
What is a “good” visual 
explanation for AI?
Liz Marai

Electronic Visualization Laboratory
Department of Computer Science
University of Illinois at Chicago



EVL: Pioneering technology for 
interdisciplinary, collaborative work

CAVE 1992

SAGE (2004-2014) and SAGE2 (2014-present)

TacTile 2008

CAVE2 2012

“Star Wars” 1977

• Established 1973, Tom 
DeFanti & Dan Sandin

• At the forefront of VR 
research since 1992

• Introduced CAVE, first 
projection-based VR 
system in the world

• Wide range of immersive 
technologies  for data 
analysis

01/26/22 Liz Marai, UIC 2



Problem-Oriented and Theoretical Work
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Problem-Oriented and Theoretical Work
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A Computational Oncology Endeavor

Image courtesy of L. Long (EVL)Joint UIC work (medical imaging, visual computing, ML) w/ G. Canahuate (data mining), D. Fuller 
(radiation oncology), and 25+ other people at four sites (UIC, MD Anderson, U Iowa, UMN)
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Big data from cohorts can enhance:
• Clinical decision-making
• Care-delivery during/after treatment

at the individual patient level.

Precision Medicine in Oncology

Image from https://www.labkey.com/



Big data from cohorts can enhance:
• Clinical decision-making
• Care-delivery during/after treatment

at the individual patient level.

Precision Medicine in Oncology

Image from https://www.labkey.com/

by clustering spatially similar patients



Head and Neck Cancer Research: Group patients based on disease spread patterns 



New clustering 
methodology using 
spatial data

How to explain 
spatial clustering to non-experts?



Clustering with Spatial Data
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Model DisseminationModel Building

From Model Building to Dissemination
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Collaboration: Participatory to Broader
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• EVL and Computational Oncology
• XAI Considerations
• Vis in XAI
• Clustering with Spatial Data: RT
• Clustering with Spatial Data: LN
• A “Good” Visual Explanation for AI
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XAI Considerations 
5 lenses: layman, machine learning, social science, public policy, and healthcare.
Benefits of XAI.
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XAI (eXplainable Artificial Intelligence)

• Expert systems research in the ‘70s
• Resurgence since 2010-2020, grant solicitations, popular press

• Many AI applications not adopted by the intended audience

• Hypothesis: by building more explainable systems, their audience will 
understand & adopt the AI
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“Explain” (Merriam-Webster Dictionary)

1: to make (something) clear or easy to understand
// The professor explained the poem to the class.

2: to tell, show, or be the reason for or cause of something
// Scientists could not explain the strange lights in the sky.

(in healthcare, 2: is not ”causality”)
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XAI as Interpretability in Machine Learning

• Interpretability allows us to 
understand what exactly a model is 
learning, what other information 
the model has to offer, and the 
justifications behind the model
decisions, and evaluate all of these

https://blog.ml.cmu.edu/2020/08/31/6-interpretability/

A Survey of Explainable AI 
Terminology, Clinciu & Hastie’19

https://www.bmc.com/blogs/machine-learning-
interpretability-vs-explainability/

Lipton, Z. C. (2018). The Mythos of Model Interpretability: In machine 
learning, the concept of interpretability is both important and 
slippery. Queue, 16(3), 31-57.

Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of 
interpretable machine learning. arXiv preprint arXiv:1702.08608.

01/26/22 Liz Marai, UIC 17

https://blog.ml.cmu.edu/2020/08/31/6-interpretability/


XAI in Social Sciences 

• XAI should build on research in 
philosophy, psychology,  social sciences, 
social psychology
• Not about the model, but about the 

human interacting with the AI

Miller, T. (2019). Explanation in artificial intelligence: Insights from the 
social sciences. Artificial intelligence, 267, 1-38.
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XAI in Social Sciences 

• What are the characteristics of an explanation?
• Contrastive; they are sought in response to 

particular counterfactual cases
• Social & Selective; transfer of knowledge & humans 

select one or two causes
• Probabilities “probably” don’t matter; referring to 

probabilities is not as effective as referring to 
causes

Miller, T. (2019). Explanation in artificial intelligence: Insights from the 
social sciences. Artificial intelligence, 267, 1-38.
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XAI in Public Policy

• Characteristics of AI:
• interpretable, implying some sense of 

understanding how the technology works
• explainable, implying that a wider range of 

users can understand why or how a 
conclusion was reached

• transparent, implying some level of 
accessibility to the data or algorithm
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XAI in Healthcare
• Early expert systems in healthcare as XAI

• e.g., MYCIN, early ‘70s AI, written in Lisp

Today
• 18% rule-based
• 2% ML
• 80% heuristics

Interpretable machine learning in healthcare
Ahmed at al., 2018 BCBHI
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XAI in Healthcare: Wholistic View

Interpretable machine learning in healthcare
Ahmed at al., 2018 BCBHI

OutputFeatures Algorithm Parameters Model

AI Solution

Cognitive Capacity

Domain Knowledge

Explanation Granularity

User
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Only a Small Fraction of ML Systems is ML Code

Configuration
Data Collection

Feature 
Extraction

Data 
Verification

Machine 
Resource 

Management

Analysis Tools
ML 

Code

Process 
Management Tools

Serving 
Infrastructure

Monitoring

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., ... & 
Dennison, D. (2015). Hidden technical debt in machine learning 
systems. Advances in neural information processing systems, 28, 2503-2511.
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XAI in Healthcare
• What is a “good” XAI?

Interpretable machine learning in healthcare
Ahmed at al., 2018 BCBHI
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XAI: Why Bother?
• When fairness is critical
• When consequences are far-

reaching 
• When a new/unknown 

hypothesis is drawn by the AI
• E.g., “Pneumonia patients with 

asthma have lower death risk”

https://www.darpa.mil/program/explainable-artificial-intelligence
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Brief Recap of Terminology
● Explain (layman): to make something or a cause easy to understand
● Interpret (ML): understand the model workings
● XAI (social sci): consider the human (e.g., counterfactuals)
● XAI (public policy): consider the model, the human, the data/algo
● XAI (healthcare): consider the model, the human (cognitive, domain 

knowledge, needs), the data/algo, the features/params
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Trust
● “Hard won and easily lost”

27

larrybroughton.net 

ABC’s “Agents of SHIELD”

NB: Explanations can also confuse or mislead.



• EVL and Computational Oncology
• XAI Considerations
• Vis in XAI
• Clustering with Spatial Data: RT
• Clustering with Spatial Data: LN
• A “Good” Visual Explanation for AI
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Visual Explanations in AI
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Vis in Human-Machine Analysis

Mixed human-machine analysis 
• can leverage and balance computational and 

human effort in data analysis

• AI < IA (Intelligence Amplification) 

Image from https://www.flaticon.com/

AI

IA

Brooks, F.P. 1996, The computer scientist as toolsmith Part II



Anscombe’s Quartet
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Visualizing Anscombe’s Quartet
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Spatial Structure in Data Science

http://www.autodeskresearch.com/publications/samestats
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Do We Have to Use Visualization?
Not necessarily. E.g., post-hoc explanations (as opposed to model 
transparency)
● Text explanations
● Local explanations, e.g., saliency maps
● Explanation by example, e.g., KNN
● Other basic data visualizations like t-SNE
● …
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Example: Digital Twin Dyad in HNC
● Digital twin: a concept from 

manufacturing, where a digital 
replica is built and simulated

● Concept adopted by NIH; hope to 
replicate digitally biological systems

Tardini, E., Zhang, X., Canahuate, G., Wentzel, A., Mohamed, A. S., Van Dijk, L., ... 
& Marai, G. E. (2021). Optimal policy determination in sequential systemic and 
locoregional therapy of oropharyngeal squamous carcinomas: A patient-physician 
digital twin dyad with deep Q-learning for treatment selection. medRxiv.

rescale.com
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Digital Twin Dyad in HNC Treatment
● Multi-stage treatment: chemotherapy, radiotherapy, surgery
● Conflicting outcomes: efficacy vs quality of life
● Reinforcement q-learning via deep learners

Physician’s 
digital 
twin

Physician’s digital twin

Q function

Patient’s 
history

Treatment 
decision

Neural Network
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Digital Twin Dyad in HNC Treatment
● Essentially, an AI system that learns from past medical experience
● Treatment simulator for patient outcomes

Patient’s 
digital twin
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Physician digital twin (simulated outcomes)

Best 
model

+2.74% improvement +0.75% improvement
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Textual Explanation
● Clinician team prescribed:  D1: not IC, D2: CC, D3: not ND 
● DQL sequence prescribed:  D1: IC, D2: CC, D3: not ND. 
● Medical records examination: patient had only one functioning kidney, 

thus no chemotherapy prescribed, as precaution to prevent renal injury. 
● Dyad system performed well given the input specifications of this case
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Textual Explanation
● Clinician team prescribed:  D1: not IC, D2: CC, D3: not ND 
● DQL sequence prescribed:  D1: IC, D2: CC, D3: not ND. 
● Medical records examination: patient had only one functioning kidney, 

thus no chemotherapy prescribed, as precaution to prevent renal injury. 
● Dyad system performed well given the input specifications of this case

● OK for proof of concept, but what when we add spatial information?
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Vis in XAI
● Vis can enable XAI
● Chatzimparmpas et al 2020, https://trustmlvis.lnu.se/

● Representing outcomes
● Looking “inside” the models
● Depicting conditional variation
● Exploring what-if scenarios, steering

● Whenever spatial data is involved
Features Algorithm Parameters Model

AI Solution

Output

41
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What is a “Good” Visual XAI?
● 45 scientists (bioinformatics, 

biology, visual computing)

● … ahem?
● “Does it help me understand?”
● “Does it help me understand 

faster?”
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• EVL and Computational Oncology
• XAI Considerations
• Vis in XAI
• Clustering with Spatial Data: RT
• Clustering with Spatial Data: LN
• A “Good” Visual Explanation for AI
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Clustering with Spatial Data:
Radiation Therapy
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• Modern RT plans are complex and require 
human expertise
• >1 week to create

• Radiation to surrounding organs also 
causes toxicity (side effects) such as 
permanent dry mouth or loss of vision

• Idea: try to predict distribution of 
radiation, then predict toxicity

Radiation Therapy Planning is Complex

Multiple Beams Individually Shaped 
Beams

tumor(s)

organs at 
toxicity risk
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Using Patient Repositories to Enable 
Similarity-Based Prediction

Cohort Data
(CT volume images)

Most Similar Patients 
w.r.t. Tumor Location

Predicted  Radiation  
From Similar Examples

Case courtesy of A.Prof Frank 
Gaillard, Radiopaedia.org, rID: 19649
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• No existing spatial similarity 
methodology

• Current human-based approach:
• medical image inspection
• prior knowledge
• physician/institutional memory

• Current approach not scalable

Computational Challenge

Image: K. Reed, MSgt, http://www.af.mil

01/26/22 Liz Marai, UIC 47



• Computing w/ images & 3D models
• Novel spatial similarity measure (T-

SSIM)
• Predictive algorithm for RT dose-

distribution
• Application of visual steering to 

precision radiation oncology

Visual Computing Approach

Wentzel, A., Hanula, P., Luciani, T., Elgohari, B., Elhalawani, H., 
Canahuate, G., ... & Marai, G. E. (2019). Cohort-based T-SSIM visual 
computing for radiation therapy prediction and exploration. IEEE 
transactions on visualization and computer graphics, 26(1), 949-959.
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• Spatial Similarity
• Graph  [Sun 2011], Shape [Iyer 2005], and Deep-learning [Nguyen 2018]
• Can’t handle large groups of organs

• Biomedical + Nonspatial data visualization
• MRI Images + Statistical views [Nunes 2014], RT cohort + uncertainty in 

Bladders [Raidou 2018]
• No spatial similarity, or RT to surrounding organs

• Visual Steering for Model Development
• Clustering analysis [Kwon, 2018], RT dose-response modeling [Naqa 2006], 

Environmental Modeling [Poco 2014]
• Different problem space than ours

Related Work
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Data
• 165 Head/Neck cancer patients
• CT scans and RT plans

• 45 Surrounding Organs + Tumor(s)
• Positions/distances, volumes, dose

• Known demographics & toxicity
Goals
• Measure similarity based on spatial data
• Estimate delivered dose distribution
• Analyze patterns in RT plans

Data and Goals

Segment Organ & 
Tumor Volumes
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Inspiration: Image Similarity with SSIM
Original Image Original Image Noisy ImageNoisy Image

Local Similarity Local Similarity
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From Image Similarity to Topological Similarity

From 2D images to organ 
3D topology:

• 2D Image Window -> 
Spherical 3D Window

• Pixel sliding -> 
Organ-Center sliding
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Topological Similarity Measure

SSIM formula uses 3 pixel-value channels:
• Structure
• Intensity
• Contrast

T-SSIM formula uses distance and volumes:
• Structure -> Distance to tumor
• Intensity -> Organ Volume
• Contrast -> not used here
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• New Patient:
• Match k most similar patients using T-SSIM
• k determined via line search = (cluster size)½

• Calculate per-organ weighted average of doses of similar patients: 

• Report the error between the predicted dose distribution and actual 
RT dose distribution

Similarity-based Predictive Algorithm
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• Qualitative:
• Two case studies w/ 4 Domain Experts
• Visual steering using results from one 

expert’s clustering
• Analyzing + troubleshooting prediction

• Quantitative
• Leave-One-Out cross-validation
• Mean, absolute percent error

Medical Imaging

Biostatistics
s

Data Mining

Radiation Oncology

Hybrid Evaluation
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1 2

3 4

4

2

1 3

Visual Steering Results 
• 165 patient dataset: successfully retrieved patients with 

similar tumor location
• Identified 4 archetype RT plans in repository
• Enabled 4 domain experts to synergize their efforts 
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Quantitative Analysis Results 
• Mean absolute percent error 

• Archetype-unaware: 16.7% (6.2 Gy) ± 9.3%
• Archetype-aware: 12.3% (4.7 Gy) ± 4.4%

• Running times on 8GB DDR4 RAM and 
Intel i5 2.5GHz processor:

• Processing: 100.5s
• Prediction: 476.5s
• <10 min total on a laptop, compared to 1+ 

week with a medical expert

Actual PlanPredicted Plan

Prediction Error
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Location: Tumor-to-OAR Distance Similarity

• Similarity metric based on 3D structure
• Correlates with RT dosage

• can identify similar RT plans
• can identify outliers
• may predict RT

• Spatially-aware clustering
• Improves AJCC8 survival prediction quality (beyond 

radiomics)

• It also correlates w/ groups at risk for specific 
toxicity outcomes
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Tumor-to-OAR Correlates with Toxicity 

Spatial 
Cluster Count

%
RAD

%
Feeding 
Tube

% 
Aspir
ation

Extended 
Oral Cavity 
Predicted 
Dose (Gy)

Mandible 
Predicted 
Dose (Gy)

Average 
Medial 
Pterygoid
Muscle 
Predicted 
Dose (Gy)

Mandible-
Tumor 
Distance 
(mm)

Medial 
Pharyngeal 
Constrictor-
Tumor 
Distance 
(mm)

Spatial 
Cluster 1 3 0 0 0 51.96 (1.97) 39.92 (2.16) 37.94 (0.5) 13.35 (1.44) 0.29 (1.64)
Spatial 
Cluster 2 114 5.3 3.5 2.6 50.84 (1.37) 38.21 (1.02) 38.03 (1.1) 7.18 (3.82) 12.23 (4.55)
Spatial 
Cluster 3 35 11.4 8.6 5.7 48.66 (3.20) 36.33 (2.82) 35.91 (2.1) 0.04 (1.81) 0.28 (0.60)
Spatial 
Cluster 4 48 50 31.3 29.2 57.11 (2.93) 44.84 (3.69) 42.03 (1.9) 1.64 (2.28) 5.86 (4.23)

• 200 patients

Wentzel, A., Hanula, P., van Dijk, L. V., Elgohari, B., Mohamed, A. S., Cardenas, C. E., ... & Marai, G. E. (2020). Precision toxicity 
correlates of tumor spatial proximity to organs at risk in cancer patients receiving intensity-modulated radiotherapy. Radiotherapy and 
Oncology, 148, 245-251.01/26/22 Liz Marai, UIC 61



Tumor-to-OAR Location and Toxicity
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• EVL and Computational Oncology
• XAI Considerations
• Vis in XAI
• Clustering with Spatial Data: RT
• Clustering with Spatial Data: LN
• A “Good” Visual Explanation for AI
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Clustering with Spatial Data:
Disease Spread via Lymph Nodes
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Head & Neck Cancer Therapy Depends 
on the Disease Spread

Low risk of toxicity High risk of toxicity

Rad. Rad.
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New clustering 
methodology using 
spatial dataHead & Neck 

Cancer Patients

Group Patients Based on Disease Spread 
Patterns
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How to explain spatial clustering 
to non-experts?

How Do We Explain Spatial Clustering?

New clustering 
methodology using 
spatial data
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Challenges
• 582 HNC patients treated at MD Anderson Cancer Center
• Important underlying anatomical structure
• No spatial clustering methodology

• Many unique spread patterns (63)
• Symmetry to be leveraged
• Analyzing # clusters & cluster membership

• Participatory development vs Broader dissemination
• Multi-year, multi-site project, evolving requirements
01/26/22 Liz Marai, UIC 68



Explaining Spatial Clustering

1. Participatory Design
w/ cancer researchers

1.Vis for explainable 
Spatial Clusters

1.Design Lessons Clustering Model Dissemination 
Model

Design Lessons
Wentzel, A., Canahuate, G., Van Dijk, L. V., Mohamed, A. S., Fuller, C. D., & Marai, G. E. (2020, October). Explainable Spatial 
Clustering: Leveraging Spatial Data in Radiation Oncology. In 2020 IEEE Visualization Conference (VIS) (pp. 281-285). IEEE.
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Related Work
• Cluster Visualization

• Low dimensional embeddings [Alper 2011, Cava 2017]
• Parallel Coordinate Plots [Chou 1999]
• Specialized Glyphs [Cao 2011]

• No work in spatial cluster visualization
• Healthcare/Cohort Analytics

• Steering Regression Models [Dingen 2018]
• Only considers linear effects

• Bladder Shape Analysis [Grossman 2019, Raidou 2020]
• Focuses on shape variation rather than clusters and outcomes

same spatial 
structure, yet 
different clusters

Images by wikipedia user:Radomil / 
https://en.wikipedia.org/wiki/Iris_flower_data_set / CC-BY-SA-3.0
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Clustering Model: Graph-based

Left

Right

Bilateral Graph

Multiple design iterations.
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Model Development
• Note: some patients have no exact match in the repository

Luciani, T., Wentzel, A., Elgohari, B., Elhalawani, H., Mohamed, A., Canahuate, G., ... & Marai, G. E. 
(2020). A spatial neighborhood methodology for computing and analyzing lymph node carcinoma 
similarity in precision medicine. Journal of Biomedical Informatics, 5, 100067.
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Clustering Model: Cluster Membership 
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Spatial vs. Categorical Metric

227 patients (out of ~600) have simple spread, to one node only. Both metrics separate 
those. For the rest, they disagree about 50%.
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Spatial vs Categorical Metric

(A) (B)

In those 50% cases, discarding topology (i.e., 
following the categorical metric) leads to groupings 
that RT oncologists did not accept as valid.
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Clustering Model: Pros and Cons
Pros: 
• compact visual representation
• accounts for symmetry
• graph-theory aligned
• supports comparison and clustering

Cons:
• abstract & complex, difficult to interpret by others
• less emphasis on toxicity outcome correlates 
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Dissemination Model: Anatomy-based

Anatomical Map Heatmap Cluster Representation Clinical Correlates

Multiple design iterations.
Wentzel, A., Luciani, T., van Dijk, L. V., Taku, N., Elgohari, B., Mohamed, A. S., ... & 
Marai, G. E. (2021). Precision association of lymphatic disease spread with radiation-
associated toxicity in oropharyngeal squamous carcinomas. Radiotherapy and 
Oncology.
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Final Model for Dissemination

(A) Heat map of nodal involvements within each cluster. Left side indicates % of patients in the cluster with at least one involved node on each 
level, while the right side encodes the percentage of patients with bilateral involvement within each node. Regions outlined in black denote 
regions that are most discriminative cluster membership and can be used to determine if 99% of patients are within a given cluster. (B) Radar 
chart showing the % of patients in each cluster with a given toxicity or inclusion in a high-risk clinical staging category. FT: Feeding Tube, AS: 
Aspiration, RAD: Radiation-induced dysphagia, T1/T4: T-category 1/4, AJCC 4: AJCC clinical (8th edition) stage IV, N1/N2/N3: N-category 1/2/3.
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Dissemination Model: Cluster Comparison
Pros: 
• easier to distribute in print
• anatomy-based
• easier to interpret
• shows correlates

Cons:
• too complex for model 

development
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• EVL and Computational Oncology
• XAI Considerations
• Vis in XAI
• Clustering with Spatial Data: RT
• Clustering with Spatial Data: LN
• A “Good” Visual Explanation for AI
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What is a “Good” Visual 
Explanation for AI?
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“Us” and “Them”

Features Algorithm Parameters Model

AI Solution

Output

Cognitive Capacity

Domain Knowledge

Explanation Granularity

User
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Visual computing 
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Data mining 
specialists

Clinicians

Bioinformaticians

Model Builders

Model Users



“Us” and “Them”

Features Algorithm Parameters Model

AI Solution

Output

Cognitive Capacity

Domain Knowledge

Explanation Granularity

Co-builder

01/26/22 Liz Marai, UIC 83

User



“Us” and “Them”: Evangelizers

Features Algorithm Parameters Model

AI Solution

Output

Cognitive Capacity

Domain Knowledge

Explanation Granularity

Co-builder
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Us and Them: Policymakers

• It’s possible the “users” have 
indeed very small XAI needs

• Yet, co-builders are 
“influencers” or “evangelizers” 
or “policymakers”, and they 
have significant XAI needs and 
tremendous influence on the 
95% ”users”

85

Cognitive Capacity

Domain Knowledge

Explanation Granularity

Co-builder User

https://www.darpa.mil/program/explainable-artificial-intelligence
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Goodness: 
Domain Sense, Actionability, Transparency
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Domain Sense

The visual explanations need to make 
sense in the application domain
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Interpretable machine learning in healthcare
Ahmed at al., 2018 BCBHI

Wentzel, Andrew, et al. "Explainable Spatial Clustering: Leveraging Spatial 
Data in Radiation Oncology." 2020 IEEE Visualization Conference (VIS). 
IEEE, 2020.



Actionability
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Floricel, Carla, et al. "Thalis: Human-machine analysis of longitudinal symptoms in cancer 
therapy." IEEE Transactions on Visualization and Computer Graphics 28.1 (2021): 151-161.



Actionability
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Floricel, Carla, et al. "Thalis: Human-machine analysis of longitudinal symptoms in cancer 
therapy." IEEE Transactions on Visualization and Computer Graphics 28.1 (2021): 151-161.



Transparency
• Who needs an explanation?
• How much AI/ML knowledge do they have? How much domain 

knowledge do they have?
• Do they care about the model? Do they only care about features or 

output?
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Cognitive Capacity

Domain Knowledge

Explanation Granularity

User

Background = Graph Theory Background = Anatomy



Goodness: 
Parsimony, Fidelity, Consistency, Performance
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Parsimony and Fidelity 

• Parsimony: the simplest explanation
• Fidelity: the most faithful explanation

• Again, context and purpose matter
• Parsimony vs Fidelity tension
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Generalizability

• Breast cancer researchers saw immediately a connection based on 
the graph representation, but not when looking at the anatomical one
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Consistency

• One of the more confusing criteria:
• Consistency means the methods for producing explanations should be 

consistent across different models and across different runs of the model

• Consistency means the explanations are stable across models and runs?
• Local Linear Explanation methods (e.g., LIME and SHAP) are plagued by many defects 

including unstable explanations, divergence of actual implementations from the 
promised theoretical properties, and explanations for the wrong label.

01/26/22 Liz Marai, UIC 94

Interpretable machine learning in healthcare
Ahmed at al., 2018 BCBHI

To trust or not to trust an explanation: using LEAF 
to evaluate local linear XAI methods
Amparore at al., 2021 PeerJ



Performance

What are the time constraints?
• need to act quickly (pathology, computational steering)
• need to act deliberately and fairly (tumor board, policy making)
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A Multi-Dimensional, Multi-Phase Model
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transparency
fidelity
generalizability
actionability
domain sense
…
consistency

…
actionability
domain sense
parsimony
consistency
performance

model building model dissemination



Recap and Conclusion
• XAI is beneficial, esp. to policy makers and co-builders
• XAI goes way beyond black box interpretability
• Vis can enable XAI, in particular when spatial data is involved
• Goodness of visual XAI is multidimensional and multi-phase
• Goodness criteria shift between development and dissemination 
• Goodness criteria go beyond transparency 
• At least in healthcare, domain sense, actionability, and parsimony matter
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• www.evl.uic.edu
• EVL members & collaborators

• NSF CDS&E-1854815, CNS-1828265, CNS-1625941, DMS-1557559, IIS-2031095

• NIH NCI-R01-CA214825, NCI-R01-CA225190, NLM-R01-LM012527, NCI-R01-CA258827 

Thanks

• We’re hiring! Multiple faculty positions including CG
• Fastest growing CS department in the USA
• Downtown Chicago
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