-
ing time increased linearly with the number of training samples for both approaches. The storage
cost for saving the trained model, irrespective of the data set or number of training samples, was
fixed. Based on the network’s parameters, the trained models required the same memory size
of 10.5 MB. However, verification as well as understanding the impacts of complex, turbulent,
and 3D flow fields on network training and performance requires future in-depth investigation.
That said, considering the network’s parameters are independent of the complexity of the flow
field, we expect our method to scale and be used to reduce the memory footprint of large-scale
high-resolution Lagrangian representations of time-varying vector fields. An important conse-
quence of a small memory footprint is the reduced cost of two seconds to load the entire model,
thus alleviating the system from expensive I/O for loading data during exploratory visualization.
Further, our results show parallel inference of 2,000 trajectory with 20 locations interpolated to
approximate each curve costs 0.38s using the same machine as for generating training data sets.

4.4 Impact of Number of Seeds

We evaluated the impact of the number of seeds on the performance of our model qualitatively
and quantitatively. We used a fixed file cycle interval of 30 for all training data discussed in
this section. We created training data sets with four options for number of seeds, 5,000, 10,000,
15,000, and 20,000, for the Lagrangianlong and Lagrangianshort approaches. To evaluate
the accuracy of the reconstruction, 2,000 random particles were seeded in the domain. To avoid

Volume x, Issue x, 2017

10 Mengjiao Han, Sudhanshu Sane, & Chris R. Johnson

extrapolation errors due to our use of the sobol seeding strategy for training data generation (Sec-
tion 3.1), we used a boundary offset of 0.05 to prevent test seeds from being placed exactly on
the boundary.

In Figure 6, we report the error map as well as the FTLE derived from using various config-
urations for training data generation. The result highlighted the relation of the trained model’s
performance and flow features in the domain. The error for each trajectory was measured using
Equation 4. We observed reconstruction errors were higher in regions with greater separation
in the flow field, i.e., regions with higher FTLE values. Moreover, for both Lagrangianlong

and Lagrangianshort, the error maps confirmed that increasing the number of seeds could in-
crease the inference accuracy. In addition, we visualized the distribution of errors for the model-
generated results in comparison to the ground truth (Figure 7). We observed a decreasing median
error as the number of seeds used to sample the domain increased. However, the reduction in er-
ror was less after 10,000 seeds. Further, the models trained with Lagrangianshort data sets
showed greater global error due to local error propagation during reconstruction of new trajecto-
ries. In the derived FTLE fields in Figure 2b, although the FTLE ridges are visible in all recon-
structions, the Lagrangianlong can support accurate reconstruction of the entire field, whereas
the Lagrangianshort reconstructions produce minor artifacts in regions of low separation.

Finally, to assess the inference results qualitatively, Figure 8 shows the model-generated
trajectories and the ground truth Double Gyre trajectories by varying the number of training
seeds. The reconstructed results were almost identical to the ground truth for all new trajectories
when 10,000 or more seeds were used for training. When 5,000 seeds were used for training, the
Lagrangianshort demonstrated lower reconstruction accuracy as interpolation error propagates
and accumulates. In contrast, the Lagrangianlong closely followed the ground truth. Here, each
location along the trajectory was interpolated directly from the starting seed location. For the
Lagrangianlong, even training data generated using 5,000 seeds were sufficient to maintain
accuracy.

4.5 Impact of File Cycle Interval

To understand the performance of our model with varying file cycle intervals, we evaluated four
intervals, 10, 20, 50, and 100, in our experiments. We considered a total of 1,000 cycles of the
Double Gyre data set. Further, we used a fixed number of 10,000 seeds to generate the training
data sets.

In Figure 9, we report the error maps as well as the FTLE derived from using various con-
figurations for training data generation. The Lagrangianlong was not impacted by the file cycle
interval since each interpolation was independent of prior locations stored along the trajectory.
Reconstruction of new trajectories using the model trained by the Lagrangianshort data in-
volved an interpolation process where each location along the trajectory was dependent on the
previous location. Thus, we observed a higher reconstruction error when the interval was short,
and more intervals need to be spanned to construct a trajectory over the entire temporal duration.
For example, for training data generated by theLagrangianshort using an interval of 10, we saw
the reconstruction error was higher for particles originating near FTLE ridges. These findings are
consistent with the error analysis of Lagrangian-based particle tracing systems (Chandler et al.
(2016)). Similar to prior experiments, in Figure 2b, we observed the derived FTLE scalar fields
are accurate for the Lagrangianlong, but contained some artifacts for the Lagrangianshort.
Here, as expected, the Lagrangianshort shows fewer artifacts when using a longer file cycle
interval.

Journal of Flow Visualization & Image Processing

Exploratory Lagrangian-Based Particle Tracing Using Deep Learning 11

Considering the violin plots in Figure 10, we obsersed varying reconstruction accuracy pat-
terns. The Lagrangianlong accuracy did not change significantly with the file cycle interval.
The local error of the Lagrangianshort was low for short intervals, but increased as the interval
length increased due to greater divergence between neighboring trajectories over longer integra-
tion times. The global error of the Lagrangianshort represented the accuracy of particle trajec-
tories that are “stitched”. We found the global error was the highest when the file cycle interval
was short given a greater number of “stitching” events were involved. As the file cycle interval
increased, although the accuracy of every individual interpolation (local error) was higher, the
global error decreased due to fewer total interpolation steps. Again, these findings are consistent
with prior work by Chandler et al. (2016) and Sane et al. (2019). Additionally, we present the
average error across all particles over time for the Lagrangianlong and Lagrangianshort ap-
proaches in Figure 11. The line curves provide strong evidence of local error propagation and
accumulation for tests using Lagrangianshort training data.

For a qualitative assessment of the impact of the file cycle interval, we present reconstructed
pathlines alongside the ground truth in Figure 12. We used piecewise linear interpolation to
connect every interpolated location along the new trajectories. Although the Lagrangianshort

demonstrated a small deviation from the ground truth when short file cycle intervals were used,
the overall accuracy of reconstructed trajectories was high with interpolated results closely over-
lapping the ground truth.

4.6 Application to Fluid Dynamics Machine Learning Data Set

We applied our method to an ensemble member (#200) of the 2D fluid dynamics machine learn-
ing data set generated using the Gerris flow solver (Jakob et al. (2020)). The resolution of the
original data set is [512×512×1001]. To generate the training data set, we placed 50, 000 seeds
in the domain, set the file cycle interval to 10, and traced flow maps over the first 100 cycles.
For particle advection, we used the VTK-m (Moreland et al. (2016)) library and a fourth-order
Runge-Kutta (RK4) advection kernal. The median error of using our method after 100 cycles and
10 interpolation steps is approximately two times the grid cell size. Our method cost 0.6 seconds
for reconstructing 2,000 particle trajectories using parallel inferences with OpenMP (Dagum and
Menon (1998)). When considering the storage requirements, the subset of the original data size
we consider is approximately 209MB. Since our model has a fixed memory requirement, once
trained, the storage costs are still fixed at 10.5 MB. To qualitatively evaluate the reconstructed
data, we visualize pathlines inferred by the trained model in comparison with the ground truth
in Figure 13. In future works, we aim to study how to improve inteprolation accuracy as well as
determine an appropriate number of samples to be computed using in situ processing.

5. FUTURE WORK AND CONCLUSION

Exploratory flow visualization for large-scale time-varying vector field data is challenging. In
this paper, we introduced a deep neural network-based approach using Lagrangian represesnta-
tions to enable exploratory analysis. Our study demonstrated our model can be trained using La-
grangian representations extracted from a 2D time-varying vector field. Specifically, we used the
widely studied unsteady Double Gyre analytical flow data set and one fluid dynamics machine
learning data set to demonstrate our method. We contributed the first assessment of applying
deep learning to various forms of Lagrangian representations and evaluated the efficacy of ex-
ploratory analysis. A benefit of using our method is the fixed memory required by a model and

Volume x, Issue x, 2017

12 Mengjiao Han, Sudhanshu Sane, & Chris R. Johnson

fast inference of unstructured spatiotemporal data. Our trained model requires only 10.5 MB, and
consequently, time spent on I/O to load the model during post hoc analysis is negligible. Further,
we are able to infer the pathlines of thousands of particles at interactive rates. With respect to
reconstruction interpolation error, we found inference errors are small and follow predictable
patterns consistent with results from prior works. Predictable and consistent error patterns en-
able effective future navigation of strategies to reduce reconstruction interpolation error when
using machine learning. Overall, our study demonstrates the benefits of leveraging deep learning
for exploratory flow visualization of time-varying vector field data.

An important direction for future work is investigating model performance for more com-
plex or turbulent flows as well as large-scale 3D flow fields. With the objectives of improving
spatial and temporal interpolation accuracy and reducing model training time, various forms of
training data to train a model or different network architectures could be considered. For ex-
ample, concatenate sets of Lagrangianlong trajectories to limit instances of error propagation
while simultaneously accounting for reduced interpolation error due to stretching or divergence
in the flow. Lastly, an open-source interactive tool for interactive flow visualization exploration,
with a trained model serving as a backend, would be valuable to the community. We plan to
pursue these projects in the future.

ACKNOWLEDGMENTS

The authors acknowledge current research support provided in part by the Intel Graphics and
Visualization Institutes of XeLLENCE, the National Institutes of Health under grant numbers
P41 GM103545 and R24 GM136986, the Department of Energy under grant number DE-
FE0031880, and the Utah Office of Energy Development.

REFERENCES

Agranovsky, A., Camp, D., Garth, C., Bethel, E.W., Joy, K.I., and Childs, H., Improved Post Hoc Flow
Analysis Via Lagrangian Representations, 2014 IEEE 4th Symposium on Large Data Analysis and Vi-
sualization (LDAV), pp. 67–75, 2014.

Agranovsky, A., Obermaier, H., Garth, C., and Joy, K.I., A Multi-Resolution Interpolation Scheme for
Pathline Based Lagrangian Flow Representations, Visualization and Data Analysis 2015, Vol. 9397, p.
93970K, 2015.

Ba, J.L., Kiros, J.R., and Hinton, G.E., Layer Normalization, arXiv preprint arXiv:1607.06450, 2016.
URL https://arxiv.org/pdf/1607.06450.pdf

Bai, X., Wang, C., and Li, C., A Streampath-Based RCNN Approach to Ocean Eddy Detection, IEEE
Access, vol. 7, pp. 106336–106345, 2019.

Berger, M., Li, J., and Levine, J.A., A Generative Model for Volume Rendering, IEEE transactions on
visualization and computer graphics, vol. 25, no. 4, pp. 1636–1650, 2018.

Brunton, S.L., Noack, B.R., and Koumoutsakos, P., Machine Learning for Fluid Mechanics, Annual Review
of Fluid Mechanics, vol. 52, pp. 477–508, 2020.

Bujack, R. and Joy, K.I., Lagrangian Representations of Flow Fields with Parameter Curves, 2015 IEEE
5th Symposium on Large Data Analysis and Visualization (LDAV), IEEE, pp. 41–48, 2015.

Chandler, J., Bujack, R., and Joy, K.I., Analysis of Error in Interpolation-Based Pathline Tracing, Proceed-
ings of the Eurographics/IEEE VGTC Conference on Visualization: Short Papers, pp. 1–5, 2016.

Chandler, J., Obermaier, H., and Joy, K.I., Interpolation-Based Pathline Tracing in Particle-Based Flow

Journal of Flow Visualization & Image Processing

REFERENCES

Agranovsky, A., Camp, D., Garth, C., Bethel, E.W., Joy, K.I., and Childs, H., Improved Post

Hoc Flow Analysis Via Lagrangian Representations, 2014 IEEE 4th Symposium on Large Data

Analysis and Visualization (LDAV), pp. 67–75, 2014.

Agranovsky, A., Obermaier, H., Garth, C., and Joy, K.I., A Multi-Resolution Interpolation

Scheme for Pathline Based Lagrangian Flow Representations, Visualization and Data Analysis

2015, Vol. 9397, p. 93970K, 2015.

Ba, J.L., Kiros, J.R., and Hinton, G.E., Layer Normalization, arXiv preprint arXiv:1607.06450,

2016.URL https://arxiv.org/pdf/1607.06450.pdf

Bai, X., Wang, C., and Li, C., A Streampath-Based RCNN Approach to Ocean Eddy Detection,

IEEE Access, vol. 7, pp. 106336–106345, 2019.

Berger, M., Li, J., and Levine, J.A., A Generative Model for Volume Rendering, IEEE

Transactions on Visualization Aand Computer Graphics, vol. 25, no. 4, pp. 1636–1650, 2018.

Brunton, S.L., Noack, B.R., and Koumoutsakos, P., Machine Learning for Fluid Mechanics,

Annual Review of Fluid Mechanics, vol. 52, pp. 477–508, 2020.

Bujack, R. and Joy, K.I., Lagrangian Representations of Flow Fields with Parameter Curves,

2015 IEEE 5th Symposium on Large Data Analysis and Visualization (LDAV), IEEE, pp. 41–

48, 2015.

Chandler, J., Bujack, R., and Joy, K.I., Analysis of Error in Interpolation-Based Pathline Tracing,

Proceedings of the Eurographics/IEEE VGTC Conference on Visualization: Short Papers, pp.

1–5, 2016.

Chandler, J., Obermaier, H., and Joy, K.I., Interpolation-Based Pathline Tracing in Particle-

Based Flow Visualization, IEEE Transactions on Visualization and Computer Graphics, vol. 21,

no. 1, pp. 68–80, 2014.

Contributors, T., Learning Rate Scheduler, , 2019.URL

https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html

Da Costa, M.V. and Blanke, B., Lagrangian Methods for Flow Climatologies and Trajectory

Error Assessment, Ocean Modelling, vol. 6, no. 3-4, pp. 335–358, 2004.

Dagum, L. and Menon, R., OpenMP: An Industry Standard API for Shared-Memory

Programming, IEEE Computational Science and Engineering, vol. 5, no. 1, pp. 46–55, 1998.

Deng, L., Wang, Y., Liu, Y., Wang, F., Li, S., and Liu, J., A CNN-Based Vortex Identification

Method, Journal of Visualization, vol. 22, no. 1, pp. 65–78, 2019.

Dong, C., Loy, C.C., He, K., and Tang, X., Image Super-Resolution Using Deep Convolutional

Networks, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 38, no. 2, pp.

295–307, 2015.

Duo, Z., Wang, W., and Wang, H., Oceanic Mesoscale Eddy Detection Method Based on Deep

Learning, Remote Sensing, vol. 11, no. 16, p. 1921, 2019.

Engel, D. and Ropinski, T., Deep Volumetric Ambient Occlusion, IEEE Transactions on

Visualization and Computer Graphics, vol. 27, no. 2, pp. 1268–1278, 2020.

Froyland, G. and Junge, O., Robust FEM-Based Extraction of Finite-Time Coherent Sets Using

Scattered, Sparse, and Incomplete Trajectories, SIAM Journal on Applied Dynamical Systems,

vol. 17, no. 2, pp. 1891–1924, 2018.

Froyland, G. and Padberg-Gehle, K., A Rough-and-Ready Cluster-Based Approach for

Extracting Finite-Time Coherent Sets from Sparse and Incomplete Trajectory Data, Chaos: An

Interdisciplinary Journal of Nonlinear Science, vol. 25, no. 8, p. 087406, 2015.

Garth, C., Gerhardt, F., Tricoche, X., and Hans, H., Efficient Computation and Visualization of

Coherent Structures in Fluid Flow Applications, IEEE Transactions on Visualization and

Computer Graphics, vol. 13, no. 6, pp. 1464–1471, 2007.

Guo, L., Ye, S., Han, J., Zheng, H., Gao, H., Chen, D.Z., Wang, J.X., and Wang, C., SSR-VFD:

Spatial Super-Resolution for Vector Field Data Analysis and Visualization, 2020 IEEE Pacific

Visualization Symposium (PacificVis), IEEE Computer Society, pp. 71–80, 2020.

Hadjighasem, A., Farazmand, M., Blazevski, D., Froyland, G., and Haller, G., A Critical

Comparison of Lagrangian Methods for Coherent Structure Detection, Chaos: An

Interdisciplinary Journal of Nonlinear Science, vol. 27, no. 5, p. 053104, 2017.

Han, J., Tao, J., and Wang, C., FlowNet: A Deep Learning Framework for Clustering and

Selection of Streamlines and Stream Surfaces, IEEE Transactions on Visualization and

Computer Graphics, vol. 26, no. 4, pp. 1732–1744, 2018.

Han, J., Tao, J., Zheng, H., Guo, H., Chen, D.Z., and Wang, C., Flow Field Reduction via

Reconstructing Vector Data from 3-D Streamlines Using Deep Learning, IEEE Computer

Graphics and Applications, vol. 39, no. 4, pp. 54–67, 2019.

Han, J. and Wang, C., TSR-TVD: Temporal Super-Resolution for Time-Varying Data Analysis

and Visualization, IEEE Transactions on Visualization and Computer Graphics, vol. 26, no. 1,

pp. 205–215, 2019.

Han, J., Zheng, H., Xing, Y., Chen, D.Z., and Wang, C., V2V: A Deep Learning Approach to

Variable-to-Variable Selection and Translation for Multivariate Time-Varying Data, IEEE

Transactions on Visualization and Computer Graphics, vol. 27, no. 2, pp. 1290–1300, 2020.

He, W., Wang, J., Guo, H., Wang, K.C., Shen, H.W., Raj, M., Nashed, Y.S., and Peterka, T.,

InSituNet: Deep Image Synthesis for Parameter Space Exploration of Ensemble Simulations,

IEEE Transactions on Visualization and Computer Graphics, vol. 26, no. 1, pp. 23–33, 2019.

Hlawatsch, M., Sadlo, F., and Weiskopf, D., Hierarchical Line Integration, IEEE Transactions

on Visualization and Computer Graphics, vol. 17, no. 8, pp. 1148–1163, 2010.

Hong, F., Liu, C., and Yuan, X., DNN-VolVis: Interactive Volume Visualization Supported by

Deep Neural Network, 2019 IEEE Pacific Visualization Symposium (PacificVis), IEEE, pp.

282–291, 2019.

Hong, F., Zhang, J., and Yuan, X., Access Pattern Learning with Long Short-Term Memory for

Parallel Particle Tracing, 2018 IEEE Pacific Visualization Symposium (PacificVis), IEEE, pp.

76–85, 2018.

Hummel, M., Bujack, R., Joy, K.I., and Garth, C., Error Estimates for Lagrangian Flow Field

Representations, Proceedings of the Eurographics/IEEE VGTC Conference on Visualization:

Short Papers, pp. 7–11, 2016.

Intel, Intel Threading Building Blocks, 2007. URL

https://www.intel.com/content/www/us/en/develop/tools/oneapi/components/onetbb.html

Jakob, J., Gross, M., and Günther, T., A Fluid Flow Data Set for Machine Learning and its

Application to Neural Flow Map Interpolation, IEEE Transactions on Visualization and

Computer Graphics, vol. 27, no. 2, pp. 1279–1289, 2020.

Kim, B., Azevedo, V.C., Thuerey, N., Kim, T., Gross, M., and Solenthaler, B., Deep Fluids: A

Generative Network for Parameterized Fluid Simulations, Computer Graphics Forum, Vol. 38,

Wiley Online Library, pp. 59–70, 2019.

Kim, B. and Günther, T., Robust Reference Frame Extraction from Unsteady 2D Vector Fields

with Convolutional Neural Networks, Computer Graphics Forum, Vol. 38, Wiley Online

Library, pp. 285–295, 2019.

Kingma, D.P. and Ba, J., Adam: A Method for Stochastic Optimization, arXiv preprint

arXiv:1412.6980, 2014.

Lee, J.Y. and Park, J., Deep Regression Network-Assisted Efficient Streamline Generation

Method, IEEE Access, vol. 9, pp. 111704–111717, 2021.

Leventhal, S., Kim, M., and Pugmire, D., PAVE: An In Situ Framework for Scientific

Visualization and Machine Learning Coupling, 2019 IEEE/ACM 5th International Workshop on

Data Analysis and Reduction for Big Scientific Data (DRBSD-5), IEEE, pp. 8–15, 2019.

Lguensat, R., Sun, M., Fablet, R., Tandeo, P., Mason, E., and Chen, G., EddyNet: A Deep Neural

Network for Pixel-Wise Classification of Oceanic Eddies, IGARSS 2018-2018 IEEE

International Geoscience and Remote Sensing Symposium, IEEE, pp. 1764–1767, 2018.

Li, Y., Wang, C., and Shene, C.K., Extracting Flow Features via Supervised Streamline

Segmentation, Computers & Graphics, vol. 52, pp. 79–92, 2015.

Liu, Y., Lu, Y., Wang, Y., Sun, D., Deng, L., Wang, F., and Lei, Y., A CNN-Based Shock

Detection Method in Flow Visualization, Computers & Fluids, vol. 184, pp. 1–9, 2019.

Moreland, K., Sewell, C., Usher, W., Lo, L.T., Meredith, J., Pugmire, D., Kress, J., Schroots, H.,

Ma, K.L., Childs, H., VTK-m: Accelerating the Visualization Toolkit for Massively Threaded

Architectures, IEEE Computer Graphics and Applications, vol. 36, no. 3, pp. 48–58, 2016.

Nair, V. and Hinton, G.E., Rectified Linear Units Improve Restricted Boltzmann Machines,

Proceedings of the 27th International Conference on International Conference on Machine

Learning, pp. 807–814, 2010.

Nardini, P., Böttinger, M., Scheuermann, G., and Schmidt, M., Visual Study of the Benguela

Upwelling System Using Pathline Predicates, Proceedings of the Workshop on Visualisation in

Environmental Sciences, pp. 19–23, 2017.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,

Gimelshein, N., Antiga, L., PyTorch: An Imperative Style, High-Performance Deep Learning

Library, Advances in Neural Information Processing Systems, vol. 32, pp. 8026–8037, 2019.

Qin, X., van Sebille, E., and Gupta, A.S., Quantification of Errors Induced by Temporal

Resolution on Lagrangian Particles in an Eddy-Resolving Model, Ocean Modelling, vol. 76, pp.

20–30, 2014.

Rapp, T., Peters, C., and Dachsbacher, C., Void-and-Cluster Sampling of Large Scattered Data

and Trajectories, Ieee Transactions on Visualization and Computer Graphics, vol. 26, no. 1, pp.

780–789, 2019.

Rockwood, M.P., Loiselle, T., and Green, M.A., Practical Concerns of Implementing a Finite-

Time Lyapunov Exponent Analysis with Under-Resolved Data, Experiments in Fluids, vol. 60,

no. 4, pp. 1–16, 2019.

Sahoo, S. and Berger, M., Integration-Aware Vector Field Super Resolution, 2021.

Sane, S., Bujack, R., and Childs, H., Revisiting the Evaluation of In Situ Lagrangian Analysis,

EGPGV@ EuroVis, pp. 63–67, 2018.

Sane, S., Bujack, R., Garth, C., and Childs, H., A Survey of Seed Placement and Streamline

Selection Techniques, Computer Graphics Forum, Vol. 39, Wiley Online Library, pp. 785–809,

2020.

Sane, S., Childs, H., and Bujack, R., An Interpolation Scheme for VDVP Lagrangian Basis

Flows, Euro- graphics Symposium on Parallel Graphics and Visualization, pp. 109–119, 2019.

Sane, S., Johnson, C.R., and Childs, H., Investigating In Situ Reduction via Lagrangian

Representations for Cosmology and Seismology Applications, International Conference on

Computational Science, Springer, pp. 436–450, 2021a.

Sane, S., Yenpure, A., Bujack, R., Larsen, M., Moreland, K., Garth, C., Johnson, C.R., and

Childs, H., Scalable In Situ Computation of Lagrangian Representations via Local Flow Maps,

2021b.

Schlueter-Kuck, K.L. and Dabiri, J.O., Coherent Structure Colouring: Identification of Coherent

Structures from Sparse Data Using Graph Theory, Journal of Fluid Mechanics, vol. 811, pp.

468–486, 2017.

Shadden, S.C., Lekien, F., and Marsden, J.E., Definition and Properties of Lagrangian Coherent

Structures from Finite-Time Lyapunov Exponents in Two-Dimensional Aperiodic Flows,

Physica D: Nonlinear Phenomena, vol. 212, nos. 3-4, pp. 271–304, 2005.

Shi, W., Caballero, J., Husza´r, F., Totz, J., Aitken, A.P., Bishop, R., Rueckert, D., and Wang,

Z., Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel

Convolutional Neural Network, Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pp. 1874–1883, 2016.

Siegfried, L., Schmidt, M., Mohrholz, V., Pogrzeba, H., Nardini, P., Böttinger, M., and

Scheuermann, G., The Tropical-Subtropical Coupling in the Southeast Atlantic from the

Perspective of the Northern Benguela Upwelling System, PloS One, vol. 14, no. 1, p. e0210083,

2019.

Stro¨ fer, C.M., Wu, J., Xiao, H., and Paterson, E., Data-Driven, Physics-Based Feature

Extraction from Fluid Flow Fields Using Convolutional Neural Networks, Communications in

Computational Physics, vol. 25, no. 3, pp. 625–650, 2018.

Van Sebille, E., Griffies, S.M., Abernathey, R., Adams, T.P., Berloff, P., Biastoch, A., Blanke,

B., Chas- signet, E.P., Cheng, Y., Cotter, C.J., Lagrangian Ocean Analysis: Fundamentals and

Practices, Ocean Modelling, vol. 121, pp. 49–75, 2018.

Wang, Y., Deng, L., Yang, Z., Zhao, D., and Wang, F., A Rapid Vortex Identification Method

Using Fully Convolutional Segmentation Network, The Visual Computer, vol. 37, no. 2, pp.

261–273, 2021.

Weiss, S., Chu, M., Thuerey, N., and Westermann, R., Volumetric Isosurface Rendering with

Deep Learning-Based Super-Resolution, IEEE Transactions on Visualization and Computer

Graphics, vol. 27, no. 6, pp. 3064 – 3078, 2019.

Yi, T.B.L., CNN-based Flow Field Feature Visualization Method, International Journal of

Performability Engineering, vol. 14, no. 3, p. 434, 2018.

16 Mengjiao Han, Sudhanshu Sane, & Chris R. Johnson

(a) The workflow of our proposed approach. The Lagrangian flow maps are calculated using in situ process-
ing and saved to the database. The network is trained using the particle start locations and the corresponding
end locations at various file cycles. Once the model is fully trained, new particle trajectories can be inferred
from the model.

(b) The architecture of our neural network built with multi-layer perceptrons (MLP). The network takes the
particle start location and the file cycles as input, and outputs the particle end locations.

FIG. 1: Unlike prior two-phase Lagrangian analysis workflows, after extracting Lagrangain representa-
tions using in situ processing, a preprocessing phase involving neural network training is introduced prior
to post hoc analysis. Figure 1a shows the high-level workflow of our proposed approach and Figure 1b
shows the details of the neural network architecture.

(a) Glyph-based visualization of the velocity field at
time 0.

(b) Forward FTLE scalar field computed over 1,000
cycles.

FIG. 2: Visualizations of the Double Gyre data set showing the two counter-rotating gyres (Figure 2a)
and the Lagrangian coherent structures as approximated by the ridge of the finite-time Lyapunov exponent
(FTLE) scalar field (Figure 2b).

TABLE 1: Network training and computational performance results. We present the number of
seeds (#Seeds), file cycle interval (Interval), number of training samples (#Samples), the train-
ing time (Train), trained model storage space (Model), and the inference performance (Inference)
details of our experiments. The training time is measured for 100 epochs and increases linearly
with the number of training samples. Importantly, our method costs 10.5MB memory for storing
the trained model regardless of the number of training samples, potentially significantly reduc-
ing the storage space for large-scale time-varying vector fields. The inference time for 2,000
new particle trajectories interpolated across 1,000 cycles is presented. The interpolation of each
location along a particle trajectory advances the particle by the length of the file cycle interval.

#Seeds Interval #Samples (M) Train (hrs) Inference (s) Model (MB)
5,000 30 1.65 0.44 0.54 10.5

10,000 30 3.30 0.86 0.54 10.5
10,000 50 2.00 0.55 0.38 10.5

(a) Lagrangianlong tests.

(b) Lagrangianshort tests.

FIG. 3: Visualization of the errors mapped to the particle trajectory start location for three sampling
strategies applied to generate both training and testing data sets. Figures 3a and 3b, show results for the
Lagrangianlong and the Lagrangianshort flow map extraction strategies, respectively. The columns
(left to right) represent uniform, random, and sobol sampling for training seeds. The rows (top to bot-
tom) represent uniform, random, and sobol sampling for testing seeds. For example, in Figure 3a, col-
umn 1 row 3 shows the result of using uniform seeding for training sample generation and sobol seeding
for testing reconstruction when using the Lagrangianlong strategy. Each figure shows the spatial domain
[0, 2] × [0, 1]. The testing data contains 2,000 seeds for random and sobol, and uses a [50 × 40] grid for
uniform. The error is measured by aggregated along the trajectories (Equation 4) and is encoded in the
visualization using the color and area of each circle mark. Overall, we find the sobol or the Sobol quasir-
andom sequence strategy performs the best as a training and testing data sampling strategy across both
flow map extraction approaches. However, we find the studied strategies can result in poor extrapolation
for particles placed on the boundary.

Journal of Flow Visualization & Image Processing

Exploratory Lagrangian-Based Particle Tracing Using Deep Learning 17

FIG. 4: Loss versus epoch plots considering multiple learning rates for the two flow map extraction strate-
gies. We use the learning rates 10−3, 10−4, and 10−5. The training data set is generated by placing 5,000
seeds using the sobol method and file cycle interval is set to 30.

(a) 5,000 seeds.

(b) 10,000 seeds.

FIG. 5: The error plot evaluated various combinations of the learning rate and the batch size for
Lagrangianlong and Lagrangianshort approaches. The errors are evaluated over 2,000 seeds and ag-
gregated along the trajectories ((Equation 4)). The labels on the y-axis use 10X format to show the error.
We use the format N B LR to label each set of tests, where N is the number of seeds, B is the batch size,
and LR is the learning rate. The top 1% of errors in each experiment are treated as outliers and have been
removed for analysis. A batch size of 200 with the learning rates of 10−3 and 10−4 are optimal for training
data sets with 5,000 seeds and 10,000 seeds, respectively, using the Lagrangianlong approach. A batch
size of 300 with the learning rate 10−4 is optimal for the Lagrangianshort approach.

(a) Particle trajectory reconstruction error mapped to particle start location when varying the number of
seeds used to generate training data.

(b) FTLE scalar field derived using trajectories inferred from the model.

FIG. 6: Visualization of particle trajectory reconstruction error mapped to particle start locations (6a) and
the corresponding FTLE scalar fields derived from trajectories inferred by the model (6b), when varying
the number of seeds used to generate training data. Each figure shows the spatial domain [0, 2] × [0, 1].
The models are trained with a file cycle interval of 30 and the best combination of hyperparameter settings
identified in Section 4.2. We evaluate reconstruction error using 2,000 seeds visualized as circle marks in
6a. The color and radius of the circles encode the error aggregated along the trajectories (Equation 4). The
top 1% of errors are treated as outliers and have been removed for analysis from each experiment. The
FTLE is calculated by placing a uniform grid with size [256 × 128]. The model’s performance is related
to the flow behavior in the domain, and reconstruction errors are higher in regions with greater separation,
notably for the Lagrangianshort, which suffers from error propagation.

FIG. 7: Violin plots of inference error evaluated for models trained using data generated with varying the
number of seeds. The errors are calculated along the trajectories using Equation 4. The labels on the y-axis
use 10X format to show the error. The error is shown as a distribution using violin plots with the minimum,
maximum, and median errors. The evaluation is performed using 2,000 random test seeds. The top 1% of
errors are treated as outliers and have been removed for analysis from each experiment. Our results indicate
the inference accuracy can improve from increasing the number of seeds used to train the model.

FIG. 8: Visualization of inferred trajectories and the ground truth for the Double Gyre with different num-
bers of seeds used to train the model. The seeds were randomly placed using Sobol seeding strategy. The
colors of model inferred trajectories indicate the distance between the model inferred end location and the
ground truth. In nearly all cases, our trained models can reconstruct trajectories almost visually identical to
the ground truth.

Volume x, Issue x, 2017

18 Mengjiao Han, Sudhanshu Sane, & Chris R. Johnson

(a) Resulting error maps when varying the file cycle intervals used to generate training data.

(b) FTLE scalar field derived using trajectories inferred from the model.

FIG. 9: Visualization of particle trajectory reconstruction error mapped to particle start locations (9a) and
the corresponding FTLE scalar fields derived from trajectories inferred by the model (9b), when varying
the file cycle interval used to generate training data. Each figure shows the spatial domain [0, 2] × [0, 1].
The models are trained using 10,000 seeds and the best combination of hyperparameter settings identified
in Section 4.2. We evaluate reconstruction error using 2,000 seeds visualized as circle marks in 9a. The
color and radius of the circles encode the error aggregated along the trajectories (Equation 4). The top 1%
of errors are treated as outliers and have been removed for analysis from each experiment. The FTLE is
calculated by placing a uniform grid with size [256 × 128]. The model’s performance is related to the flow
behavior in the domain, and reconstruction errors are higher in regions with greater separation. Notably,
Lagrangianshort tests with a short interval suffer from error propagation and accumulation.

FIG. 10: Violin plots of inference error evaluated for models trained using data generated for varying file
cycle intervals. The errors are calculated along the trajectories using Equation 4. The labels on the y-axis
use 10X format to show the error. The error is shown as a distribution using violin plots with the minimum,
maximum, and median errors. The evaluation is performed using 2,000 random test seeds. The top 1%
of errors are treated as outliers and have been removed for analysis from each experiment. Although the
accuracy of Lagrangianlong does not varying significantly with the considered file cycle intervals for
the Double Gyre, the global error of the model trained using Lagrangianshort decreases in accuracy as
the length of the file cycle interval increases, but the local error increases with longer integration durations
between file cycles.

FIG. 11: The average reconstruction error over file cycles for the Double Gyre data set with varying file
cycle intervals. The errors are calculated by averaging distances between the model generated end loca-
tions and the ground truth at each file cycle. Evaluations are performed over 2,000 test seeds. For the
Lagrangianlong approach, errors do not propagate over file cycles. Results of different file cycle inter-
vals have a similar trend. In contrast, errors are propagated in the Lagrangianshort approach, and shorter
file cycle interval results in more significant errors over time.

FIG. 12: Visualization of inferred trajectories and the ground truth for the Double Gyre with different file
cycle intervals. The seeds were randomly placed using the Sobol seeding strategy. The colors of model
inferred trajectories indicate the distance between the model inferred end location and the ground truth.
Our trained model can reconstruct trajectories almost visually identical to the ground truth.

FIG. 13: Visualization of inferred trajectories and the ground truth for the ensemble member #200 vector
field.

Journal of Flow Visualization & Image Processing

