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Abstract—Design and control of vector fields is critical for subject of vector field visualization and design. For example,
many visualization and graphics tasks such as vector field visual- Figure 1 shows the swirl motion of fluid in a combustion
ization, fluid simulation, and texture synthesis. The fundamental chamber using simulation [7]. Periodic orbits appear in some

gualitative structures associated with vector fields are fixed | l | th ; is of th hamb iddl
points, periodic orbits, and separatrices. In this paper we provide planar slices along the main axis of the chamber (middle)

a new technique that allows for the systematic creation and as Well as the boundary geometry (Figure 13). The existence
cancellation of fixed points and periodic orbits. This technique and locations of the periodic orbits provide clues to the swirl
enables vector field design and editing on the plane and surfacesmotion inside the chamber. Efficient periodic orbit detection
with desired qualitative properties. and vector field visualization can help design engineers better

The technique is based onConley theorywhich provides a o
unified framework that supports the cancellation of fixed points understand how the shape of the chamber and the initial speed

and periodic orbits. We also introduce a novel periodic orbit Of the fluid through the intake ports impact engine efficiency.
extraction and visualization algorithm that detects, for the first Many of the above mentioned applications involve systems
time, periodic orbits on surfaces. Furthermore, we describe of nonlinearordinary differential equations, for which explicit
the application of our periodic orbit detection and vector field = 5n5ytic solutions do not exist. The lack of analytic expressions
simplification algorithm to engine simulation data demonstrating . .
the utility of the approach. led to the development of the s_ubj_ect of dynamical systems
We apply our design system to vector field visualization Where the focus is on the qualitative structure of solutions.
by creating datasets containing periodic orbits. This helps us In the case of two-dimensional vector fields, the classical
understand the effectiveness of existing visualization techniques. theoretical description of the dynamics is based on identifying
Finally, we propose a new streamline-based technique that allows f,nqamental topological and geometric structures such as fixed
vector field topology to be easily identified. . L h . . . .
points, periodic orbits, separatrices, and their relationships [8],
Index Terms—Vector field design, vector field visualization, [9]. However, in practice there are at least two essential diffi-
vector field topology, vector field simplification, Morse decompo- ¢ iies with this approach. First, unambiguously identifying all
sition, Conley index, periodic orbit detection, connection graphs. . ; .. .
the topological structures for an arbitrary system is impossible.
For example, Hilbert's 16th problem, that of bounding the
|. INTRODUCTION number of isolated periodic orbits for a polynomial vector
ECTOR fields arise as models in almost all scientifiield on the plane, remains essentially unsolved [10]. Second,
and engineering endeavors which involve systems thhe existence of noise reduces the importance of objects such
change continuously with time. In the case of two-dimensionas fixed points and periodic orbits.
systems that can be modelled by vector fields defined on surin this paper, we develop a vector field visualization and
faces, visualization can play an important role in understandidgsign system that extracts and visualizes boundary flow topol-
the essential features in the system. This is also true for twagy. This includes analyzing and modifying the vector field.
dimensional vector fields that are linked to potentially noisyhe system builds on the ideas presented by Zhang et al. [6],
data, such as a velocity field extracted from experiments @nd it provides the user with a variety of capabilities in that
numerical simulations of fluids. In both cases, there are ocdied points, periodic orbits, and separatrices can be identified.
sions in which one wishes to simplify the dynamic structureurthermore, fixed points and periodic orbits can be created
in a coherent admissible manner [1]. This latter step requiregd removed subject to inherent topological constraints. To
the ability to edit the underlying vector field. Furthermoreaddress the additional complexity dealing with periodic orbits,
there are problems where the construction and modificatise make the following contributions in the presented research:
of a vector field represents a preliminary step towards a largerl) We provide a general framework and efficient algorithms
goal such as texture synthesis [2], [3], [4] and fluid simulation that allow topological simplification on arbitrary vector
for special effects [5]. fields defined on surfaces (Section VI). Our framework
There is substantial literature on the subject of vector field is based on Conley theory, which is a well-known theory
topology extraction and simplification, with considerable focus  in non-linear dyanmicslating back the earlf970s (a

on the identification and manipulation fiked points(see [6] brief introduction is available in Section Ill). To our
and references therein). On the other hgetjodic orbitsare knowledge, previous work including Zhang et al. [6]
essential structures obn-gradientvector fields, such as those does not address simplification that involve periodic

in electromagnetism, chemical reactions, fluid dynamics, loco-  orbits. In addition, most of the existing simplification
motion control, population modelling, and economics. There  algorithms require planar vector fields.
is a fundamental need to be able to incorporate them into the2) We describe a novel graph-based representation of a



Fig. 1.

for which the plane normals are along the main axis of the chamber. From left to right are slices108t &5% 50% and 75% of the length of the
cylinder from the top where the intake ports meet the chamber. The vector fields are defined as zeros on the boundary of thengeslipetgn(itior).

The automatic extraction and visualization of flow topology allows the engineer to gain insight into where the ideal pattern of swirl motion is realized inside
the combustion chamber. In fact, the behavior of the flow and its associated topology, including periodic orbits, is much more complicated than the ide

Figure 13 provides complementary visualization of the flow on the boundary of the diesel engine.

3)

4)

5)

6)

vector field based on Morse decomposition, which wethms we employ can be found in [12], [13]. The second is
refer to asMorse Connection Graph®CG). This graph to identify the type of dynamics occuring in these regions, i.e.
contains supplementary information with respect to thtbe existence of fixed points, periodic orbits, and separatrices.
well-known vector field skeletorin that it addresses This is done using numerical methods and @unley indexIt
periodic orbits. We also provide an algorithm to effishould be noted that the Conley index not only generalizes the
ciently compute MCG as well as their refinemeBn{ity Poincaé index as it applies to fixed points, but it also provides
Connection Graphicsor ECG) (Section V-B). information about the existence of periodic orbits. Finally, the
Our system allows a user to create periodic orbits arector field is modified in the identified regions to produce the
surfaces (Section 1V). To do so, we combine the ideaesired dynamics.
of basis vector fields and constraint optimization. To our The rest of the paper is organized as follows: Section I
knowledge, this is the first time a periodic orbit creatioprovides a brief review of related work on topology-based
algorithm is proposed and implemented. vector field visualization. In Section Ill, we review related
As part of MCG and ECG construction, we presentork and introduce Conley theory. Section IV introduces our
a novel and practical algorithm for periodic orbit exmethod for creating periodic orbits on the plane and surfaces.
traction without first having to compute separatriceSection V describes our periodic orbit detection technique and
(Section V-A). Our method is based on the topologicgrovides an algorithm for the construction of the MCG and
and geometric analysis of a vector field, and it enabl€CG of a vector field. We present a general algorithm for var-
extraction of periodic orbits—even those that are n@bus cancelling operations in Section VI. Section VII provides
accessible via saddle points. details on our enhanced streamline based flow visualization
The utility of our topological analysis, including periodictechnique followed by a discussion of possible future work in
orbit detection and vector field simplification, is demonSection VIIl.
strated in the context of a novel application, namely, the
visualization of in-cylinder flow from automotive engine
simulation data (Sections V and VI). Our algorithm for Vector field visualization, analysis, simplification, and de-
periodic orbit detection and ECG construction only takegign have received much attention from the Visualization
less than a minute on one such dataset with neafgmmunity over the past twenty years. Much excellent work
900,000 triangles. exists, and to review it all is beyond the scope of this paper.
We propose an enhanced streamline-based methodH@re, we only refer to the most relevant work. Interested
which periodic orbits and separatrices are highlighted li¢aders can find a complete survey in [14], [15], [16].
the display (Section VII). This is particularly desirable ' .
for vector fields on surfaces since only portions of Q‘ Vector Field Design
periodic orbit may be visible for any given viewpoint There has been some work in creating vector fields on
(Figure 6). the plane and surfaces, most of which is for graphics ap-
plications such as texture synthesis [2], [3], [4] and fluid

Il. RELATED WORK

Because of the essential mathematical difficulties mentionsignulation [5]. These methods do not address vector field
earlier, our numerical methods do not focus directly on fixedpology, such as fixed points. There are a few vector field
points, periodic orbits, and separatrices. Rather, we empldgsign systems that make use of topological information. For
techniques based on Conley’s purely topological approachitstance, Rockwood and Bunderwala [17] use ideas from
dynamical systems [11]. Broadly speaking, our approach geometric algebra to create vector fields with desired fixed
based on three steps. The first is to identify regions on whigleints. Van Wijk [18] develops a vector field design system
the dynamics exhibits recurrent behavior, i.e. fixed points atam demonstrate his image-based flow visualization technique
periodic orbits, and/or gradient-like behavior, i.e. separatrictBFV). The basic idea of this system is the use of basis vector
This involves the construction dflorse decompositionsA fields that correspond to various types of fixed points. This
theoretical computational foundation for the types of alg®ystem is later extended to surfaces [19], [20]. None of these

Visualizing the simulation of flow in a diesel engine: the combustion chamber (leftmost) and four planar slices of the flow inside the chambe



methods provide explicit control over the number and locatidramework for cancelling object pairs such as fixed points and
of fixed points since unspecified fixed points may appegueriodic orbits (Section VI).

Theisel [21] proposes a planar vector field design system in
which the user has complete control over fixed points and
separatrices. However, this requires the user to provide thé2ur control of vector fields on surfaces is done using
completetopological skeletorof the vector field, which can concepts from the topological theory of dynamical systems.
be labor-intensive. Recently, Zhang et al. [6] develop a desi§®nsider a manifold and a subseX c M. The boundary of
system for both planar domains and surfaces. This systénis denoted by?X and closure bycl(X).

provides explicit control over the number and location of fixed Mathematically, a vector field can be expressed in terms
points throughfixed point pair cancellatiorand movement ©Of a differential equatiork =V (x). The set of solutions to
operations. Our work is inspired by their system. Howevef, gives rise to aflow on M; that is a continuous function
we enable automatic extraction and visualization of periodft: R xM — M satisfying¢ (0,x) = x, for all xe M, and

orbits on surfaces. We also introduce topology simplification

operations for periodic orbits. There has also been recent work P(t.¢(sx) =9 (t+sX) 1)

by Weinkauf et al. [22] on the design of 3D vector fields.

IIl. BACKGROUND ONVECTORFIELDS

for all xe M andt,s€ R. Givenx € M, its trajectory is

B. Vector Field Topology and Analysis

Helman and Hesselink [23] introduce vector field topology P(R.X):=Urerd (t,%). @
for the visualization of vector fields. They also propose eBC M is aninvariant setif ¢(t,S) = Sfor all t € R. Observe
ficient algorithms to extract vector field topology. Followinghat for everyx € M, its trajectory is an invariant set. Other
their footsteps, much research has been conducted in top#aple examples of invariant sets include the following. A
logical analysis of vector fields. For example, Scheuermapgintx € M is afixed pointif ¢(t,x) = x for all t € R. More
et al. [24] use clifford algebra to study the non-linear fixegenerally,x is a periodic pointif there existsT > 0 such
points of a vector field and propose an efficient algorithifiat ¢ (T,x) = x. The trajectory of a periodic point is called a
to merge nearby first-order fixed points. Tricoche et al. [Heriodic orbit
and Polthier and Prgdi[26] give efficient methods to locate Consideration of the important qualitative structures as-
fixed points in a vector field. Wischgoll and Scheuermann [2Bpciated with vector fields on a surface requires familiarity
develop a method to extract closed streamlines in a 2D vecwith hyperbolic fixed points, period orbits and separatrices.
field defined on a triangle mesh. Note that closed streamlin®t X be a fixed point of a vector fieldk = V(x); that
are in fact attracting and repelling periodic orbits. Theisel & V(xo) = 0. The linearization ofv aboutxo, results in a
al. [28] propose a mesh-independent periodic orbit detectidn< 2 matrix Df(xp) which has two (potentially complex)
method for planar domains. In contrast to these approacheigenvaluessy +ipy and oz +ipp. If 01 # 0# 02, thenxg is
our automatic detection algorithm is extended to surfacelled ahyperbolic fixed pointObserve that on a surface there
Furthermore, this is the first time periodic orbit extraction andre three types of hyperbolic fixed pointsinks a1, 02 < 0,

visualization has found utility in a real application. saddlesor < 0 < 0, andsources0 < 01, 02. Because we are
_ o considering systems with invariant sets such as periodic orbits,
C. Vector Field Simplification the definition of the limit of a solution with respect to time is

Vector field simplification refers to reducing the complexnon-trivial. Thealpha and omega limit set®f x € M are
ity of a vector field. There are two classes of simplifi-
cation techniques: topology-based (TB), and non—topolog&—(x) — Meeocl(B((—0,1),%)),  @(X) = Neocl(@((t, ),X))
based (NTB) [6]. Existing NTB techniques are usually based "~ '<° AR 0 T
on performing Laplacian smoothing on the potential of eespectively. A periodic orbif is attracting if there exists
vector field inside the specified region. One example of these> 0 such that for everyk which lies within a distance of
work is by Tong et al. [29], who decompose a vector fielll, w(x) =I. A repellingperiodic orbit can be similarly defined
using Hodge-decomposition and then smooth each-compon@ntx) = I')). Finally, given a pointx € M, its trajectory is a
independently before summing them. TB techniques simpli§eparatrixif the pair of limit sets(a(x),w(x)) consist of a
the topology of a vector field explicitly. Tricoche et al. [1]saddle fixed point and another object that can be a source, a
simplify a planar vector field by performing a sequence afink, or a periodic orbit. Figure 2 provides an example vector
cancelling operations on fixed point pairs that are connectedfisid (upper-left). Fixed points are highlighted by colored dots
a separatrix. They refer to this operationpasr annihilation  (sources: green; sinks: red; saddles: blue). Periodic orbits
A similar operation, nameg@air cancellation has been used are colored in green if repelling and in red if attracting.
to remove a wedge and trisector pair in a tensor field [30eparatrices that terminate in a source or a repelling periodic
We will follow this convention and refer to such an operatioorbit are shown in green and those terminate in a sink or an
as fixed point pair cancellation. Zhang et al. [6] provide attracting periodic orbit are colored in red. For convenience,
fixed point pair cancellation method based on Conley theowe will refer to a source and a sink anadein the remainder
They also extend this operation to surfaces and to fixed pooftthe paper wherever appropriate.
pairs that areot connected by a separatrix, such as a centerEven for flows restricted to surfaces, invariant sets can be
and saddle pair. In this paper, we describe a more genezatremely complicated and cannot be assumed to consist of



Al A Al

Fig. 3. The vector field shown in the left contains one fixed point and three
periodic orbits. Therefore, the ECG consists of four nodes (middle). However,
due to the resolution of the underlying mesh, there are only two Morse sets
(colored regions) with one containing the fixed point and the other containing
the periodic orbits. Consequently, there are two nodes in the MCG (right).

Are such that ifx € S then there existsp,q € & such that

! _ _ a(x) € M(q) and w(x) C M(p). Furthermore, there exists a
Fig. 2. An example vector field (upper left) and its ECG (lower left). The _ ' | ord P tisfvi if th ist S
vector field contains a source (green), three sinks (red), three saddles (bleé}rtla oraer> on sa 'Sfymg qg>p1 ere exisisx €
a repelling periodic orbit (green), and two attracting periodic orbits (redguch thata(x) C M(g) and w(x) C M(p). Let C(p,q) =
Separatrices that connect a saddle to a repeller (a source or a periodic orbit){g(% M | a(x) C M(p) and w(x) C M(q)}. An efficient means
colored in green, and to an attractor (a sink or a periodic orbit) are colored i . h ial d M d .
red. The fixed points and periodic orbits are the nodes in the ECG (lower Ieﬁ? presentmg the par.tla orcer on a _Orse ecomposition
and separatrices are the edges. In addition, a periodic orbit can be connetSeg@iven by the associatellorse Connection GrapliMCG)
directly to a source, sink, or another periodic orbit. Such connections are algfich is the minimal directed graph whose vertices consist
depicted as edges in the ECG. The simplified field of (upper left) is shown irf he M M P d wh di d ed
(upper right) and its corresponding ECG is (lower right). Notice the Conidy! the Morse ;ets{ (P pe : } and whose directed edges
index for both vector fields inside the white loop are the same, which allodd () — M(p) imply q > p. Figure 2 (lower-left) shows an
the vector field in the left to be simplified into the one shown in the right. MCG of the vector field in the upper-left. Herg? is the

set of labels RL and R2, S1-S3, and A1-A5), and M(p) is
hyperbolic fixed points, periodic orbits and separatrices [3%he actual object thap represents, i.eM(R1) is a source.
Furthermore, even if the recurrent dynamics is restricted KMpte that a MCG contains supplementary information with
fixed points and periodic orbits, it is impossible to developespect to the topological skeleton presented by Helmann and
an algorithm that will identify all of them. For example, itHesselink [23]. For example, consider the idealized magnetic
is easy to generate vector fields that contain infinitely maffigld over the Earth’'s surface in which only two fixed points
isolated fixed points and/or periodic orbits. Thus we requikxist and none of the connecting orbits between them is a
a language that allows us to manipulate a broader but usedgparatrix. Similarly, a periodic orbit can be connected to a
class of invariant sets. source (Figure 6, left) or another periodic orbit (Figure 6,

middle) without any separatrices in the field.

Computing a Morse decomposition and its associated MCG
A compact setN C M is an isolating neighborhoodif can be done as follows. Le#Z denote a triangulation of
for all x € N, ¢(R,x) Z N. That is, the flow enters or the phase space. An edge in this triangulation is classified

leavesN eventually everywhere o@N. An invariant setS as a transverse edgef the flow leaves one of incident
is isolated if there exists an isolating neighborhodd such triangles completely (a one-way road). Otherwise, the edge is
that S is the maximal invariant set contained M Observe nontransversgtwo-way). Construct equivalence classes.sn
that hyperbolic fixed points and periodic orbits are examplesing the following relationship and transitivity. Two triangles
of isolated invariant sets. Isolated invariant sets posses tWQT; € .7 are equivalent il Ty consists of a nontransverse
essential properties. First, there are efficient algorithms fedge. Taking the union of all triangles in an equivalence
identifying isolating neighborhoods [12]. Second, there exisgdass produces a polygonal region, who boundary consists of
an index, called the Conley index [32], that identifies the typegansverse edges only. Lét denote the resulting collection of
of modifications to the structure of the invariant set that agslygons which tile the phase space. Define a directed graph
topologically permissible. For example, the Conley index afhose vertices consist of the polygonszh GivenRy, Ry € Z,
the vector field shown in Figure 2 (upper-left) inside the whitthere exists an edge froRy to Ry if and only if RyNRy
loop is identical to that of a sink. Topological simplificatiorcontains an edge and the vector field points frBmnto Ry
of the complex field inside the region can result in the fieldlong the edge. Finally, fix a toleranee> 0 and if there exists
shown in the right. a point inRy at which||V|| < ¢ then include an edge frofRg
Central to our effort is the need for a computationally rato itself. It is proven in [12] that the maximal invariant sets
bust decomposition of invariant sets.Morse decompositign within the strongly connected path components of this directed
A (S), of Sconsists of a finite collection of isolated invariangraph produce a Morse decomposition for the vector field
subsets of5, calledMorse sets and furthermore, the MCG can be obtained from the tree that
results from the collapsing each strongly connected component
A(S) :={M(p) | pe £} (3) to a single vertex. Standard algorithms [33] indicate that this

A. Morse Decomposition and Connection Graphs



procedure can be performed in linear time in the number bfockN isL:={xc dN| ¢((0,€),x)NN =0}. The pair(N,L)
vertices and edges in the graph. is called arindex pair. In [12] it is proven that the sets in phase

A node in the MCG is an isolated invariant set, whiclspace which correspond to the strongly connected components
may contain multiple fixed points and periodic orbits. Foare isolating blocks for the flow associated with the vector
many engineering applications, such as the study of in-cylindiéld V.
flow, engineers are often more concerned with individual fixed Let S be the maximal invariant set in the isolating block
points and periodic orbits. Therefore, there is a need to buiMl with exit set L. The Conley indexof S is the relative
a graph¥, whose nodes consist of fixed points and perioditomology [36] of the index paifN,L); that is, CH.(S) :=
orbits. Similar to an MCG, the edges i#i represents the H.(N,L) (see Appendix for more details). Because we are
connectivity information between the nodes according to thestricting our attention to flows on orientable surfaces, it is
vector field. We refer to this graph as &mtity Connection sufficient to remark that we can wri@H, (S) = (fo,B1,32) €
Graph or ECG An ECG is a refinement of the MCG of thezZ® where B represents thé-th Betti number ofH.(N,L).
same vector field. In fact, an MCG can be obtained from the should be remarked that algorithms for computing Betti
corresponding ECG by merging nodes that are in the samambers exist [36] and thus we need not concern ourselves
Morse set. Furthermore, the MCG is equal to the ECG whevith these issues.
the vector field has a finite number of fixed points and periodic
orbits, all of which have an isolating neighborhood of thei€. Important Conley Indices
own. In the remainder of the paper, we will only show the Retyrning to the topic of design, the most important Conley
ECG’s for illustration purposes. indices are as follows:

Given that the ECG is a refinement of the MCG, the reader

may wonder why we emphasize the existence of both graphs. xp an attracting fixed point = CH,(xo) = (1,0,0)
There are two reasons. The first is that we make use of %o a saddle fixed point == CH.(xo) = (0,1,0)
information from the MCG to compute the ECG. The second a repelling fixed point = CH, (xo) = (0,0,1)
has to do with the validity of the information. Any numerical X p_ 9 o P _ +X0) = (5,5,

or experimental method is subject to errors and thus one an attracting periodic orbit=- CH, (") = (1,1,0)
must be concerned with whether these errors are significant I a repelling periodic orbit = CH, () =(0,1,1)
enough to produce misleading information. In the domain of S=0 = CH.(S) =(0,0,0)

numerical analysis the existence of spurious solutions would

be an example of such misleading information. A rigorou@bserve that the emptyset is by definition an isolated invariant
analysis of the validity of the methods being presented heget. (0,0,0) represents the index information for a region in
is beyond the scope of this paper, however we believe thaich every point leaves in both forward and backward time. It
as a basis for future research it is important to point out thaltould be noted that the reverse implications are not true. For
the topological methods of Conley theory have been usedagample, given a polygonal index p&M,L) for a vector field
obtain computer assisted, but mathematically rigorous prodfs if H.(N,L) = (0,0,0), then one cannot conclude that the
concerning the structure of a wide variety nonlinear dynamicgiaximal invariant set ircl(N\ L) is the empty set. However,
systems [34], [35]. Thus, our confidence level in the validity of can be proven that there does exist a different vector field
the visualized structures and modifications is higher for thoSesuch thatv =V on d(cI(N\ L)) and the empty set is the

objects identified with the MCG than the ECG. maximal invariant set ircl(N\ L) under the flow induced by
V. Note the Poincdrindex for an attracting fixed point is the
B. Vector Field Simplification on Surfaces same as a repelling one. Furthermore, the Potnaadex for

Vector field simplification corresponds to a reduction in th@ Periodic orbit is zero, which equals that of an emptyset.
number of Morse sets in the decomposition (compare the td§erefore, Poincar index theory does not provide enough
fields in Figure 2). Vector field modification corresponds tytility to handle periodic orbits, thus limiting its potential uses.
a change in the dynamics within an isolating neighborhood T0 make it clear how the Conley index information can
of a Morse set. To foreshadow the discussion of Section Y£ used in the vector field design process, let us review
and to understand the potential vector field simplification th@H" Strategy. The first step is the identification of a Morse

could possibly be associated with such a reduction requif@@composition for the entire flow. Given the associated MCG,
the introduction of a topological invariant, the Conley indexthe user identifies an interval that contains the elements which

While the Conley index is applicable in the setting of &€ to be eliminated. The interval defines an isolated invariant
general dynamical system, we restrict our attention to ti§§t for which an appropriate isolating block is constructed.
setting of flows on surfaces. An isolating neighborhdods The Conley index is then computed. This index information
an isolating blockif there existse > 0 such that for every provides a topological constraint on the possible simplification

x € N, we have or modification of the vector field within the isolating block.
For example, if the Conley index does not eq(@&D,0), then
#((—€,0,)NN=0 or ¢((0,€),x)"N=0 any modification will result in the existence of a nontrivial

invariant set. To provide an even more specific example, if the
In other words, the trajectory enteifd, leavesN, or both Conley index is that of a fixed point, then any modification
immediately everywhere odN. The exit setof an isolating of the dynamics on the region will result in a vector field



that possess at least one fixed point. Further examples will k
provided in Section VI.

D. Vector Field Representation l\\\r
s«r‘/g

We now describe the computational model of our system
In this model, the underlylng doma_un IS representgd by a malgl@. 4. Given an oriented loop (left), our system produces a sequence of
gular mesh. Vector values are defined at the vertices only, aéhple points (middle: dots) and evaluates tangent vectors at those locations
interpolation is used to obtain values on the edges and insididdle: arrows). We then compute a vector field that contains a periodic
triangles. This applies to vector field editing, simplificatior\‘;rb” (right: red dashed lines) by generating constraints based on these vector

. . . L . . Values. Notice that the periodic orbit matches closely the user-specified loop.
and analysis such as fixed point and periodic orbit extraction.

For the planar case, we use the popular piecewise ”n%rAttracting and Repelling Basis Vector Fields
interpolation method [1]. On curved surfaces, we borrow the L . ) o
interpolation scheme of Zhang et al. [6], which guarantees vecAn intuitive way to build a vector field that satisfies the

tor field continuity across the vertices and edges of the meSRNStraints is to use basis vector fields. This idea has been

These interpolation schemes support efficient flow analy&BPlied to creating wind forces to guide computer anima-
operations on both planes and surfaces. tion [40], to testing a vector field visualization technique [18],

and to generating vector fields for non-photorealistic rendering
) o and texture synthesis [6]. In this case, the constraints are
E. Constrained Optimization also referred to asegular design element§]. Each regular

One of the essential operations in our system is constrairl@ment is used to produce a globally defirtesisis vector
optimization, which refers to solving a vector-valued discrefé€ld that has a constant direction with decreasing magnitude
Laplacian equation over a regidhin the domain (a triangular @ one moves away from the center of the element. With
mesh) where the vector values at the boundary verticd$ ofProperly chosen blending functions, the weighted sum of the
are the constraints. This operation is used to create perioBgSis vector fields satisfies all the constraints.

orbits (Section 1V) and to perform topological simplification !N theory, any vector field can be created by using regular
(Section VI). The equation has the following form: elements. In practice, however, it often requires an excessive

number of regular elements to generate certain vector field
features. For example, at least three regular elements are
V(vi) = ijV(vj) (4) negded to specify a source or a center. To produce a periodic
fc orbit, regular elements must be specified not only along the
prescribed path, but also near the orbit in order to enforce
wherev; is an interior vertexy;’s are the adjacent verticesthe type of the orbit (attracting or repelling). Given that the
that are either in the interior or on the boundaryNofandV  cost of summing basis vector fields is proportional to the
represents the vector field. The weighig’s are determined number of design elements, we wish to reduce the number
using Floater's mean-value coordinates [37]. Equation 4 iso basis vector fields while maintaining efficient control. This
sparse linear system, which we solve by using a conjugaeachieved with the introduction of two new types of design
gradient method [38]. For convenience, we refer to a vertexelementsattachment elementnd separation elements
as beingfixedif the vector value av is part of the constraints.  Before describing these elements, we briefly review the
Otherwise,v is free Note that a similar formulation has beerconcepts of attachment and separation points from Ken-
used to reduce the complexity of vector fields [6] and tens@fright [25]. Given a vector fieldv and a pointpg in the
fields [39]. plane, we consider the following two values:x u ande, x u,
whereu is the vector value gbg ande; ande, are the major
IV. PERIODIC ORBIT CREATION and minor eigenvectors of the Jacobi@g.is an attachment
point if e x u= 0, and aseparation pointf e, x u=0. An
In this section, we describe novel algorithms for creatingitachment line consists of attachment points. Geometrically,
periodic orbits in the plane and on surfaces. The input to Ogfich a line attract nearby flow. A separation line can be
algorithms consists of the desired type of the orbit (attractiRgsfined in a similar fashion except that nearby flow is repelled
or repelling) and a prescribed path, which is an oriented loogem the curve. Ideally, an attachment element will result in a
Figure 4 shows an example path (left: blue loop). We thafysis vector field that has an attachment line as illustrated
generate a sequence of evenly-spaced sample points onjfhigure 5 (middle). The following formula describes an
loop (middle: green dots) and treat the tangent vectors gtachment element that has a desired vector valugLdf
these points as constraints (middle: magenta arrows). Finagy,(myo)
we produce a vector field with a periodic orbit that closely
matches the user input (right: red dashed lines). We use the V(xy) = B(x.y) ( 1 > (5)
dashed lines to represent the continuous periodic orbit so that ’ ’ c(y—Yo)
it can be visually compared with the user-specified path. Next ereB(xy) = o (-%0)%+(-¥0)?) is the blending function for

we describe two ways of creating a vector field based on t | tand <0 ter that d ibes th d
constraints: basis vector fields and constrained optimizatioﬁ. € element an¢ < U1S a parameter that describes the spee




Fig. 5. This figure compares the basis vector field corresponding to a regular

element (left) and an attachment element (middle). The periodic orbit in tl:qg. 6. Example vector fields created using our design system.
right was created by using four attachment elements.

at which the. flow leaves the ling = yo. The Iarger|g| 'S, vector values at the vertices Bf, using the basis vector fields
the more quickly the vectors near the attachment line poin

towards it. Notice the basis field contains an attachment Iiﬁ%r:ﬁzp\,\?ﬂg;gg d(g?n:]i(ralsihiesligzirr:ti?q.u,:%gcgmgst;:%zes?st\?ector

aty =yo. Formula 5 can also be used to specify a separauﬂgld method mentioned earlier, which is computationally ex-
element ¢ > 0) and a regular element £ 0). When the vector : . . .
. : pensive. In practice, we chooBg be the smallest triangle strip
value is(cosbp,sin6p) for some constanfp, the formula has . . !
the following form: containingy. _Thls greatly rgduces th_e amount of computation
that is associated with basis vector fields. In addition, it seems
) to produce reasonable results both on the plane and surfaces.
V(xy) = B(X7y)(<c9590) +cP(x,Y) (5'”90)) 6) We further speed up the process by only evaluating a basis
sino cosbo field at the three vertices of the triangle that contains the
whereP(x,y) = —sinBy(x— Xo) + cosBy(y — yo) is the signed corresponding element. When a vertex is shared by more than
distance of a point(x,y) to the line that is specified by Oone triangle inR,, we simply take the average of the vector
the location and direction of the design element. Figure @lues computed from each incident triangle. Fig 4 shows that
compares two basis vector fields generated from a regulBils method tends to produce a periodic orbit (right: dashed red
element (left) and an attachment element (middle). The rigR©pP) that matches the user-specified loop (right: blue loop).
image shows an attracting periodic orbit created from fod@ obtain smoother results, a largey can be constructed.
attachment elements. The ideas of attachment and separatiof¥e have also extended a similar framework to create fixed
will be used again in our periodic orbit extraction algorithniPOints on surfaces. Every fixed point results in three constraints
(Section V-A). on the vertices that contains the desired fixed point. Vector
Vector field design using basis vector fields is intuitive angglues elsewhere in the mesh are obtained through constrained
generates smooth results. However, the cost associated Wigimization. This framework avoids the need to construct
this approach is proportional to the number of basis vectdrsurface parameterization for each basis [6] and makes it
fields. To specify a relative large periodic orbit with higHPossible to interactively create periodic orbits on surfaces in
curvature often requires hundreds of attachment or separatfd# Figure 6 shows a number of vector fields that were created
elements, which makes interactive design a difficult task. TR&INg our system.
problem is magnified on surfaces on 3D as every basis vector V. TOPOLOGICALANALYSIS OF PERIODIC ORBITS

field requires a global surface parameterization that is specifiqp, this section. we describe a process in which an ECG is

to the underlying design element [6]. Constructing hundred§ gy cted and illustrated according to the Morse decompo-
of surface parameterizations makes it impractical to crealfinn of 5 vector field (Section Iil). Because periodic orbits

a periodic orbit interactively. Next, we describe a differenio essential features in a non-linear vector field, we need the
strategy that is based on constrained optimization. ability to detect and locate periodic orbits in a fast and accurate

B. Constrained Optimization for Periodic Orbit Creation ~ Mmanner. We will first present a new algorithm for periodic orbit

. s . . identification before returning to ECG constructions.
Given a user-specified oriented logp and the desired g

type of the periodic orbit, our system performs the following\. Periodic Orbit Detection
operations to create a periodic orbit that closely matches thepur periodic orbit detection method is inspired by Wischgoll
input. and Scheuermann [27], in which they locate periodic orbits
First, we identify a regiorR,, which is a set of triangles in a planar vector field by starting streamline tracing from a
that enclosey. Next, we assign vector values to the verticegeighborhood of a fixed point and keeping track of repeated
of R, according to the desired type, path, and orientation gé|l cycles. While this method is capable of detecting many
the periodic orbit. Finally, our system performs a constraingfériodic orbits, it assumes that any periodic orbit can be
optimization to compute vector values for vertices outd¥le approached by a fixed point, which is not always true. One
i.e., the free vertices in the domain. The quality of the resultingample case is the repelling periodic orbit between the two
periodic orbit depends on the choice Bf and the vector syrrounding attracting orbits in Figure 7. To be able to detect
assignment on the boundary Bf. periodic orbits even when they are not approached by any
We reuse attachment and separation elements to obtgid point, we have developed a new periodic orbit detection
vector values onR,. Basically, each line segment on themethod that has drawn ideas from the Morse decomposi-
loop y is used to infer a design element. We then compui@n [41] and separation and attachment lines [25].



Fig. 8. An example scenario in which inconsistent tensor assignment can
lead to false separation or attachment points. In the left image, given the
vector valuesu at the vertices of an edge (cyan arrows) and the Jacobian
tensor (red arrows represent the major eigenveagysit is clear that there

is not any separation point on the edge. However, by converting the tensor

Fig. 7. An example of our periodic orbit detection algorithm. First, W{'jlsde I2;?3;;i)cr:o;;ofilﬁtldto(g;adpd;zrezrr‘ighrtl)ght) and evaluatiggx u can cause

compute strongly connected components and only consider components where
periodic orbits may exist (left: colored regions). Next, we extract attachment . . .
points (right: cyan) and separation points (right: magenta) on the interior the orbit. These points allow tracing from subsequent

edges in these connected components. By combining the ideas of strongly —attachment points to quickly determine whether it is
connected components with the extraction of attachment and separation points, approaching an existing or new periodic orbit.
our algorithm is fast and efficient in finding periodic orbits. 4) Step 4 We locate all the repelling periodic orbits by
repeating step 3 with the following two modifications:
A periodic orbit must situate inside a region of flow tracing will now (1) start from separation points, and (2)
recurrence, which corresponds to certain types of strongly- be in the backward direction of flow.
connected components in the domain (Section 1ll). Recall thatKenwright evaluates; x u at the vertices of the edge and use
strongly-connected components are computed by treating {}ar interpolation to locate attachment and separation points.
mesh as a graph and merging triangles that share mixed edgefis formulation assumes that an eigenvector field can be
Note that a strongly-connected component does not contgigated as a vector field. However, as pointed out by Zhang et
a periodic orbit if it either consists of a single triangle oy, [42], treating an eigenvector field as a vector field will lead
it is a topological disk and contains no fixed point. Thiso discontinuities in the vector field and cause visual artifacts
computation corresponds to computing a Morse decompositipntensor field visualization and non-photorealistic rendering.
of the flow. Figure 7 shows an example of the stronglye have observed similar problems during the computation
connected components that may contain periodic orbits (lefif attachment and separation points. For instance, consider
colored regions). the example shown in Figure 8, in which the vector field is
Recall that multiple periodic orbits may exist in an isolatedonstant along an edggcyan arrows) and the Jacobian along
Morse set (a strongly-connected component). To extract indire edge is nearly constant (major eigenvectors are shown in
vidual periodic orbits in a fast and efficient manner, we neeed bidirectional arrows). When choosing a consistent direc-
a good geometric indicator as to which strongly-connectdwn assignment for the eigenvectors at the vertices (middle),
components might contain periodic orbits. Kenwright presemte conclude that no separation or attachment point exists on
efficient techniques in extraction open and closed separatienHowever, the assignment in the right will lead to a false
and attachment lines [25]. We have used separation aidéntification of a separation point. To overcome this problem,
attachment elements to create periodic orbits (Section IV-Aye simply assume the Jacobian is constant along an edge
We now apply these ideas to periodic orbit extraction. O@nd evaluate it at the middle of an edge by performing linear
algorithm is as follows: interpolation on the Jacobians at the vertices. This efficiently

1) Step 1We compute the strongly connected componenfgmoves the need to carefully assign directions to eigenvectors
. I : at the two vertices of an edge.
of the mesh according to the flow. In addition, we discar

components that do not contain a periodic orbit, i.e., if To perform tracing on surfaces, we use a _Runge_-Kutt_a
. . . . ' scheme [43] that has been adapted to surfaces with a piecewise
the componen§ consists of a single triangle or 8 is

a topological disk and contains no fixed points. Lt interpolation scheme that guarantees vector field continuity

be the set of strongly connected components that m%;‘%ross vertices and edges [6]

contain a periodic orbit. _ ~ B. ECG Construction and Display
2) Step 2 We extract the attachment and separation points gj e the construction of the MCG graph follows from the

for every edge in thenterior of a strongly connected 4y of Kalies et al. [12] and Kalies and Ban [13], we turn to

component in%’. a description of our algorithm for constructing the ECG for a
3) Step 3 For every strongly connected compon&® -, given vector field starting with a brief review of vector field

we start streamline tracing for each attachment point 3,4j0gy that involves fixed points and periodic orbits.
Saccording to the flow. If the streamline reaches a fixed cgonsider a vector field/ on a surfaceS that contains at
point or the boundary o8, we stop tracing and discard |east a fixed point or periodic orbit, i.e., the ECG \fis

the attachment po_lnt. Ot_her_W|se,_ the streamline _W||_J10t empty.V induces a partition ofs. Each sub-region in
approach an attracting periodic orbit. In case the periodife partition is abasinthat can be bounded by fixed points,
orbit has been discovered previously, it will be ignoredyeriodic orbits, and/or separatrices. A streamline inside a basin

Otherwise, the periodic orbit is recorded, and a sequenggws from a source objear to a destination objeab. Both
of dense and evenly-spaced points are placed along
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Fig. 9. This figure illustrates our algorithm for construction of ECG's. First (a), we perform fixed point and periodic orbit extraction. We mark as unvisitec
(white disks) for every source/sink and for both sides of every periodic orbit. Next (b), we compute all the separatrices and mark as visited (black disks)
R2 and the outer side dR3 since they are connected to the sadfilein the ECG. In (c), we start from the inner side B8 and follow the flow forward

to find the link to the outer sider oA2. An edge is added to the ECG, and both sides in the link are now marked as visited. In (d), we perform similiar
operations to the unvisited sides of every repelling orbits (both sid&&)ofo find all the links to a sink or an attracting orbit. Finally (e), we start from any
unvisited side of an attracting periodic orbit and follow the flow in the reverse direction to locate links to unmarked sources.

o and w can be a node fixed point (a source or a sink) ora nearby point on that side of and perform tracing in the
periodic orbit. In addition, for each of the three cases (noddirection of the flow until the streamline terminates at a sink
node, node-periodic orbit, and periodic orbit-periodic orbitpr an attracting periodic orbit. In case of a sink, we mark its
the link betweerr and w can be either direct, i.e., there is arflag to bel and insert an edge (typ® in the ECG. If the
edge connecting them in the ECG, or indirect, i.e., they asereamline ends in an attracting periodic orbit, we mark the
connected to some common saddles through separatrices. Nlagg to bel for the side of the attracting orbit from which the
that a periodic orbit separates nearby flow into two parts. Gtreamline approaches. An edge (type 4) is then inserted into
either side, there can be one or more basins. When there is treECG. Notice that at the end of this step, all non-separatrix
basin, the periodic orbit is directly linked to a node or anoth@dges of type8 and4 are found. We now perform the same
periodic orbit. In the case of multiple basins, the periodic orbitperations to all the attracting periodic orbits whose side or
is linked to other nodes or periodic orbits through saddles. sides are still marked & except that tracing is now done in

To compute the ECG, we perform a three-stage operatidh‘? reverse direction of the flow. This allows us to find all type
First, we locate all the fixed points and periodic orbit? €dges. Finally, we go through every source that still has a
These are the nodes in the ECG. Next, we compute all tfkag of 0 and trace from a nearby point in the forward direction
separatrices by tracing from every saddle in its incoming ang@til it terminates at a sink. This will find all the tydeedges.
outgoing directions until the trajectories end in a node or lhappears that typé edges are rather uncommon. In fact, the
periodic orbit. Finally, we identify edges in the ECG thaPhly instance that we know of is the idealized magnetic field
are not separatrices. Our methods for fixed point extracti@Mer @ sphere, which contains two fixed points and no periodic
and separatrix computation are according to Helmann aﬂfpns. Figure 9_|Ilustrates this process with an example vector
Hesselink [23] except they do not handle vector fields thfeld that contains two sources, one saddle, and four periodic

contain periodic orbits. Periodic orbits are identified using tHPits. In (a), we extract all the fixed points and periodic orbits.
algorithm described in Section V-A. We also mark as unvisited (white disks) for all the sources and

We now describe how to compute non-separatrix edgesslwks and for both sides of every periodic orbit. Next (b), we
the ECG. As discussed earlier, this corresponds to an ecf oén pute separatrices and mark as visited (black disks) any

in the ECG that does not involves any saddle. There are fourde or any side of a periodic orbit that is cc.)n.necte.d to a
) . saddle. In the next stage, we start from any unvisited side of a
cases: (1) a source and a sink (type (2) a source and an

attracting periodic orbit (type), (3) a sink and a repelling repelling periodic orbit and follow the flow forward to locate

periodic orbit (type3), and (4) a repelling periodic orbit andllnks to a sink or an attracting orbit. In (c), such an operation

an attracting periodic orbit (typd). Note a node can only be found a link between the inner side BB and the outer side

. . . . of f’-\z both of which are now marked as visited. Performing
involved in one non-separatrix edge, and so does each side o . ; L )
his operation on all the repelling periodic orbits leads to (d),

a periodic orbit. We use a flag to describe every node. The . . :
flag is set tol if the node is connected to a saddle in the. which links such asR4/Al and R4/A2 are found. Finally

. . - ; ?e), we start from any unvisited side of an attracting periodic
ECG. OtherW|§e, the flag_ 'S.SEt tb Similarly, we define a orbit and follow the flow in the reverse direction to locate the
flag for each side of a periodic orbit to record whether there S maini :
. . - . r {namlng edges in the ECG.
at least one separatrix approaching the periodic orbit from thal
side. To compute non-separatrix edges, we first locate edge3o display an ECG, we arrange vector field features (fixed
emanating from repelling orbits. For each repelling periodoints and periodic orbits) in three rows, with sources and

orbit y and each side, if the corresponding flagdjswe find repelling period orbits in the top row, sinks and attracting
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Fig. 10. The vector field defined in Equation 7 over the region
{(xy)Imax(|x|,|y|) < 11rt}. There is one source in the region enclosed byiq 17 |dealized in-cylinder flow through a gas engine (left) and a

five periodic orbits. Our algorithm was able to capture all of these orbiffese| engine (right). Figures 12 and 13 show our visualization of CFD data
without requiring the presence of any separatrices. simulating such flows.

i its in th les in th iddle. - .
period orbits in the bottom row, and saddles in the midd %ce, at10%the length of the volume, indicates a swirl pattern

row (Figure 2). We also provide the user with the capability t + deviat ther st v f the ideal -which I it
select an object either in the flow display or the graph displa ’a eviates ratner strongly from the ideal -which would resu
a simple recirculation orbit around the center. The second

and our system will highlight the object in both screens. Thig.

o T
allows a user to navigate through a rather complex flow fiefd C&" at25% down the chamber geometry we see a periodic
with relative ease. orbit very close to the center that starts to approximate the

ideal swirl motion. However, other less ideal singularities are
C. Application to Analytic Data found near the perimeter of the geometry. The method we use
For all the fields designed with our system, we use thP%e r‘l?rilc?oilrrg laertt;th[iﬂo\\;\',ggncc:‘ttet'rlﬁa‘iligitﬁgﬁoﬁgztaggrﬁggg
method to detect periodic orbits and construct ECG’s. In ' j

addition. we have tested our method on other datasets g\évﬁ_en interpreting these results since the vector field has been

X S . ~projected onto 2D slices. On the other hand, the engineers
erated from mathematical formulas and from fluid simulatior, - : . .
. : involved are very familiar with the simulation data and are
Figure 10 shows a vector field that corresponds to

well aware of its overall characteristics.

Vv y 7 Figure 13 shows from two viewpoints some simulation
(xy) = —X+YycogX) ™ result in which undesired fixed points and periodic orbits are

It has been proven that this system has exatfgriodic orbits present. There are a total 826 fixed points anc2 periodic

orbits. The total time to construct the ECG for the flov2&15
i i /y2 2
n the region Xy < (n+1)m [10] We. sample the vector seconds on 8.6 GHz PC with3.0 GB RAM. Another type
field at the vertices of a bounded underlying mesh, and empl

. - . ; : 8\ymotion, termediumble flow is shown in Figure 11 (left).
the piecewise linear interpolation scheme [1] to obtain valu%e axis of rotation in the tumble case is orthogonal to that of
inside triangles. The left of this figure shows the periodic orbi

tracted usi thod. and the riaht portion disol tﬁe swirl case. The dataset that is being visualized (Figure 12)
extracted using our method, and the nght portion diSplays e, from simulation, and it contairi6 fixed points and

correqunding ECG. There are f_ive pe_riodic orbits. Notice %H"veriodic orbits. The ECG for this dataset is shown in the
method is able to detect periodic orbits even when there Hbttom row. Through the application of our automatic periodic

no saddles in the field. orbit extraction and visualization algorithm we can observe a
closed streamline about a central axis corresponding to the
. ) ideal pattern of tumble motion in the gas engine simulation
We have also applied our technique to two datasets from_ FMsults. This is precisely the type of re-circulation that the

tomotwg engine smulatpn [7], more spemflcally, the ,des'ggngineers strive to realize when designing the intake ports of a
and optimization of in-cylinder flow. Engineers responsible f as engine cylinder. Our algorithm enables the CFD engineers
the design of, in this case, a diesel engine try to create

. . . ) - {0 automatically detect and visualize this highly sought-after
ideal pattern of 'motu')n, Wh'c,h can t?e 'descrlbed.by aswiling,ern of flow in a direct manner for the first time (see
flow arount_j an imaginary axis. Achieving these ideal patter gure 12). The total time for computing the ECG of this time
.Of f_I(_)w optimizes the mixture of oxygen anq fu_e_l during thes "3 58 seconds. The ECG produced from the diesel engine
ignition phase of the valve cycle. Optimal ignition leads tgimulation results is of even higher complexity than that of the

very desirable consequences associated with the combus Q engine. Table | shows the complexity for both simulation
process including: more burnt fuel (less wasted fuel), low %uasets and the timing results in seconds

emissions, and more output power. One type of flow, referre
to as theswirl motion is shown in Figure 11 (right). Such an
ideal is often strived for diesel engines. VI. VECTORFIELD SIMPLIFICATION

In Figure 1 we visualize the flow and its topology inside
the combustion chamber from the diesel engine simulation.Topological simplification of a vector field has many ap-
We have sliced through the geometry in the same manner tptations, such as flow visualization, texture synthesis, and
engineers do when analyzing the simulation results. The firgin-photorealistic rendering.

D. Application to Engine Simulation Data
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dataset # # fixed | # periodic| # edges| time extracting| time extracting| time computing| time

name polygons| points orbits in ECG | fixed points | periodic orbits edges total

gas engine | 105,192 56 9 97 0.16 22.33 9.09 31.58

diesel enging 886,296 | 226 52 295 3.16 21.52 4.48 29.15
TABLE |

THE COMPLEXITY AND TIMING RESULTS FOR TWOCFD DATA SIMULATING IN -CYLINDER FLOW THROUGH A COMBUSTION ENGINE(FIGURES12
AND 13). AN EDGE IN THEECG CORRESPONDS TO A LINK BETWEEN A SOURCE AND DESTINATION OBJECT PAJRN WHICH BOTH OBJECTS CAN BE A
FIXED POINT OR A PERIODIC ORBIT TIMES (IN SECONDY ARE MEASURED ON A3.6 GHz PCwITH 3GB RAM.

Fig. 13. The visualization of CFD data simulating in-cylinder flow through

a diesel engine from two viewpoints. Compare them to the idealized flow
shown in Figure 11 (left). Figure 1 provides complementary visualization of
the flow inside the diesel engine. Both the texture and the topology-based
visualizations indicate a nice pattern of swirl motion at the boundary of the
Fig. 12. The visualization of CFD data simulating in-cylinder flow through @ombustion chamber while the regions near the intake ports reveal deviation
gas engine from two viewpoints (top), and the corresponding ECG (bottorfrom the ideal.

Through the application of our automatic periodic orbit extraction algorithm

we can observe a closed streamline about a central axis corresponding to the

ideal pattern of tumble motion in the gas engine simulation results. Thisvge first comment on what we mean by pair cancellation.

precisel he ype,of re-ciculaon tal he cnaiicers it (0 realse WHenpair cancelatiorP involves a repelle and an attractor
A. P is direct if there is at least one edge betweRrand A

in the ECG, andP is indirect if R and A are linked through
either one or two saddles. When a node or a periodic orbit is

A well-known topological simplification operation jgair linked to a saddle through one connecting separatrix, the pair
cancellationon a pair of fixed points with opposite Poinéar are singly connectedOtherwise, they areloubly connected
indices and a unique orbit connecting them. This operati(yMe have identified six direct cancellation scenarios (Figure 14)
has also been referred to as pair annihilation [1]. Afténd seven indirect ones (Figure 15) on the plane. Our system
cancellation, both fixed points disappear. Tricoche et al. [¢hn handle all of these cases. To our best knowledge, previous
perform this operation in planar domains based on Poincdrair cancellation methods are only available to handle case (1)
index theory, which does not apply to periodic orbits. Zhan§ Figure 14.
et al. [6] provide an efficient implementation of the pair When performing pair cancellation, we expect the complex-
cancellation operation based on Conley index theory. Thay of the flow to be reduced near the object pair, such as the
also extend fixed point pair cancellation to surfaces and foase in Figure 14 (1). However, the reduction in the complexity
pairs that are not connected by a separatrix, such as a cedtas not mean the resulting flow will always be free of fixed
and saddle pair. However, neither technique deals with perioghgints and periodic orbits. For instance, a sink and periodic
orbits, which limits their potential applications in visualizatiororbit cancellation results a source as shown in Figure 14 (2).
and graphics. Our paper addresses this by providing a genémnafact, the characteristic of the resulting flow is constrained
framework that allows cancellations of a repeller and attracttwpologically by the Conley index of the isolating block over
pair in which either object or both can be a periodic orbitvhich the flow is modified. When cancelling a node and saddle
Similar to Zhang [6], our framework is based on Conley indegair, the Conley index of such a block {8,0,0), which is
theory. Before providing the details on our general frameworthe same as a fixed point-free vector field. For a sink and

A. Single Attractor/Repeller Pair Cancellation
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D) (2) 3) (4) (5)

(6)

Fig. 14. The six direct cancelation scenarios: (1) a source and saddle with a unique connecting separatrix, (2) a sink and a periodic orbit, (3) an attrac
periodic orbit and a repelling one, (4) a periodic orbit and a saddle with a unique connecting separatrix, (5) a sink and a saddle with two connecting separatri
and (6) a periodic orbit and a saddle with two connecting separatrices. The top row shows the original vector fields, while the bottom row displays the vec
field after cancellation. Notice that our cancellation operations are only applied to the intended objects.

¢
. &

) 2 3) (4) (5) (6)

Fig. 15. The seven indirect cancellation scenarios: (1) a source and a sink pair with two saddles between them, (2) a source and a sink with one sa
between them, (3) a sink and a periodic orbit with two saddles between them, (4) a sink and periodic orbit with one saddle between them and two orl
between the saddle and the sink, (5) a sink and periodic orbit with one saddle between them and two orbits between the saddle and the periodic orbit
two periodic orbits with two saddles between them, and (7) two periodic orbits with a saddle between them. The top row shows the original vector fielc
while the bottom row displays the vector field after cancellation. Notice that our cancellation operations are only applied to the intended objects.

()

periodic orbit pair, the Conley index i9,0,1) which is that <« = {A}U{S}. Note whenR and A are directly connected,
of a source. Furthermore, pair cancellation does not alwaye set of{S} is empty. It should also be noted that Kalies
lead to simpler behaviors, such as Figure 14 (5). Cancelliagd Ban [13] provide a dimension independent algorithm for
a doubly-connected node-saddle pair leads to a periodic orligtermining intervals in a Morse decomposition.

In fact, the only other case in which the flow is not simplified | the second stage, we consider the minimal set of triangles
through pair cancellation is shown in Figure 14 (6), wherejg the domain that contaiz. We then grow from these
doubly-connected periodic orbit and saddle pair is replacgqiangbs by adding one triangle at a time across mixed or
by another such pair. Both cases are direct cancellationsgft edges. We now have a regitik that contains all the
doubly-connect object pair. In all other cases, pair cancellatip(qhnmes reachable from any object #. Then, we perform
leads to simpler but not necessarily trivial flow. region growing from the minimal set of triangles that contain
efz-{ by adding triangles across mixed or entrance edges. This

. . g results in a regiotJ, that consists of triangles that can reach
lation that can now handle (1) periodic orbits, (2) doubl(ymy object inlef. UA: Ur(Ua is an isola?ing block that is

connections, and (3) indirect cancellation. Given a repﬂernecessary to perform pair cancellation
and an attractoA, our algorithm first searches the ECG to N )
find the smallest interval that contains ba@and A. This is [N the last step, we replace the flow insideby performing
achieved by finding all the nodes in the ECG that can bofinstrained optimization (Sectlon_III—E)._ While _thls m(-_:*thod
reachA and be reached from. There are three possibilities:d0€s not guarantee that the flow will be simpler, in practice we
(1) R and A are directly related, (2R and A are indirectly have observed that it performs well. Note that other methods
linked through a set of saddi&s, and (3)R andA are not C€an also be used to modify the flow.

connected. Case (3) will be ignored. Note that the first stage is-or any pair cancellation operation relying on the ECG,
conducted purely on the graph level. L#t= {R} | J{S} and it is possible that region growing from the repellers and

We now describe our framework for a single pair canc
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Fig. 16. User-guided flow smoothing on CFD data simulating in-cylinde

flow through a gas engine: before (upper-left) and after (upper-right). Compare

the ECG after smoothing (lower) with before smoothing (Figure 12, lower)Fig. 17. User-guided flow smoothing on CFD data simulating in-cylinder
flow through a diesel engine: before (left) and after (right).

attractors can “walk” over fixed points, periodic orbits, and

separatrices that are not intended for cancellation. '”ClUdiQ%oothing is an efficient method of reducing the complexity
these triangles in the constrained optimization may cauggg vector field.

unwanted topological modificationadte this will not happen

if one uses MCG to determine the cancellation operation

To address this issue, we tag all the triangles in the mesh/||_ T OPOLOGY¥BASED STREAMLINE VISUALIZATION

that contain either a fixed point, or part of a periodic orbit or o . ) ) .
separatrix. During the construction of isolating blocks, we do Visualization is crucial for the analysis and design of

not allow triangles to be added if they are tagged and contdifictor fields. Most existing visualization techniques, such as
features not intended for cancellation. texture- and streamlines-based methods, are designed for fixed

points. While they perform well for illustrating local patterns

B. User Guided Flow Smoothing such as fixed points, other features (separatrices and periodic

In the proceeding section, we have described techniquabits) are often not well-preserved. In Figure 18, a vector
that automatically determine a region where the flow neefigld with three periodic orbits is depicted using IBFV [18]
to be modified. Sometimes it is desirable to provide a usg), and evenly-placed streamlines [45] (b). Notice that it is
with control over the location and shape of the region. Zhamfifficult to see periodic orbits and separatrices using texture-
et al. [6] describe such an operation for graphics applicatiohgsed methods such as IBFV. Streamline-based methods can
such as non-photorealistic rendering and texture synthesis. gdter illustrate trajectories. However, most existing methods
apply their algorithm to large scale CFD simulation datasestich as Jobard and Lefer [45] and Verma et al. [46] do
In addition, unlike Zhang et al. who accept a topological diskot take into account periodic orbits or separatrices in seed
we now allow a region to have any number of boundarieglacement and streamline termination criteria. This causes
Figure 16 shows the results of user-guided flow smoothing gisual discontinuity in periodic orbits and missing separatrices.
CFD simulation data of in-cylinder flow in a gas engine. The Several researchers have incorporated vector field topology
field on the upper-right was obtained by a sequence of fiugo texture-based methods [47]. Most of the figures in this pa-
user-guided smoothing operations (the actual region bounmbr are created in that fashion. On the other hand, streamline-
aries are not shown). Notice the field is considerably simplbased methods can better illustrate individual streamlines,
than the original field (upper-left). The simplified vector fieldvhich makes it an attractive approach when interactive display
retains the important larger scale tumble motion characteristissnot required. In this section, we describe a method for which
while smoothing non-ideal behavior. Also compare the EC@&ctor field topology is used for streamline placement.
of the smoothed field (Figure 16, lower) with that of the We adapt the evenly-placed streamline method of Jobard
field before smoothing (Figure 12, lower). Figure 17 comparesid Lefer [45] with the following modifications. First, we
the diesel engine dataset (left) with the one obtained fromeatract periodic orbits and separatrices in the vector field and
series of six user-guided simplification operations (right). Flomake them the initial streamlines. To avoid visual clusterings
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Fig. 18. An example of our streamline-based visualization technique on the plane: (a) a texture-based method (IBFV [18]), (b) a streamline-method [4
(c) our streamline method which uses vector field topology, (d) same image from (c) with periodic orbits and separatrices being highlighted. Notice with ¢
method (c and d), vector field topology is well-maintained by streamlines and they are easily discernable.

\< =\

IN

near sources, sinks, and periodic orbits, we terminate a sep&eeond, our current MCG and ECG construction methods
trix if it is within a distance from the non-saddle end. Next, wassume closed surfaces. We are investigating means to extend
add additional streamlines in the same manner as Jobard #re to handle surfaces with boundaries. Third, we plan to
Lefer [45]. This modification ensures that vector field topologiynwvestigate automatic techniques for vector field simplification.

is maintained in the visualization and no visual discontinuitifourth, we are exploring more intuitive illustration of the
for periodic orbits (Figure 18, c). Finally, we highlight vectoleCG's. In particular, we plan to explore graph and network
field topology with colors (d) such that attracting periodiwisualization techniques developed by researchers in the In-
orbits and incoming separatrices from saddles are coloredfimmation Visualization community.

red while repelling periodic orbits and outgoing separatrices
are colored in green. To avoid confusions near sources and
sinks, the only fixed points we include in the visualization are
saddles, which are colored in blue. Figure 6 shows additionalThe triangular mesh, which is the underlying domain for our
examples. Notice a periodic orbit on a 3D surface (middi&ystem, consists of a collection of verticés,whose elements
left and middle right) is often partially visible from anyare denoted byvi), edgess’, whose elements are denoted by
given viewpoint. They are difficult to discern without beingVi,Vj), i # j, and triangles7, whose elements are denoted

APPENDIX
COMPUTATION OF CONLEY INDEX

highlighted. by (Vi,Vvj,Vi), | # ] # k#i. Given a subseX of the mesh,
let 7 (X), £(X), and .7 (X) denote the collections of vertices,
VIII. CONCLUSION AND FUTURE WORK edges, and triangles which are containein

In this paper, we have described a vector field design systent-€t Co(X), C1(X), and C>(X) be thefree abelian groups
in which fixed points and periodic orbits can be create@n the sets(X), £(X), and.7 (X), respectively [48] and set
modified, and removed. At the core of our implementation afe-1(X) = 0. Recall, that if(N, L) is an index pair theh C JN.
results from Conley theory, which enable a unified frameworkince,N is given as the union of a set of triangle&{(L) C
for the efficient control of fixed points and periodic orbits” (N), &(L) C &(N), and.7 (L) = 0. Thus, the quotient groups
through editing o_pe_rations_ such as f_eature c_:ancellation. To C(N,L):=Gi(N)/Gi(L), i=-1,012
our knowledge, this is the first vector field design system that
addresses periodic orbits. As part of the system, we providee free abelian groups.

a novel technigue for periodic orbit extraction by computing Since ¥ (N), &£(N), and .7 (N) induce a basis foCy(N),
the strongly-connected components of the underlying me€h(N), and Cy(N), respectively, to define group homomor-
according to the flow and by extracting separation and gthisms d; : Gi(N) — Gi_1(N), for i = 0,1,2, it suffices to
tachment points. Furthermore, we define a new graph-basedscribe the action ofi on the individual vertices, edges,
topological representation of a vector field, the ECG, arahd triangles. Define

propose efficient techniques to construct the ECG. We have Oo{vo) :=0 (8)
applied our vector field .ana_llysis gnd _simplification techniqyes A1 (Vo,v1) := (V1) — (Vo) (9)
to an engineering application: visualizing flows from engine 92 (Vo, Vi, Va) = (Vo,V1) — (Vo, V) + (Va, Vo) (10)

simulation. Both of our analysis and simplification techniques

can handle vector fields on curved surfaces. Finally, WeThe&, are calledboundary operatorsObserve that they
augment streamline-based vector field visualization techniqqﬁauce boundary operators on the quotient grougs;

by including vector field topology (separatrices and perioda(N L) —G_1(N,L)
orbits) in the streamline generation and by highlighting them. Le7t Z(N Li)l':v{x .e Gi(N,L) | ax = 0} and Bi(N,L) :=
There are a number of future directions. First, our periodig 1(C-+I1(N, L)). Itis straigh7tforwalrd 10 check thalﬂ 1,00-.*
1 ) . _ i =

orbit dgtection method depe_nds on _efficient extraction fhenceBi(N,L)CZi(N,L).Therelative homologyf the pair
separation and attachment points. While we have observe L) are the quotient groups

our experiments that these points tend to be close to periodic
orbits, a rigorous mathematical study on the subject is needed. Hi(N,L) :=Z(N,L)/Bi(N,L) i=0,1,2.
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Because we assume that the original triangular mesh(dg] J. L. Helman and L. Hesselink, “Visualizing vector field topology in
a closed orientable surface embeddedRA, the relative

homology groups are free groups, that is

[24]
Hi(N,L) = ZP
[25]
whereZ are the integers anfl is a non-negative integef;
is called thei-th Betti number [26]
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