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In Situ Visualization History

* G. A. Geist, J. A. Kohl, P. M. Papadopoulos, "CUMULVS:
Providing Fault-Tolerance, Visualization and Steering of Parallel
Applications," Environment and Tools for Parallel Scientific
Computing Workshop, Lyon, France, August 21-23, 1996.

* Interactive Exploration and Modeling of Large Data Sets: A Case
Study with Venus Light Scattering Data. J.J. van Wijk, H.J.W.
Spoelder, W-J. Knibbe, K.E. Shahroudi, IEEE Visualization ‘96

 Jeffrey Vetter "Computational Steering Annotated
Bibliography". SIGPLAN Notices. 32 (6): 40—
44. doi:10.1145/261353.261359, 1997.
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https://www.jimmunol.org/content/jimmunol/106/5/1159.full.pdf?casa_token=uYPtAEhNT0cAAAAA:x1PyjtfLvbx5VrnwRHL6R8q0jKImNGeOY_7fU_FQ8SpHLXH5YVyDfhXMNMZF9ihxlLjxZpoGnX8JFA
https://en.wikipedia.org/wiki/SIGPLAN_Notices
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1145%2F261353.261359

In Situ Visualization History

« Nanoscopic visualization of localized corrosion damage by means of
atomic force microscope, WIT Transactions on Engineering
Sciences 13 (1970). “...nanoscopic in-situ visualization by using
Atomic Force Microscopy.”

« Computer assisted stereotactic neurosurgery." Image and vision
computing 11.8, 1993, “Since no direct in situ visualization of the
cerebral structures along the trajectory is possible...”

 R. P. Kale, M. E. Fleharty and P. M. Alsing, Parallel molecular
dynamics visualization using MPI with MPE graphics, Proceedings.
Second MPI Developer's Conference, 1996, pp. 104-110. “The main
thrust of our research efforts is currently directed towards in situ

visualization of the MD simulations.”
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https://www.jimmunol.org/content/jimmunol/106/5/1159.full.pdf?casa_token=uYPtAEhNT0cAAAAA:x1PyjtfLvbx5VrnwRHL6R8q0jKImNGeOY_7fU_FQ8SpHLXH5YVyDfhXMNMZF9ihxlLjxZpoGnX8JFA
https://www.jimmunol.org/content/jimmunol/106/5/1159.full.pdf?casa_token=uYPtAEhNT0cAAAAA:x1PyjtfLvbx5VrnwRHL6R8q0jKImNGeOY_7fU_FQ8SpHLXH5YVyDfhXMNMZF9ihxlLjxZpoGnX8JFA

In Situ Visualization History
1997 Sandia Technical Report about ASCI Red:

"Although other distributed strategies for visualizing large data sets
are also being considered, several parallel tools are currently being

implemented directly on the ASCI Red machine to enable in

situ visualization of machine capacity data sets thereby avoiding the

need to move the data prior to visualization”

SAND~~97- 0 4 63C
CONF-9706(2- -/

ASCI Red -

Experiences and Lessons Learned with a

Massively Parallel TeraFLOP Supercomputer (0)

Mark A. Christon, David A. Crawford, Eugene S. Hertel,

James S. Peery, and Allen C. Robinson

Computational Physics R&D Department

Sandia National Laboratories
Albuquerque, New Mexico 87185-0819
E-mail: machris@sandia.gov
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In Situ Visualization Papers

1990 - 2000 - 26
2000 - 2005 - 79
2005 - 2010 - 284
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In Situ Visualization History

« Ma, Kwan-Liu. "VisFiles: the next surge of visualization research." ACM
SIGGRAPH Computer Graphics 41.3, 2007.

« K. Ma, "In Situ Visualization at Extreme Scale: Challenges and Opportunities,"
in IEEE Computer Graphics and Applications, vol. 29, no. 6, pp. 14-19, Nov.-Dec.
2009. 139 Citations.

« Cummings, J. and Pankin, A. and Podhosrzki, N. and Park, G. and Ku,
S. and Barreto, R. and Klasky, S. and Chang, C. S. and Strauss,
H. and Sugiyama, L. and Snyder, P. and Pearlstein, D. and Ludascher,
B. and Bateman, G. and Kritz, A. Plasma Edge Kinetic-MHD Modeling in
Tokamaks Using Kepler Workflow for Code Coupling, Data Management and
Visualization. Communications in Computational Physics, 4 (3). pp. 675-702,
2008

* Yu, H., Wang, C., Grout, R. W., Chen, J. H., & Ma, K. L. In situ visualization for
large-scale combustion simulations. IEEE computer graphics and applications, 30
(3), 45-57, 2010.
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In Situ Visualization Papers

1990 - 2000 - 26

2000 - 2005 - 79

2005 - 2010 - 284

2010 - 2015 - 803

2015 - 2020 - 1,580

2020 - 2022 - 783 (~ 2,000 by 2025)

Fabian, N., Moreland, K., Thompson, D., Bauer, A.C., Marion, P., Gevecik, B., Rasquin,
M. and Jansen, K.E. The Paraview coprocessing library: A scalable, general purpose in

SCI situ visualization library. In 2011 IEEE Symposium on Large Data Analysis and
Visualization (pp. 89-96), 2011. 281 Citations
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In Situ Motivation - Early Days

Jackie Chen - Kwan-Liu Ma - Combustion simulation data that is multi-
scale, multi-variate, time varying and three-dimensional. The data was
intrinsically intermittent and highly transient (turbulence, unsteady
ignition and extinction events) necessitating performing the analysis and
visualization in situ since we weren't able to store data at sufficient
frequency and the 10 rates and storage capacity were limited.

Success Story: Then postdoc, Hongfeng Yu (now a professor at U.
Nebraska), was resident at Sandia with Jackie where he immersed
himself with combustion scientists to learn what their needs were. From
this interaction he developed in situ multi-variate and particle
visualization and in-situ parallel distance field computation with respect
to dynamical turbulent flame surfaces.

INSTITUTE
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Jackie Chen: Future requirements for in situ
visualization, analytics, ML in simulation workflows

« Adaptive data placement for staging-based coupled scientific
workflows to address complex and dynamic data exchange patterns
exhibited by the workflows.

« Take advantage of application-specific data access patterns to
adaptively place data with an awareness of the system network
topology to reduce data access costs and enable efficient data
sharing.

* |[dentify and characterize the dynamic data access patterns of data
consumer applications at runtime using a combination of user
provided hints and knowledge of prior access behaviors.
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Jackie Chen: Future requirements for in situ
visualization, analytics, ML in simulation workflows

(continued)

* Including visualization as part of a more complex simulation and
data science workflow at exascale with triggers for steering
analytics and reduced order modeling on the fly and
visualization the results is a challenge.

» Programming which transient events to look for, extract,
compute statistics on, and track forwards and backwards in time
is still a challenge, especially for large multi-scale data.
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In Situ Motivation - Early Days

CS Chang: Extreme-scale Fusion Simulation. in 2005 DOE awarded the
Prototype Fusion Simulation Project (FSP) Center for Plasma Edge Simulation (CPES),
converted to SciDAC 2.
There was a need to monitor, during the simulation:
- when and how the kinetic buildup of tokamak edge pressure induces a sudden MHD
instability
- how turbulence is developed and affecting the edge pressure buildup
- how to steer the simulation by parameter injection
- Code coupling between kinetic XGC and an MHD code was a necessity for this work
- Scott Klasky’s DM group (then PPPL), led by Arie Shoshani (LBNL, then director of SDM
center), used Kepler to create an in situ visualization workflow called EFFIS for code coupling
- Service oriented Architecture was used in EFFIS (End-to-end Framework for Fusion Integrated
Simulation)
- eSimMon Dashboard was created for collaborative in situ visualization of the simulation data,
including macroscopic plasma profile evolution, turbulent dynamics and code coupling status
- Nagiza Samatova (NCSU) added mathematical data-analysis capability in eSimMon
- Steve Parker (then U. Utah) added visually pin-pointed simulation analysis capability in eSimMon
- Use the mouse click on a spot to get the local result data

During SciDAC 3 and 4, Kepler was replaced by ADIOS code-coupling workflow framework.



CS Chang: Future requirements for in situ visualization, analysis
and monitoring simulation workflows

Analysis/Al
/ nodes

‘Simulation steering o

User .
Computing nodes ' ADIOS+ EFFIS + eSimMon
—

File system

Monitoring

Utilize a hybrid in situ monitoring and analysis method
* In-line analysis for well parallized part.
« On-line asynchronous analysis and visualization for poorly parallized but time-consuming part: off-
load the in situ analysis/visualization to independent analysis nodes.
« Utilize AI/ML in analysis nodes for feature detection, UQ, validation and simulation steering
« Simulation steering: AMR where needed, filter out known instabilities, etc.
» Analysis nodes also reduce and compress data for further post processing.
« Utilize accelerators as much as possible.
« Extend this technique for collaborative research on big experiments.



CS Chang: On-line visualization of Poincare puncture movie
in XGC from fluctuating homoclinic tangle in ITER edge

» Electromagnetic turbulence could partially
destroy the last closed magnetic surface called
“separatrix” surface (white dashed line)

— 100

« At every simulation timestep, the fluctuating
magnetic field data is asynchrously off-loaded to
an analysis load for on-line visualization

=3:2
20

- XGC simulation continues without
interruption

=33

* In-line visualization would have doubled the
XGC simulation time (full-scale Summit is used) .

Number of points per pixel

 The Poincare visualization routine is difficult
to be massively parallelized, like XGC.

% XGC simulation by S. Ku (PPPL)

s ADIOS2.0 data movement by S. Klasky’s group  _..
(ORNL)

*» Poincare puncture-movie by D. Pugmire’s group
(ORNL)




Top In Situ Visualization Challenges - 2019 Dagstuhl Workshop

- Data quality and reduction, i.e., reducing data in situ and then exploring it post hoc, which is likely the form that will
enable exploration of large data sets on future supercomputers.

+ Workflow execution, i.e., how to efficiently execute specified workflows, including workflows that are very complex.

+ Software complexity, heterogeneity, and user-facing issues, i.e., the challenges that prevent user adoption of in
situ techniques because in situ software is complex, computational resources are complex, etc.

« Exascale systems, which will have billion-way concurrency and disks that are slow relative to their ability to
generate data.

 Algorithmic challenges, i.e., algorithms will need to integrate into in situ ecosystems and still perform efficiently.

+ Workflow specification, i.e., how to specify the composition of different tools and applications to facilitate the in situ
discovery process.

» Use cases beyond exploratory analysis, i.e., ensembles for uncertainty quantification and decision optimization,
computational 'steering, incorporation of other data sources, etc.

+ Exascale data, i.e., the data produced by simulations on exascale machines will, in many cases, be fundamentally
different than that of previous machines.

« Cost models, which can be used to predict performance before executing an algorithm and thus be used to optimize
performance overall.

« Convergence of HPC and Big Data for visualization and analysis, i.e., how can developments in one field, such as
machine learning for Big Data, be used to accelerate techniques in the other?

H. Childs, J.C. Bennett, C. Garth (editors). In Situ Visualization for Computational Science,
Springer, 2022

In Situ

Visualization for
S‘ I Computational
Science
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My In Situ Visualization Challenges and Opportunities
* Reproducibility
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Reproducibility

National Academies of Sciences, Engineering, and Medicine, Reproducibility and
Replicability in Science. The National Academies Press, 2019. [Online]. Available:
https://www.nap.edu/catalog/25303/reproducibility-and-replicability-in-science

Jean-Daniel Fekete, Juliana Freire. Exploring Reproducibility in Visualization. |EEE
Computer Graphics and Applications, Institute of Electrical and Electronics Engineers,
2020, 40 (5), pp.108-119.

Reproducibility and Replicability (R&R) tools e.g., ReproZip, Docker, Jupyter and
repositories zenodo.org, osf.org—that make it easier to publish transparent, R&R results.
It is worth noting that there are possible limitations, regarding humans, hardware, and
software, that can hamper reproducibility. In particular, special hardware is an obstacle to
reproducibility. Visualization is particularly rich in special hardware, from HPC to display
technologies like VR, AR, wall-sized displays, and physical visualizations.
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Reproducibility

EZ-ISAV - A work-in-progress towards a framework for easy construction of customizable in situ
pipelines in container images. Designed for portability and ease of use, these images are intended
to serve as proof-of-concept cases for in situ visualization and analysis research...reduce the
overhead of developing and evaluating in situ techniques and provide improved reproducibility
and portability of in situ visualization research.

i Other Libraries
' e.g. TTK for Paraview '

EZ-ISAV
Image
PANTHEON

In Situ Adapter /
Vis. Environment

Base Image
OS + MPI

Application /
Workload

The Pantheon Project: Reproducible Workflows for Extreme Scale Science

Container Stack

pantheonscience.org
Figure 1: Overview of the EZ-ISAV container image frame-
work.

Michael Will, Quincy Wofford, John Patchett, David Rogers, Jonas Lukasczyk, and Christoph

Garth. 2021. Developing and Evaluating In Situ Visualization Algorithms using Containers.
SCI ISAV'21: In Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization. Association
INSTITUTE for Computing Machinery, New York, NY, USA, 6—11.




My In Situ Visualization Challenges and Opportunities
* Reproducibility
* High Performance Data Movement
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Scalable Deployment: Exploration of 3.5PB of NASA Weather/Climate

Data in Real Time

Workflow — Processing
» Data creation — Analysis
* Data Management — Visualization

p—

¢

Ty
i |
'} “«Z
\ | PR i

2006-07-01 - 00:09 UTC

7km GEOS-5 “Nature Run”

1 dataset, 3.5 PB
theoretically: openly accessible

practically: precomputed pics
Distributed Resources
— 3.5 PB of data store in NASA
— Primary ViSUS server in LLNL

Clients connect remotely
INSTITUTE . .
Work without additional HPC resources

S CI — Secondary ViSUS server in Utah
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DOE PSAAP2 Simulations of GE Clean(er) Coal Boilers

« Large scale turbulent combustion needs mm scale grids —"
1074 mesh cells 10M5 variables (1000x more than now) [

« Structured, high order finite-volume discretization

* Mass, momentum, energy conservation

 LES closure, tabulated chemistry

« PDF mixing models

« DQMOM (many small linear solves)

« Uncertainty quantification

user: u0033047

3 04!
Tue Apr 29 18:06:24 2014

* Low Mach number approx. (pressure Poisson solve up to
10M2 variables. 1M patches 10 B variables

 Radiation via Discrete Ordinates — many hypre solves
Mira (cpus) or ray tracing Titan (gpus strong and weak
scaling via AMR).

« FAST I/O needed PIDX for scalability

60m




100 -

Throughput (GB/Sec)
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High Performance Data Movement for Real-Time
Monitoring of Large Scale Simulations

©PIDX

><I10OR Shared File (MPI Collective 10)
IOR File per Process (POSIX 1/0)

1K 2K

4K 8K 16K 32K 64K 128K 256K 512K 768K
Cores



My In Situ Visualization Challenges and Opportunities
* Reproducibility
* High Performance Data Movement

« Adaptive Meshes and High Order Simulation

* Most large-scale simulation use adaptive meshes and/or high
order basis functions, however, most visualization algorithms
do not.

SCI
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AMReX

A software framework for massively parallel, block-structured adaptive mesh refinement (AMR) applications

AMReX Source Code AMReX Tutorials

Source Documentation Tutorials Documentation

Nyx WarpX AMRWind Pele
INT-179 INT-825 INT-1350 INT-133

SCI i A Nscent




AMR Visualization

Colliding Black Holes NASA Exajet Landing Gear
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F. Wang, |. Wald, Q. Wu, W. Usher, C. R. Johnson. “CPU Isosurface Ray Tracing
of Adaptive Mesh Refinement Data,” In /IEEE Transactions on Visualization and
Computer Graphics, Vol. 25, No. 1, IEEE, pp. 1142-1151. Jan, 2019.



CPU Ray-tracing of Tree-based Adaptive
Mesh Refinement Data

Feng Wang, Nathan Marshak, Will Usher, Carsten Burstedde
Aaron Knoll, Timo Heister, and Chris R. Johnson

SCI
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F. Wang, N. Marshak, W. Usher, C. Burstedde, A. Knoll, T. Heister, C. R. Johnson. “CPU Ray Tracing of
Tree-Based Adaptive Mesh Refinement Data,” In Eurographics Conference on Visualization (EuroVis)
2020, Vol. 39, No. 3, 2020.



High-Order FEM Visualization

Counter-Rotating Vortex Vorticity

P ———

Sampled LSIAC Filtered

Topological Analysis of Fields
FEM Vorticity  LSIAC Filtered
Vorticity

ve

Sampled LSIAC Filtered
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Iso-Geometric Analysis

Finite element analysis
approximates geometry

Feature removal,
adaptive meshing

Isogeometric analysis
preserves geometry

(a) Exterior stress distribution.

SCI ~
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Bz

(b) Interior stress along some a longitudinal section. Both pictures correspond to the front and back
views of a one element thick slice.

Cottrell, J.A., Hughes, T.J. and Bazilevs, Y. Isogeometric Analysis: Toward Integration of
CAD and FEA. John Wiley & Sons, 2009.

F. Massarwi, G. Elber. A B-spline based framework for volumetric object modeling,
Computer-Aided Design, Volume 78, pp. 36-47, 2016.




My In Situ Visualization Challenges and Opportunities
* Reproducibility
* High Performance Data Movement

« Adaptive Meshes and High Order Simulation
* Most large-scale simulation use adaptive meshes and/or high
order basis functions, however, most visualization algorithms
do not.
« Domain Expertise and Compact Analysis Techniques
» Feature Extraction, TDA, Lagrangian Representations
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In Situ Lagrangian Analysis

SIMULATION CODE

IN SITU PROCESSING

Advance Simulation

A

New Vector
Field

v

Lagrangian Analysis
Routine

Sampling Strategy

Particle Advection

Particle Management

Store
Lagrangian
Representation

Data
Storage

Load
Lagrangian
Representation

P g g g S

POST HOC
EXPLORATION

"“(\,‘ - N
A

S. Sane, C.R. Johnson, H. Childs. Investigating the Use of In Situ Reduction via Lagrangian Representations for Cosmology and
Seismology Applications. International Conference on Computational Science 2021. Best Paper Award.
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S. Sane, A. Yenpure, R. Bujack, M. Larsen, K. Moreland, C. Garth, C. R. Johnson, and H. Childs. Scalable In Situ Computation
of Lagrangian Representations via Local Flow Maps. Eurographics Symposium on Parallel Graphics and Visualization (EGPGV)
2021. Best Paper Award.



In Situ Lagrangian Analysis
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75.00

0.000

¢) Eulerian =25 (227MB) e) Lagrangian =25, 1:8 (27MB)

b) Overlapping gray high density isosurfaces d) Lagrangian 1=25, 1:1 (232MB) f) Lagrangian 1=25, 1:27 (§MB)

S. Sane, C.R. Johnson, H. Childs. Investigating the Use of In Situ Reduction via Lagrangian Representations for Cosmology and
Seismology Applications. International Conference on Computational Science 2021. Best Paper Award.

S. Sane, A. Yenpure, R. Bujack, M. Larsen, K. Moreland, C. Garth, C. R. Johnson, and H. Childs. Scalable In Situ Computation
of Lagrangian Representations via Local Flow Maps. Eurographics Symposium on Parallel Graphics and Visualization (EGPGV)
2021. Best Paper Award.



Topological Data Analysis and Visualization
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2021.



Topological Data Analysis and Visualization

» Most topological analysis, from persistent hor_nolo?y to
merge trees to Morse-Smale complexes require global
information.

* There are some topological tools used for

?eometry/topology_-based stratification Iearnin%that use
ocal homology to infer structure in local neighborhoods:

Brown, A., Wang, B. Sheaf-Theoretic Stratification
Learning from Geometric and Topological
Perspectives. Discrete Computational

Geometry 65, 1166—1198, 2021.
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My In Situ Visualization Challenges and Opportunities
* Reproducibility
* High Performance Data Movement

« Adaptive Meshes and High Order Simulation
* Most large-scale simulation use adaptive meshes and/or high
order basis functions, however, most visualization algorithms
do not.
« Domain Expertise and Compact Analysis Techniques
» Feature Extraction, TDA, Lagrangian Representations

« Uncertainty and Error Propagation

» Information loss. Data reduction is used throughout in situ
visualization pipelines. Plus, there is already uncertainty in the

SCJ simulation data and visualization algorithms. How do we
~ i assess overall quality?




ncertainty Visualization

>=95%)
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>205%

>=75%

(D) @4njesadwa]

When is the last time you’ve seen an error
bar on an isosurface?

G.P. Bonneau, H.C. Hege, C.R. Johnson, M.M. Oliveira, K.
Potter, P. Rheingans, T. Schultz. “Overview and State-of-
the-Art of Uncertainty Visualization,” In Scientific
Visualization: Uncertainty, Multifield, Biomedical, and
Scalable Visualization, Edited by M. Chen and H. Hagen and
C.D. Hansen and C.R. Johnson and A. Kauffman, Springer-
Verlag, pp. 3-27. 2014.

M.G. Genton, C.R. Johnson, K. Potter, G. Stenchikov, Y.
Sun. “Surface boxplots,” In Stat Journal, Vol. 3, No. 1, pp.
1-11. 2014.

K. Potter, P. Rosen, C.R. Johnson. “From Quantification to
Visualization: A Taxonomy of Uncertainty Visualization
Approaches,” In Uncertainty Quantification in Scientific
Computing, IFIP Series, Vol. 377, Springer, pp. 226-249.
2012.

K. Potter, A. Wilson, P.-T. Bremer, D. Williams, C. Doutriaux,

B V. Pascucci, C.R. Johnson. “Ensemble-Vis: A Framework

for the Statistical Visualization of Ensemble Data,” In
Proceedings of the 2009 IEEE International Conference on
Data Mining Workshops, pp. 233-240. 2009.

C.R. Johnson, A.R. Sanderson. “A Next Step: Visualizing

§ Errors and Uncertainty,” In IEEE Computer Graphics and

Applications, Vol. 23, No. 5, pp. 6-10. September/October,
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Contour Box Plots

J J
SESB(Sl,...Sj) 4 ﬂSkCSC USk.
k=1 k=1

xcluding outliers)

100% of data (e

Whitaker, Mirzargar, Kirby, IEEE Transactions on Visualization and
Computer Graphics, Vol. 19, No. 12, pp. 2713--2722, 2013.

M.G. Genton, C.R. Johnson, K. Potter, G. Stenchikov, Y. Sun.

SCI N “Surface boxplots,” In Stat Journal, Vol. 3, No. 1, pp. 1-11. 2014.
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Uncertainty Visualization of the Marching Squares

and Marching Cubes Topology Cases - VIS 2021
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(c) Probabilistic marching cubes [14]

(f) Entropy level-set (red)

Figure 5: Uncertainty visualizations for the stag beetle [21] hixel dataset at k = 900. The noise in the data results in breaking of the beetle leg
in image (b). In probabilistic marching cubes, it is difficult to distinguish between the regions of high and topological uncertainty, which is
easier using our visualizations in images (d-f). The relatively high sensitivity of the beetle leg topology to noise is detected in images (d-f) by
the red regions. In image (f), the most probable level-set (gray) is overlaid with the entropy volume level-set (red) for entropy isovalue 5.



Back to Computational Steering and In
Situ Visualization Together Again?

“*How do the above considerations change if in situ
Interactive exploration (mandating short response times) is
considered, e.g. for computational steering applications?"

Report from Dagstuhl Seminar 18271

In Situ Visualization for Computational Science

Edited by Janine C. Bennett, Hank Childs, Christoph Garth, and Bernd
Hentschel. Available at: https://www.osti.gov/pages/servlets/purl/1492333
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More Information

www.Scl.utah.edu

cri@sci.utah.edu
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