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Abstract— Design and control of vector fields is critical for
many visualization and graphics tasks such as vector field visual-
ization, fluid simulation, and texture synthesis. The fundamental
qualitative structures associated with vector fields are fixed
points, periodic orbits, and separatrices. In this paper we provide
a new technique that allows for the systematic creation and
cancellation of fixed points and periodic orbits. This technique
enables vector field design and editing on the plane and surfaces
with desired qualitative properties.

The technique is based onConley theorywhich provides a
unified framework that supports the cancellation of fixed points
and periodic orbits. We also introduce a novel periodic orbit
extraction and visualization algorithm that detects, for the first
time, periodic orbits on surfaces. Furthermore, we describe
the application of our periodic orbit detection and vector field
simplification algorithm to engine simulation data demonstrating
the utility of the approach.

We apply our design system to vector field visualization
by creating datasets containing periodic orbits. This helps us
understand the effectiveness of existing visualization techniques.
Finally, we propose a new streamline-based technique that allows
vector field topology to be easily identified.

Index Terms— Vector field design, vector field visualization,
vector field topology, vector field simplification, Morse decompo-
sition, Conley index, periodic orbit detection, connection graphs.

I. I NTRODUCTION

V ECTOR fields arise as models in almost all scientific
and engineering endeavors which involve systems that

change continuously with time. In the case of two-dimensional
systems that can be modelled by vector fields defined on sur-
faces, visualization can play an important role in understanding
the essential features in the system. This is also true for two-
dimensional vector fields that are linked to potentially noisy
data, such as a velocity field extracted from experiments or
numerical simulations of fluids. In both cases, there are occa-
sions in which one wishes to simplify the dynamic structure
in a coherent admissible manner [1]. This latter step requires
the ability to edit the underlying vector field. Furthermore,
there are problems where the construction and modification
of a vector field represents a preliminary step towards a larger
goal such as texture synthesis [2], [3], [4] and fluid simulation
for special effects [5].

There is substantial literature on the subject of vector field
topology extraction and simplification, with considerable focus
on the identification and manipulation offixed points(see [6]
and references therein). On the other hand,periodic orbitsare
essential structures ofnon-gradientvector fields, such as those
in electromagnetism, chemical reactions, fluid dynamics, loco-
motion control, population modelling, and economics. There
is a fundamental need to be able to incorporate them into the

subject of vector field visualization and design. For example,
Figure 1 shows the swirl motion of fluid in a combustion
chamber using simulation [7]. Periodic orbits appear in some
planar slices along the main axis of the chamber (middle)
as well as the boundary geometry (Figure 13). The existence
and locations of the periodic orbits provide clues to the swirl
motion inside the chamber. Efficient periodic orbit detection
and vector field visualization can help design engineers better
understand how the shape of the chamber and the initial speed
of the fluid through the intake ports impact engine efficiency.

Many of the above mentioned applications involve systems
of nonlinearordinary differential equations, for which explicit
analytic solutions do not exist. The lack of analytic expressions
led to the development of the subject of dynamical systems
where the focus is on the qualitative structure of solutions.
In the case of two-dimensional vector fields, the classical
theoretical description of the dynamics is based on identifying
fundamental topological and geometric structures such as fixed
points, periodic orbits, separatrices, and their relationships [8],
[9]. However, in practice there are at least two essential diffi-
culties with this approach. First, unambiguously identifying all
the topological structures for an arbitrary system is impossible.
For example, Hilbert’s 16th problem, that of bounding the
number of isolated periodic orbits for a polynomial vector
field on the plane, remains essentially unsolved [10]. Second,
the existence of noise reduces the importance of objects such
as fixed points and periodic orbits.

In this paper, we develop a vector field visualization and
design system that extracts and visualizes boundary flow topol-
ogy. This includes analyzing and modifying the vector field.
The system builds on the ideas presented by Zhang et al. [6],
and it provides the user with a variety of capabilities in that
fixed points, periodic orbits, and separatrices can be identified.
Furthermore, fixed points and periodic orbits can be created
and removed subject to inherent topological constraints. To
address the additional complexity dealing with periodic orbits,
we make the following contributions in the presented research:

1) We provide a general framework and efficient algorithms
that allow topological simplification on arbitrary vector
fields defined on surfaces (Section VI). Our framework
is based on Conley theory, which is a well-known theory
in non-linear dyanmicsdating back the early1970’s (a
brief introduction is available in Section III). To our
knowledge, previous work including Zhang et al. [6]
does not address simplification that involve periodic
orbits. In addition, most of the existing simplification
algorithms require planar vector fields.

2) We describe a novel graph-based representation of a
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Fig. 1. Visualizing the simulation of flow in a diesel engine: the combustion chamber (leftmost) and four planar slices of the flow inside the chamber
for which the plane normals are along the main axis of the chamber. From left to right are slices cut at10%, 25%, 50%, and 75% of the length of the
cylinder from the top where the intake ports meet the chamber. The vector fields are defined as zeros on the boundary of the geometry (no-slip condition).
The automatic extraction and visualization of flow topology allows the engineer to gain insight into where the ideal pattern of swirl motion is realized inside
the combustion chamber. In fact, the behavior of the flow and its associated topology, including periodic orbits, is much more complicated than the ideal.
Figure 13 provides complementary visualization of the flow on the boundary of the diesel engine.

vector field based on Morse decomposition, which we
refer to asMorse Connection Graphs(MCG). This graph
contains supplementary information with respect to the
well-known vector field skeletonin that it addresses
periodic orbits. We also provide an algorithm to effi-
ciently compute MCG as well as their refinement (Entity
Connection Graphics, or ECG) (Section V-B).

3) Our system allows a user to create periodic orbits on
surfaces (Section IV). To do so, we combine the ideas
of basis vector fields and constraint optimization. To our
knowledge, this is the first time a periodic orbit creation
algorithm is proposed and implemented.

4) As part of MCG and ECG construction, we present
a novel and practical algorithm for periodic orbit ex-
traction without first having to compute separatrices
(Section V-A). Our method is based on the topological
and geometric analysis of a vector field, and it enables
extraction of periodic orbits–even those that are not
accessible via saddle points.

5) The utility of our topological analysis, including periodic
orbit detection and vector field simplification, is demon-
strated in the context of a novel application, namely, the
visualization of in-cylinder flow from automotive engine
simulation data (Sections V and VI). Our algorithm for
periodic orbit detection and ECG construction only takes
less than a minute on one such dataset with nearly
900,000 triangles.

6) We propose an enhanced streamline-based method in
which periodic orbits and separatrices are highlighted in
the display (Section VII). This is particularly desirable
for vector fields on surfaces since only portions of a
periodic orbit may be visible for any given viewpoint
(Figure 6).

Because of the essential mathematical difficulties mentioned
earlier, our numerical methods do not focus directly on fixed
points, periodic orbits, and separatrices. Rather, we employ
techniques based on Conley’s purely topological approach to
dynamical systems [11]. Broadly speaking, our approach is
based on three steps. The first is to identify regions on which
the dynamics exhibits recurrent behavior, i.e. fixed points and
periodic orbits, and/or gradient-like behavior, i.e. separatrices.
This involves the construction ofMorse decompositions. A
theoretical computational foundation for the types of algo-

rithms we employ can be found in [12], [13]. The second is
to identify the type of dynamics occuring in these regions, i.e.
the existence of fixed points, periodic orbits, and separatrices.
This is done using numerical methods and theConley index. It
should be noted that the Conley index not only generalizes the
Poincaŕe index as it applies to fixed points, but it also provides
information about the existence of periodic orbits. Finally, the
vector field is modified in the identified regions to produce the
desired dynamics.

The rest of the paper is organized as follows: Section II
provides a brief review of related work on topology-based
vector field visualization. In Section III, we review related
work and introduce Conley theory. Section IV introduces our
method for creating periodic orbits on the plane and surfaces.
Section V describes our periodic orbit detection technique and
provides an algorithm for the construction of the MCG and
ECG of a vector field. We present a general algorithm for var-
ious cancelling operations in Section VI. Section VII provides
details on our enhanced streamline based flow visualization
technique followed by a discussion of possible future work in
Section VIII.

II. RELATED WORK

Vector field visualization, analysis, simplification, and de-
sign have received much attention from the Visualization
community over the past twenty years. Much excellent work
exists, and to review it all is beyond the scope of this paper.
Here, we only refer to the most relevant work. Interested
readers can find a complete survey in [14], [15], [16].

A. Vector Field Design

There has been some work in creating vector fields on
the plane and surfaces, most of which is for graphics ap-
plications such as texture synthesis [2], [3], [4] and fluid
simulation [5]. These methods do not address vector field
topology, such as fixed points. There are a few vector field
design systems that make use of topological information. For
instance, Rockwood and Bunderwala [17] use ideas from
geometric algebra to create vector fields with desired fixed
points. Van Wijk [18] develops a vector field design system
to demonstrate his image-based flow visualization technique
(IBFV). The basic idea of this system is the use of basis vector
fields that correspond to various types of fixed points. This
system is later extended to surfaces [19], [20]. None of these
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methods provide explicit control over the number and location
of fixed points since unspecified fixed points may appear.
Theisel [21] proposes a planar vector field design system in
which the user has complete control over fixed points and
separatrices. However, this requires the user to provide the
completetopological skeletonof the vector field, which can
be labor-intensive. Recently, Zhang et al. [6] develop a design
system for both planar domains and surfaces. This system
provides explicit control over the number and location of fixed
points throughfixed point pair cancellationand movement
operations. Our work is inspired by their system. However,
we enable automatic extraction and visualization of periodic
orbits on surfaces. We also introduce topology simplification
operations for periodic orbits. There has also been recent work
by Weinkauf et al. [22] on the design of 3D vector fields.

B. Vector Field Topology and Analysis

Helman and Hesselink [23] introduce vector field topology
for the visualization of vector fields. They also propose ef-
ficient algorithms to extract vector field topology. Following
their footsteps, much research has been conducted in topo-
logical analysis of vector fields. For example, Scheuermann
et al. [24] use clifford algebra to study the non-linear fixed
points of a vector field and propose an efficient algorithm
to merge nearby first-order fixed points. Tricoche et al. [1]
and Polthier and Preuβ [26] give efficient methods to locate
fixed points in a vector field. Wischgoll and Scheuermann [27]
develop a method to extract closed streamlines in a 2D vector
field defined on a triangle mesh. Note that closed streamlines
are in fact attracting and repelling periodic orbits. Theisel et
al. [28] propose a mesh-independent periodic orbit detection
method for planar domains. In contrast to these approaches,
our automatic detection algorithm is extended to surfaces.
Furthermore, this is the first time periodic orbit extraction and
visualization has found utility in a real application.

C. Vector Field Simplification

Vector field simplification refers to reducing the complex-
ity of a vector field. There are two classes of simplifi-
cation techniques: topology-based (TB), and non-topology-
based (NTB) [6]. Existing NTB techniques are usually based
on performing Laplacian smoothing on the potential of a
vector field inside the specified region. One example of these
work is by Tong et al. [29], who decompose a vector field
using Hodge-decomposition and then smooth each-component
independently before summing them. TB techniques simplify
the topology of a vector field explicitly. Tricoche et al. [1]
simplify a planar vector field by performing a sequence of
cancelling operations on fixed point pairs that are connected by
a separatrix. They refer to this operation aspair annihilation.
A similar operation, namedpair cancellation, has been used
to remove a wedge and trisector pair in a tensor field [30].
We will follow this convention and refer to such an operation
as fixed point pair cancellation. Zhang et al. [6] provide a
fixed point pair cancellation method based on Conley theory.
They also extend this operation to surfaces and to fixed point
pairs that arenot connected by a separatrix, such as a center
and saddle pair. In this paper, we describe a more general

framework for cancelling object pairs such as fixed points and
periodic orbits (Section VI).

III. B ACKGROUND ON VECTORFIELDS

Our control of vector fields on surfaces is done using
concepts from the topological theory of dynamical systems.
Consider a manifoldM and a subsetX ⊂M. The boundary of
X is denoted by∂X and closure bycl(X).

Mathematically, a vector field can be expressed in terms
of a differential equationẋ = V(x). The set of solutions to
it gives rise to aflow on M; that is a continuous function
ϕ : R×M →M satisfyingϕ(0,x) = x, for all x∈M, and

ϕ(t,ϕ(s,x)) = ϕ(t +s,x) (1)

for all x∈M and t,s∈ R. Given x∈M, its trajectory is

ϕ(R,x) := ∪t∈Rϕ(t,x). (2)

S⊂M is an invariant setif ϕ(t,S) = S for all t ∈R. Observe
that for everyx ∈ M, its trajectory is an invariant set. Other
simple examples of invariant sets include the following. A
point x∈M is a fixed pointif ϕ(t,x) = x for all t ∈ R. More
generally, x is a periodic point if there existsT > 0 such
that ϕ(T,x) = x. The trajectory of a periodic point is called a
periodic orbit.

Consideration of the important qualitative structures as-
sociated with vector fields on a surface requires familiarity
with hyperbolic fixed points, period orbits and separatrices.
Let x0 be a fixed point of a vector fielḋx = V(x); that
is V(x0) = 0. The linearization ofV about x0, results in a
2× 2 matrix D f (x0) which has two (potentially complex)
eigenvaluesσ1 + iµ1 and σ2 + iµ2. If σ1 6= 0 6= σ2, thenx0 is
called ahyperbolic fixed point. Observe that on a surface there
are three types of hyperbolic fixed points:sinks σ1,σ2 < 0,
saddlesσ1 < 0 < σ2, andsources0 < σ1,σ2. Because we are
considering systems with invariant sets such as periodic orbits,
the definition of the limit of a solution with respect to time is
non-trivial. Thealpha andomega limit setsof x∈M are

α(x) := ∩t<0cl(ϕ((−∞, t),x)), ω(x) := ∩t>0cl(ϕ((t,∞),x))

respectively. A periodic orbitΓ is attracting if there exists
ε > 0 such that for everyx which lies within a distanceε of
Γ, ω(x) = Γ. A repellingperiodic orbit can be similarly defined
(α(x) = Γ)). Finally, given a pointx0 ∈M, its trajectory is a
separatrix if the pair of limit sets(α(x),ω(x)) consist of a
saddle fixed point and another object that can be a source, a
sink, or a periodic orbit. Figure 2 provides an example vector
field (upper-left). Fixed points are highlighted by colored dots
(sources: green; sinks: red; saddles: blue). Periodic orbits
are colored in green if repelling and in red if attracting.
Separatrices that terminate in a source or a repelling periodic
orbit are shown in green and those terminate in a sink or an
attracting periodic orbit are colored in red. For convenience,
we will refer to a source and a sink as anodein the remainder
of the paper wherever appropriate.

Even for flows restricted to surfaces, invariant sets can be
extremely complicated and cannot be assumed to consist of
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Fig. 2. An example vector field (upper left) and its ECG (lower left). The
vector field contains a source (green), three sinks (red), three saddles (blue),
a repelling periodic orbit (green), and two attracting periodic orbits (red).
Separatrices that connect a saddle to a repeller (a source or a periodic orbit) are
colored in green, and to an attractor (a sink or a periodic orbit) are colored in
red. The fixed points and periodic orbits are the nodes in the ECG (lower left)
and separatrices are the edges. In addition, a periodic orbit can be connected
directly to a source, sink, or another periodic orbit. Such connections are also
depicted as edges in the ECG. The simplified field of (upper left) is shown in
(upper right) and its corresponding ECG is (lower right). Notice the Conley
index for both vector fields inside the white loop are the same, which allows
the vector field in the left to be simplified into the one shown in the right.

hyperbolic fixed points, periodic orbits and separatrices [31].
Furthermore, even if the recurrent dynamics is restricted to
fixed points and periodic orbits, it is impossible to develop
an algorithm that will identify all of them. For example, it
is easy to generate vector fields that contain infinitely many
isolated fixed points and/or periodic orbits. Thus we require
a language that allows us to manipulate a broader but useful
class of invariant sets.

A. Morse Decomposition and Connection Graphs

A compact setN ⊂ M is an isolating neighborhoodif
for all x ∈ ∂N, ϕ(R,x) 6⊂ N. That is, the flow enters or
leavesN eventually everywhere on∂N. An invariant setS
is isolated if there exists an isolating neighborhoodN such
that S is the maximal invariant set contained inN. Observe
that hyperbolic fixed points and periodic orbits are examples
of isolated invariant sets. Isolated invariant sets posses two
essential properties. First, there are efficient algorithms for
identifying isolating neighborhoods [12]. Second, there exists
an index, called the Conley index [32], that identifies the types
of modifications to the structure of the invariant set that are
topologically permissible. For example, the Conley index of
the vector field shown in Figure 2 (upper-left) inside the white
loop is identical to that of a sink. Topological simplification
of the complex field inside the region can result in the field
shown in the right.

Central to our effort is the need for a computationally ro-
bust decomposition of invariant sets. AMorse decomposition,
M (S), of S consists of a finite collection of isolated invariant
subsets ofS, calledMorse sets,

M (S) := {M(p) | p∈P} (3)

Fig. 3. The vector field shown in the left contains one fixed point and three
periodic orbits. Therefore, the ECG consists of four nodes (middle). However,
due to the resolution of the underlying mesh, there are only two Morse sets
(colored regions) with one containing the fixed point and the other containing
the periodic orbits. Consequently, there are two nodes in the MCG (right).

such that if x ∈ S, then there existsp,q ∈ P such that
α(x) ⊂ M(q) and ω(x) ⊂ M(p). Furthermore, there exists a
partial order> on P satisfying q > p if there existsx ∈ S
such thatα(x) ⊂ M(q) and ω(x) ⊂ M(p). Let C(p,q) :=
{x∈M | α(x)⊂M(p) andω(x)⊂M(q)}. An efficient means
of presenting the partial order on a Morse decomposition
is given by the associatedMorse Connection Graph(MCG)
which is the minimal directed graph whose vertices consist
of the Morse sets{M(p) | p∈P} and whose directed edges
M(q) → M(p) imply q > p. Figure 2 (lower-left) shows an
MCG of the vector field in the upper-left. HereP is the
set of labels (R1 and R2, S1-S3, and A1-A5), and M(p) is
the actual object thatp represents, i.e.,M(R1) is a source.
Note that a MCG contains supplementary information with
respect to the topological skeleton presented by Helmann and
Hesselink [23]. For example, consider the idealized magnetic
field over the Earth’s surface in which only two fixed points
exist and none of the connecting orbits between them is a
separatrix. Similarly, a periodic orbit can be connected to a
source (Figure 6, left) or another periodic orbit (Figure 6,
middle) without any separatrices in the field.

Computing a Morse decomposition and its associated MCG
can be done as follows. LetT denote a triangulation of
the phase space. An edge in this triangulation is classified
as a transverse edgeif the flow leaves one of incident
triangles completely (a one-way road). Otherwise, the edge is
nontransverse(two-way). Construct equivalence classes onT
using the following relationship and transitivity. Two triangles
T0,T1 ∈T are equivalent ifT0∩T1 consists of a nontransverse
edge. Taking the union of all triangles in an equivalence
class produces a polygonal region, who boundary consists of
transverse edges only. LetR denote the resulting collection of
polygons which tile the phase space. Define a directed graph
whose vertices consist of the polygons inR. GivenR0,R1∈R,
there exists an edge fromR0 to R1 if and only if R0∩R1

contains an edge and the vector field points fromR0 to R1

along the edge. Finally, fix a toleranceε > 0 and if there exists
a point inR0 at which‖V‖ ≤ ε then include an edge fromR0

to itself. It is proven in [12] that the maximal invariant sets
within the strongly connected path components of this directed
graph produce a Morse decomposition for the vector field
and furthermore, the MCG can be obtained from the tree that
results from the collapsing each strongly connected component
to a single vertex. Standard algorithms [33] indicate that this
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procedure can be performed in linear time in the number of
vertices and edges in the graph.

A node in the MCG is an isolated invariant set, which
may contain multiple fixed points and periodic orbits. For
many engineering applications, such as the study of in-cylinder
flow, engineers are often more concerned with individual fixed
points and periodic orbits. Therefore, there is a need to build
a graphG , whose nodes consist of fixed points and periodic
orbits. Similar to an MCG, the edges inG represents the
connectivity information between the nodes according to the
vector field. We refer to this graph as anEntity Connection
Graph, or ECG. An ECG is a refinement of the MCG of the
same vector field. In fact, an MCG can be obtained from the
corresponding ECG by merging nodes that are in the same
Morse set. Furthermore, the MCG is equal to the ECG when
the vector field has a finite number of fixed points and periodic
orbits, all of which have an isolating neighborhood of their
own. In the remainder of the paper, we will only show the
ECG’s for illustration purposes.

Given that the ECG is a refinement of the MCG, the reader
may wonder why we emphasize the existence of both graphs.
There are two reasons. The first is that we make use of
information from the MCG to compute the ECG. The second
has to do with the validity of the information. Any numerical
or experimental method is subject to errors and thus one
must be concerned with whether these errors are significant
enough to produce misleading information. In the domain of
numerical analysis the existence of spurious solutions would
be an example of such misleading information. A rigorous
analysis of the validity of the methods being presented here
is beyond the scope of this paper, however we believe that
as a basis for future research it is important to point out that
the topological methods of Conley theory have been used to
obtain computer assisted, but mathematically rigorous proofs
concerning the structure of a wide variety nonlinear dynamical
systems [34], [35]. Thus, our confidence level in the validity of
the visualized structures and modifications is higher for those
objects identified with the MCG than the ECG.

B. Vector Field Simplification on Surfaces

Vector field simplification corresponds to a reduction in the
number of Morse sets in the decomposition (compare the two
fields in Figure 2). Vector field modification corresponds to
a change in the dynamics within an isolating neighborhood
of a Morse set. To foreshadow the discussion of Section VI
and to understand the potential vector field simplification that
could possibly be associated with such a reduction requires
the introduction of a topological invariant, the Conley index.

While the Conley index is applicable in the setting of a
general dynamical system, we restrict our attention to the
setting of flows on surfaces. An isolating neighborhoodN is
an isolating block if there existsε > 0 such that for every
x∈ ∂N, we have

ϕ((−ε,0),x)∩N = /0 or ϕ((0,ε),x)∩N = /0

In other words, the trajectory entersN, leavesN, or both
immediately everywhere on∂N. The exit setof an isolating

block N is L := {x∈ ∂N | ϕ((0,ε),x)∩N = /0}. The pair(N,L)
is called anindex pair. In [12] it is proven that the sets in phase
space which correspond to the strongly connected components
are isolating blocks for the flowϕ associated with the vector
field V.

Let S be the maximal invariant set in the isolating block
N with exit set L. The Conley indexof S is the relative
homology [36] of the index pair(N,L); that is, CH∗(S) :=
H∗(N,L) (see Appendix for more details). Because we are
restricting our attention to flows on orientable surfaces, it is
sufficient to remark that we can writeCH∗(S) = (β0,β1,β2) ∈
Z3 where βi represents thei-th Betti number ofH∗(N,L).
It should be remarked that algorithms for computing Betti
numbers exist [36] and thus we need not concern ourselves
with these issues.

C. Important Conley Indices

Returning to the topic of design, the most important Conley
indices are as follows:

x0 an attracting fixed point ⇒ CH∗(x0) = (1,0,0)
x0 a saddle fixed point ⇒ CH∗(x0) = (0,1,0)

x0 a repelling fixed point ⇒ CH∗(x0) = (0,0,1)
Γ an attracting periodic orbit⇒ CH∗(Γ) = (1,1,0)

Γ a repelling periodic orbit ⇒ CH∗(Γ) = (0,1,1)
S= /0 ⇒ CH∗(S) = (0,0,0)

Observe that the emptyset is by definition an isolated invariant
set. (0,0,0) represents the index information for a region in
which every point leaves in both forward and backward time. It
should be noted that the reverse implications are not true. For
example, given a polygonal index pair(N,L) for a vector field
V, if H∗(N,L) = (0,0,0), then one cannot conclude that the
maximal invariant set incl(N\L) is the empty set. However,
it can be proven that there does exist a different vector field
V̄ such thatV = V̄ on ∂ (cl(N \L)) and the empty set is the
maximal invariant set incl(N \L) under the flow induced by
V̄. Note the Poincaré index for an attracting fixed point is the
same as a repelling one. Furthermore, the Poincaré index for
a periodic orbit is zero, which equals that of an emptyset.
Therefore, Poincaré index theory does not provide enough
utility to handle periodic orbits, thus limiting its potential uses.

To make it clear how the Conley index information can
be used in the vector field design process, let us review
our strategy. The first step is the identification of a Morse
decomposition for the entire flow. Given the associated MCG,
the user identifies an interval that contains the elements which
are to be eliminated. The interval defines an isolated invariant
set for which an appropriate isolating block is constructed.
The Conley index is then computed. This index information
provides a topological constraint on the possible simplification
or modification of the vector field within the isolating block.
For example, if the Conley index does not equal(0,0,0), then
any modification will result in the existence of a nontrivial
invariant set. To provide an even more specific example, if the
Conley index is that of a fixed point, then any modification
of the dynamics on the region will result in a vector field
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that possess at least one fixed point. Further examples will be
provided in Section VI.

D. Vector Field Representation

We now describe the computational model of our system.
In this model, the underlying domain is represented by a trian-
gular mesh. Vector values are defined at the vertices only, and
interpolation is used to obtain values on the edges and inside
triangles. This applies to vector field editing, simplification,
and analysis such as fixed point and periodic orbit extraction.

For the planar case, we use the popular piecewise linear
interpolation method [1]. On curved surfaces, we borrow the
interpolation scheme of Zhang et al. [6], which guarantees vec-
tor field continuity across the vertices and edges of the mesh.
These interpolation schemes support efficient flow analysis
operations on both planes and surfaces.

E. Constrained Optimization

One of the essential operations in our system is constrained
optimization, which refers to solving a vector-valued discrete
Laplacian equation over a regionN in the domain (a triangular
mesh) where the vector values at the boundary vertices ofN
are the constraints. This operation is used to create periodic
orbits (Section IV) and to perform topological simplification
(Section VI). The equation has the following form:

V(vi) = ∑
j∈J

ωi jV(v j) (4)

where vi is an interior vertex,v j ’s are the adjacent vertices
that are either in the interior or on the boundary ofN, andV
represents the vector field. The weightsωi j ’s are determined
using Floater’s mean-value coordinates [37]. Equation 4 is a
sparse linear system, which we solve by using a conjugate
gradient method [38]. For convenience, we refer to a vertexv
as beingfixedif the vector value atv is part of the constraints.
Otherwise,v is free. Note that a similar formulation has been
used to reduce the complexity of vector fields [6] and tensor
fields [39].

IV. PERIODIC ORBIT CREATION

In this section, we describe novel algorithms for creating
periodic orbits in the plane and on surfaces. The input to our
algorithms consists of the desired type of the orbit (attracting
or repelling) and a prescribed path, which is an oriented loop.
Figure 4 shows an example path (left: blue loop). We then
generate a sequence of evenly-spaced sample points on the
loop (middle: green dots) and treat the tangent vectors at
these points as constraints (middle: magenta arrows). Finally,
we produce a vector field with a periodic orbit that closely
matches the user input (right: red dashed lines). We use the
dashed lines to represent the continuous periodic orbit so that
it can be visually compared with the user-specified path. Next,
we describe two ways of creating a vector field based on the
constraints: basis vector fields and constrained optimization.

Fig. 4. Given an oriented loop (left), our system produces a sequence of
sample points (middle: dots) and evaluates tangent vectors at those locations
(middle: arrows). We then compute a vector field that contains a periodic
orbit (right: red dashed lines) by generating constraints based on these vector
values. Notice that the periodic orbit matches closely the user-specified loop.

A. Attracting and Repelling Basis Vector Fields

An intuitive way to build a vector field that satisfies the
constraints is to use basis vector fields. This idea has been
applied to creating wind forces to guide computer anima-
tion [40], to testing a vector field visualization technique [18],
and to generating vector fields for non-photorealistic rendering
and texture synthesis [6]. In this case, the constraints are
also referred to asregular design elements[6]. Each regular
element is used to produce a globally definedbasis vector
field that has a constant direction with decreasing magnitude
as one moves away from the center of the element. With
properly chosen blending functions, the weighted sum of the
basis vector fields satisfies all the constraints.

In theory, any vector field can be created by using regular
elements. In practice, however, it often requires an excessive
number of regular elements to generate certain vector field
features. For example, at least three regular elements are
needed to specify a source or a center. To produce a periodic
orbit, regular elements must be specified not only along the
prescribed path, but also near the orbit in order to enforce
the type of the orbit (attracting or repelling). Given that the
cost of summing basis vector fields is proportional to the
number of design elements, we wish to reduce the number
of basis vector fields while maintaining efficient control. This
is achieved with the introduction of two new types of design
elements:attachment elementsandseparation elements.

Before describing these elements, we briefly review the
concepts of attachment and separation points from Ken-
wright [25]. Given a vector fieldV and a pointp0 in the
plane, we consider the following two values:e1×u ande2×u,
whereu is the vector value atp0 ande1 ande2 are the major
and minor eigenvectors of the Jacobian.p0 is an attachment
point if e1×u = 0, and aseparation pointif e2×u = 0. An
attachment line consists of attachment points. Geometrically,
such a line attract nearby flow. A separation line can be
defined in a similar fashion except that nearby flow is repelled
from the curve. Ideally, an attachment element will result in a
basis vector field that has an attachment line as illustrated
in Figure 5 (middle). The following formula describes an
attachment element that has a desired vector value of(1,0)
at (x0,y0).

V(x,y) = B(x,y)
(

1
c(y−y0)

)
(5)

whereB(x,y) = e−((x−x0)2+(y−y0)2) is the blending function for
the element andc < 0 is a parameter that describes the speed
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Fig. 5. This figure compares the basis vector field corresponding to a regular
element (left) and an attachment element (middle). The periodic orbit in the
right was created by using four attachment elements.

at which the flow leaves the liney = y0. The larger|c| is,
the more quickly the vectors near the attachment line point
towards it. Notice the basis field contains an attachment line
at y = y0. Formula 5 can also be used to specify a separation
element (c> 0) and a regular element (c= 0). When the vector
value is(cosθ0,sinθ0) for some constantθ0, the formula has
the following form:

V(x,y) = B(x,y)(
(

cosθ0

sinθ0

)
+cP(x,y)

(−sinθ0

cosθ0

)
) (6)

whereP(x,y) =−sinθ0(x−x0)+cosθ0(y−y0) is the signed
distance of a point(x,y) to the line that is specified by
the location and direction of the design element. Figure 5
compares two basis vector fields generated from a regular
element (left) and an attachment element (middle). The right
image shows an attracting periodic orbit created from four
attachment elements. The ideas of attachment and separation
will be used again in our periodic orbit extraction algorithm
(Section V-A).

Vector field design using basis vector fields is intuitive and
generates smooth results. However, the cost associated with
this approach is proportional to the number of basis vector
fields. To specify a relative large periodic orbit with high
curvature often requires hundreds of attachment or separation
elements, which makes interactive design a difficult task. The
problem is magnified on surfaces on 3D as every basis vector
field requires a global surface parameterization that is specific
to the underlying design element [6]. Constructing hundreds
of surface parameterizations makes it impractical to create
a periodic orbit interactively. Next, we describe a different
strategy that is based on constrained optimization.

B. Constrained Optimization for Periodic Orbit Creation

Given a user-specified oriented loopγ and the desired
type of the periodic orbit, our system performs the following
operations to create a periodic orbit that closely matches the
input.

First, we identify a regionRγ , which is a set of triangles
that encloseγ. Next, we assign vector values to the vertices
of Rγ according to the desired type, path, and orientation of
the periodic orbit. Finally, our system performs a constrained
optimization to compute vector values for vertices outsideRγ ,
i.e., the free vertices in the domain. The quality of the resulting
periodic orbit depends on the choice ofRγ and the vector
assignment on the boundary ofRγ .

We reuse attachment and separation elements to obtain
vector values onRγ . Basically, each line segment on the
loop γ is used to infer a design element. We then compute

Fig. 6. Example vector fields created using our design system.

vector values at the vertices ofRγ using the basis vector fields
corresponding to these elements. Note whenRγ is chosen to
be the whole domain, this technique becomes the basis vector
field method mentioned earlier, which is computationally ex-
pensive. In practice, we chooseRγ be the smallest triangle strip
containingγ. This greatly reduces the amount of computation
that is associated with basis vector fields. In addition, it seems
to produce reasonable results both on the plane and surfaces.
We further speed up the process by only evaluating a basis
field at the three vertices of the triangle that contains the
corresponding element. When a vertex is shared by more than
one triangle inRγ , we simply take the average of the vector
values computed from each incident triangle. Fig 4 shows that
this method tends to produce a periodic orbit (right: dashed red
loop) that matches the user-specified loop (right: blue loop).
To obtain smoother results, a largerRγ can be constructed.

We have also extended a similar framework to create fixed
points on surfaces. Every fixed point results in three constraints
on the vertices that contains the desired fixed point. Vector
values elsewhere in the mesh are obtained through constrained
optimization. This framework avoids the need to construct
a surface parameterization for each basis [6] and makes it
possible to interactively create periodic orbits on surfaces in
3D. Figure 6 shows a number of vector fields that were created
using our system.

V. TOPOLOGICAL ANALYSIS OF PERIODIC ORBITS

In this section, we describe a process in which an ECG is
constructed and illustrated according to the Morse decompo-
sition of a vector field (Section III). Because periodic orbits
are essential features in a non-linear vector field, we need the
ability to detect and locate periodic orbits in a fast and accurate
manner. We will first present a new algorithm for periodic orbit
identification before returning to ECG constructions.

A. Periodic Orbit Detection

Our periodic orbit detection method is inspired by Wischgoll
and Scheuermann [27], in which they locate periodic orbits
in a planar vector field by starting streamline tracing from a
neighborhood of a fixed point and keeping track of repeated
cell cycles. While this method is capable of detecting many
periodic orbits, it assumes that any periodic orbit can be
approached by a fixed point, which is not always true. One
example case is the repelling periodic orbit between the two
surrounding attracting orbits in Figure 7. To be able to detect
periodic orbits even when they are not approached by any
fixed point, we have developed a new periodic orbit detection
method that has drawn ideas from the Morse decomposi-
tion [41] and separation and attachment lines [25].
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Fig. 7. An example of our periodic orbit detection algorithm. First, we
compute strongly connected components and only consider components where
periodic orbits may exist (left: colored regions). Next, we extract attachment
points (right: cyan) and separation points (right: magenta) on the interior
edges in these connected components. By combining the ideas of strongly
connected components with the extraction of attachment and separation points,
our algorithm is fast and efficient in finding periodic orbits.

A periodic orbit must situate inside a region of flow
recurrence, which corresponds to certain types of strongly-
connected components in the domain (Section III). Recall that
strongly-connected components are computed by treating the
mesh as a graph and merging triangles that share mixed edges.
Note that a strongly-connected component does not contain
a periodic orbit if it either consists of a single triangle or
it is a topological disk and contains no fixed point. This
computation corresponds to computing a Morse decomposition
of the flow. Figure 7 shows an example of the strongly
connected components that may contain periodic orbits (left:
colored regions).

Recall that multiple periodic orbits may exist in an isolated
Morse set (a strongly-connected component). To extract indi-
vidual periodic orbits in a fast and efficient manner, we need
a good geometric indicator as to which strongly-connected
components might contain periodic orbits. Kenwright present
efficient techniques in extraction open and closed separation
and attachment lines [25]. We have used separation and
attachment elements to create periodic orbits (Section IV-A).
We now apply these ideas to periodic orbit extraction. Our
algorithm is as follows:

1) Step 1: We compute the strongly connected components
of the mesh according to the flow. In addition, we discard
components that do not contain a periodic orbit, i.e., if
the componentS consists of a single triangle or ifS is
a topological disk and contains no fixed points. LetS
be the set of strongly connected components that may
contain a periodic orbit.

2) Step 2: We extract the attachment and separation points
for every edge in theinterior of a strongly connected
component inS .

3) Step 3: For every strongly connected componentS∈S ,
we start streamline tracing for each attachment point in
Saccording to the flow. If the streamline reaches a fixed
point or the boundary ofS, we stop tracing and discard
the attachment point. Otherwise, the streamline will
approach an attracting periodic orbit. In case the periodic
orbit has been discovered previously, it will be ignored.
Otherwise, the periodic orbit is recorded, and a sequence
of dense and evenly-spaced points are placed along

Fig. 8. An example scenario in which inconsistent tensor assignment can
lead to false separation or attachment points. In the left image, given the
vector valuesu at the vertices of an edge (cyan arrows) and the Jacobian
tensor (red arrows represent the major eigenvectorse1), it is clear that there
is not any separation point on the edge. However, by converting the tensor
field into a vector field (middle and right) and evaluatinge1×u can cause
false separation point to appear (right).

the orbit. These points allow tracing from subsequent
attachment points to quickly determine whether it is
approaching an existing or new periodic orbit.

4) Step 4: We locate all the repelling periodic orbits by
repeating step 3 with the following two modifications:
tracing will now (1) start from separation points, and (2)
be in the backward direction of flow.

Kenwright evaluatesei×u at the vertices of the edge and use
linear interpolation to locate attachment and separation points.
This formulation assumes that an eigenvector field can be
treated as a vector field. However, as pointed out by Zhang et
al. [42], treating an eigenvector field as a vector field will lead
to discontinuities in the vector field and cause visual artifacts
in tensor field visualization and non-photorealistic rendering.
We have observed similar problems during the computation
of attachment and separation points. For instance, consider
the example shown in Figure 8, in which the vector field is
constant along an edgee (cyan arrows) and the Jacobian along
the edge is nearly constant (major eigenvectors are shown in
red bidirectional arrows). When choosing a consistent direc-
tion assignment for the eigenvectors at the vertices (middle),
we conclude that no separation or attachment point exists on
e. However, the assignment in the right will lead to a false
identification of a separation point. To overcome this problem,
we simply assume the Jacobian is constant along an edge
and evaluate it at the middle of an edge by performing linear
interpolation on the Jacobians at the vertices. This efficiently
removes the need to carefully assign directions to eigenvectors
at the two vertices of an edge.

To perform tracing on surfaces, we use a Runge-Kutta
scheme [43] that has been adapted to surfaces with a piecewise
interpolation scheme that guarantees vector field continuity
across vertices and edges [6].

B. ECG Construction and Display

Since the construction of the MCG graph follows from the
work of Kalies et al. [12] and Kalies and Ban [13], we turn to
a description of our algorithm for constructing the ECG for a
given vector field starting with a brief review of vector field
topology that involves fixed points and periodic orbits.

Consider a vector fieldV on a surfaceS that contains at
least a fixed point or periodic orbit, i.e., the ECG ofV is
not empty.V induces a partition ofS. Each sub-region in
the partition is abasin that can be bounded by fixed points,
periodic orbits, and/or separatrices. A streamline inside a basin
flows from a source objectα to a destination objectω. Both
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(a) (b) (c) (d) (e)

Fig. 9. This figure illustrates our algorithm for construction of ECG’s. First (a), we perform fixed point and periodic orbit extraction. We mark as unvisited
(white disks) for every source/sink and for both sides of every periodic orbit. Next (b), we compute all the separatrices and mark as visited (black disks) for
R2 and the outer side ofR3 since they are connected to the saddleS1 in the ECG. In (c), we start from the inner side ofR3 and follow the flow forward
to find the link to the outer sider ofA2. An edge is added to the ECG, and both sides in the link are now marked as visited. In (d), we perform similiar
operations to the unvisited sides of every repelling orbits (both sides ofR4) to find all the links to a sink or an attracting orbit. Finally (e), we start from any
unvisited side of an attracting periodic orbit and follow the flow in the reverse direction to locate links to unmarked sources.

α and ω can be a node fixed point (a source or a sink) or a
periodic orbit. In addition, for each of the three cases (node-
node, node-periodic orbit, and periodic orbit-periodic orbit),
the link betweenα andω can be either direct, i.e., there is an
edge connecting them in the ECG, or indirect, i.e., they are
connected to some common saddles through separatrices. Note
that a periodic orbit separates nearby flow into two parts. On
either side, there can be one or more basins. When there is one
basin, the periodic orbit is directly linked to a node or another
periodic orbit. In the case of multiple basins, the periodic orbit
is linked to other nodes or periodic orbits through saddles.

To compute the ECG, we perform a three-stage operation.
First, we locate all the fixed points and periodic orbits.
These are the nodes in the ECG. Next, we compute all the
separatrices by tracing from every saddle in its incoming and
outgoing directions until the trajectories end in a node or a
periodic orbit. Finally, we identify edges in the ECG that
are not separatrices. Our methods for fixed point extraction
and separatrix computation are according to Helmann and
Hesselink [23] except they do not handle vector fields that
contain periodic orbits. Periodic orbits are identified using the
algorithm described in Section V-A.

We now describe how to compute non-separatrix edges in
the ECG. As discussed earlier, this corresponds to an edge
in the ECG that does not involves any saddle. There are four
cases: (1) a source and a sink (type1), (2) a source and an
attracting periodic orbit (type2), (3) a sink and a repelling
periodic orbit (type3), and (4) a repelling periodic orbit and
an attracting periodic orbit (type4). Note a node can only be
involved in one non-separatrix edge, and so does each side of
a periodic orbit. We use a flag to describe every node. The
flag is set to1 if the node is connected to a saddle in the
ECG. Otherwise, the flag is set to0. Similarly, we define a
flag for each side of a periodic orbit to record whether there is
at least one separatrix approaching the periodic orbit from that
side. To compute non-separatrix edges, we first locate edges
emanating from repelling orbits. For each repelling periodic
orbit γ and each side, if the corresponding flag is0, we find

a nearby point on that side ofγ and perform tracing in the
direction of the flow until the streamline terminates at a sink
or an attracting periodic orbit. In case of a sink, we mark its
flag to be1 and insert an edge (type3) in the ECG. If the
streamline ends in an attracting periodic orbit, we mark the
flag to be1 for the side of the attracting orbit from which the
streamline approaches. An edge (type 4) is then inserted into
the ECG. Notice that at the end of this step, all non-separatrix
edges of types3 and4 are found. We now perform the same
operations to all the attracting periodic orbits whose side or
sides are still marked as0, except that tracing is now done in
the reverse direction of the flow. This allows us to find all type
2 edges. Finally, we go through every source that still has a
flag of 0 and trace from a nearby point in the forward direction
until it terminates at a sink. This will find all the type1 edges.
It appears that type1 edges are rather uncommon. In fact, the
only instance that we know of is the idealized magnetic field
over a sphere, which contains two fixed points and no periodic
orbits. Figure 9 illustrates this process with an example vector
field that contains two sources, one saddle, and four periodic
orbits. In (a), we extract all the fixed points and periodic orbits.
We also mark as unvisited (white disks) for all the sources and
sinks and for both sides of every periodic orbit. Next (b), we
compute separatrices and mark as visited (black disks) any
node or any side of a periodic orbit that is connected to a
saddle. In the next stage, we start from any unvisited side of a
repelling periodic orbit and follow the flow forward to locate
links to a sink or an attracting orbit. In (c), such an operation
found a link between the inner side ofR3 and the outer side
of A2, both of which are now marked as visited. Performing
this operation on all the repelling periodic orbits leads to (d),
in which links such asR4/A1 and R4/A2 are found. Finally
(e), we start from any unvisited side of an attracting periodic
orbit and follow the flow in the reverse direction to locate the
remaining edges in the ECG.

To display an ECG, we arrange vector field features (fixed
points and periodic orbits) in three rows, with sources and
repelling period orbits in the top row, sinks and attracting
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Fig. 10. The vector field defined in Equation 7 over the region
{(x,y)|max(|x|, |y|) < 11π}. There is one source in the region enclosed by
five periodic orbits. Our algorithm was able to capture all of these orbits
without requiring the presence of any separatrices.

period orbits in the bottom row, and saddles in the middle
row (Figure 2). We also provide the user with the capability to
select an object either in the flow display or the graph display,
and our system will highlight the object in both screens. This
allows a user to navigate through a rather complex flow field
with relative ease.

C. Application to Analytic Data

For all the fields designed with our system, we use this
method to detect periodic orbits and construct ECG’s. In
addition, we have tested our method on other datasets gen-
erated from mathematical formulas and from fluid simulation.
Figure 10 shows a vector field that corresponds to

V(x,y) =
(

y
−x+ycos(x)

)
(7)

It has been proven that this system has exactlyn periodic orbits
in the region

√
x2 +y2 < (n+1)π [10]. We sample the vector

field at the vertices of a bounded underlying mesh, and employ
the piecewise linear interpolation scheme [1] to obtain values
inside triangles. The left of this figure shows the periodic orbits
extracted using our method, and the right portion displays the
corresponding ECG. There are five periodic orbits. Notice our
method is able to detect periodic orbits even when there are
no saddles in the field.

D. Application to Engine Simulation Data

We have also applied our technique to two datasets from au-
tomotive engine simulation [7], more specifically, the design
and optimization of in-cylinder flow. Engineers responsible for
the design of, in this case, a diesel engine try to create an
ideal pattern of motion, which can be described by a swirling
flow around an imaginary axis. Achieving these ideal patterns
of flow optimizes the mixture of oxygen and fuel during the
ignition phase of the valve cycle. Optimal ignition leads to
very desirable consequences associated with the combustion
process including: more burnt fuel (less wasted fuel), lower
emissions, and more output power. One type of flow, referred
to as theswirl motion, is shown in Figure 11 (right). Such an
ideal is often strived for diesel engines.

In Figure 1 we visualize the flow and its topology inside
the combustion chamber from the diesel engine simulation.
We have sliced through the geometry in the same manner that
engineers do when analyzing the simulation results. The first

Fig. 11. Idealized in-cylinder flow through a gas engine (left) and a
diesel engine (right). Figures 12 and 13 show our visualization of CFD data
simulating such flows.

slice, at10%the length of the volume, indicates a swirl pattern
that deviates rather strongly from the ideal -which would result
in a simple recirculation orbit around the center. The second
slice, at25% down the chamber geometry we see a periodic
orbit very close to the center that starts to approximate the
ideal swirl motion. However, other less ideal singularities are
found near the perimeter of the geometry. The method we use
here is similar to the moving cutting plane topology approach
of Tricoche et al. [44]. We note that caution must be used
when interpreting these results since the vector field has been
projected onto 2D slices. On the other hand, the engineers
involved are very familiar with the simulation data and are
well aware of its overall characteristics.

Figure 13 shows from two viewpoints some simulation
result in which undesired fixed points and periodic orbits are
present. There are a total of226 fixed points and52 periodic
orbits. The total time to construct the ECG for the flow is29.15
seconds on a3.6 GHz PC with3.0 GB RAM. Another type
of motion, termedtumble flow, is shown in Figure 11 (left).
The axis of rotation in the tumble case is orthogonal to that of
the swirl case. The dataset that is being visualized (Figure 12)
is also from simulation, and it contains56 fixed points and
9 periodic orbits. The ECG for this dataset is shown in the
bottom row. Through the application of our automatic periodic
orbit extraction and visualization algorithm we can observe a
closed streamline about a central axis corresponding to the
ideal pattern of tumble motion in the gas engine simulation
results. This is precisely the type of re-circulation that the
engineers strive to realize when designing the intake ports of a
gas engine cylinder. Our algorithm enables the CFD engineers
to automatically detect and visualize this highly sought-after
pattern of flow in a direct manner for the first time (see
Figure 12). The total time for computing the ECG of this time
is 31.58 seconds. The ECG produced from the diesel engine
simulation results is of even higher complexity than that of the
gas engine. Table I shows the complexity for both simulation
datasets and the timing results in seconds.

VI. V ECTORFIELD SIMPLIFICATION

Topological simplification of a vector field has many ap-
plications, such as flow visualization, texture synthesis, and
non-photorealistic rendering.
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dataset # # fixed # periodic # edges time extracting time extracting time computing time
name polygons points orbits in ECG fixed points periodic orbits edges total

gas engine 105,192 56 9 97 0.16 22.33 9.09 31.58
diesel engine 886,296 226 52 295 3.16 21.52 4.48 29.15

TABLE I

THE COMPLEXITY AND TIMING RESULTS FOR TWOCFD DATA SIMULATING IN -CYLINDER FLOW THROUGH A COMBUSTION ENGINE(FIGURES12

AND 13). AN EDGE IN THE ECG CORRESPONDS TO A LINK BETWEEN A SOURCE AND DESTINATION OBJECT PAIR, IN WHICH BOTH OBJECTS CAN BE A

FIXED POINT OR A PERIODIC ORBIT. TIMES (IN SECONDS) ARE MEASURED ON A3.6 GHZ PC WITH 3GB RAM.

Fig. 12. The visualization of CFD data simulating in-cylinder flow through a
gas engine from two viewpoints (top), and the corresponding ECG (bottom).
Through the application of our automatic periodic orbit extraction algorithm
we can observe a closed streamline about a central axis corresponding to the
ideal pattern of tumble motion in the gas engine simulation results. This is
precisely the type of re-circulation that the engineers strive to realize when
designing the intake ports of a gas engine cylinder (Figure 11, right).

A. Single Attractor/Repeller Pair Cancellation

A well-known topological simplification operation ispair
cancellationon a pair of fixed points with opposite Poincaré
indices and a unique orbit connecting them. This operation
has also been referred to as pair annihilation [1]. After
cancellation, both fixed points disappear. Tricoche et al. [1]
perform this operation in planar domains based on Poincaré
index theory, which does not apply to periodic orbits. Zhang
et al. [6] provide an efficient implementation of the pair
cancellation operation based on Conley index theory. They
also extend fixed point pair cancellation to surfaces and for
pairs that are not connected by a separatrix, such as a center
and saddle pair. However, neither technique deals with periodic
orbits, which limits their potential applications in visualization
and graphics. Our paper addresses this by providing a general
framework that allows cancellations of a repeller and attractor
pair in which either object or both can be a periodic orbit.
Similar to Zhang [6], our framework is based on Conley index
theory. Before providing the details on our general framework,

Fig. 13. The visualization of CFD data simulating in-cylinder flow through
a diesel engine from two viewpoints. Compare them to the idealized flow
shown in Figure 11 (left). Figure 1 provides complementary visualization of
the flow inside the diesel engine. Both the texture and the topology-based
visualizations indicate a nice pattern of swirl motion at the boundary of the
combustion chamber while the regions near the intake ports reveal deviation
from the ideal.

we first comment on what we mean by pair cancellation.
Pair cancellationP involves a repellerR and an attractor

A. P is direct if there is at least one edge betweenR and A
in the ECG, andP is indirect if R and A are linked through
either one or two saddles. When a node or a periodic orbit is
linked to a saddle through one connecting separatrix, the pair
are singly connected. Otherwise, they aredoubly connected.
We have identified six direct cancellation scenarios (Figure 14)
and seven indirect ones (Figure 15) on the plane. Our system
can handle all of these cases. To our best knowledge, previous
pair cancellation methods are only available to handle case (1)
in Figure 14.

When performing pair cancellation, we expect the complex-
ity of the flow to be reduced near the object pair, such as the
case in Figure 14 (1). However, the reduction in the complexity
does not mean the resulting flow will always be free of fixed
points and periodic orbits. For instance, a sink and periodic
orbit cancellation results a source as shown in Figure 14 (2).
In fact, the characteristic of the resulting flow is constrained
topologically by the Conley index of the isolating block over
which the flow is modified. When cancelling a node and saddle
pair, the Conley index of such a block is(0,0,0), which is
the same as a fixed point-free vector field. For a sink and
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(1) (2) (3) (4) (5) (6)
Fig. 14. The six direct cancelation scenarios: (1) a source and saddle with a unique connecting separatrix, (2) a sink and a periodic orbit, (3) an attracting
periodic orbit and a repelling one, (4) a periodic orbit and a saddle with a unique connecting separatrix, (5) a sink and a saddle with two connecting separatrices,
and (6) a periodic orbit and a saddle with two connecting separatrices. The top row shows the original vector fields, while the bottom row displays the vector
field after cancellation. Notice that our cancellation operations are only applied to the intended objects.

(1) (2) (3) (4) (5) (6) (7)
Fig. 15. The seven indirect cancellation scenarios: (1) a source and a sink pair with two saddles between them, (2) a source and a sink with one saddle
between them, (3) a sink and a periodic orbit with two saddles between them, (4) a sink and periodic orbit with one saddle between them and two orbits
between the saddle and the sink, (5) a sink and periodic orbit with one saddle between them and two orbits between the saddle and the periodic orbit, (6)
two periodic orbits with two saddles between them, and (7) two periodic orbits with a saddle between them. The top row shows the original vector fields,
while the bottom row displays the vector field after cancellation. Notice that our cancellation operations are only applied to the intended objects.

periodic orbit pair, the Conley index is(0,0,1) which is that
of a source. Furthermore, pair cancellation does not always
lead to simpler behaviors, such as Figure 14 (5). Cancelling
a doubly-connected node-saddle pair leads to a periodic orbit.
In fact, the only other case in which the flow is not simplified
through pair cancellation is shown in Figure 14 (6), where a
doubly-connected periodic orbit and saddle pair is replaced
by another such pair. Both cases are direct cancellations of
doubly-connect object pair. In all other cases, pair cancellation
leads to simpler but not necessarily trivial flow.

We now describe our framework for a single pair cancel-
lation that can now handle (1) periodic orbits, (2) doubly
connections, and (3) indirect cancellation. Given a repellerR
and an attractorA, our algorithm first searches the ECG to
find the smallest interval that contains bothR and A. This is
achieved by finding all the nodes in the ECG that can both
reachA and be reached fromR. There are three possibilities:
(1) R and A are directly related, (2)R and A are indirectly
linked through a set of saddlesSi ’s, and (3)R and A are not
connected. Case (3) will be ignored. Note that the first stage is
conducted purely on the graph level. LetR = {R}⋃{Si} and

A = {A}⋃{Si}. Note whenR and A are directly connected,
the set of{Si} is empty. It should also be noted that Kalies
and Ban [13] provide a dimension independent algorithm for
determining intervals in a Morse decomposition.

In the second stage, we consider the minimal set of triangles
in the domain that containR. We then grow from these
triangles by adding one triangle at a time across mixed or
exit edges. We now have a regionUR that contains all the
triangles reachable from any object inR. Then, we perform
region growing from the minimal set of triangles that contain
A by adding triangles across mixed or entrance edges. This
results in a regionUA that consists of triangles that can reach
any object inA . U = UR

⋂
UA is an isolating block that is

necessary to perform pair cancellation.

In the last step, we replace the flow insideU by performing
constrained optimization (Section III-E). While this method
does not guarantee that the flow will be simpler, in practice we
have observed that it performs well. Note that other methods
can also be used to modify the flow.

For any pair cancellation operation relying on the ECG,
it is possible that region growing from the repellers and
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Fig. 16. User-guided flow smoothing on CFD data simulating in-cylinder
flow through a gas engine: before (upper-left) and after (upper-right). Compare
the ECG after smoothing (lower) with before smoothing (Figure 12, lower).

attractors can “walk” over fixed points, periodic orbits, and
separatrices that are not intended for cancellation. Including
these triangles in the constrained optimization may cause
unwanted topological modifications (note this will not happen
if one uses MCG to determine the cancellation operation).
To address this issue, we tag all the triangles in the mesh
that contain either a fixed point, or part of a periodic orbit or
separatrix. During the construction of isolating blocks, we do
not allow triangles to be added if they are tagged and contain
features not intended for cancellation.

B. User Guided Flow Smoothing

In the proceeding section, we have described techniques
that automatically determine a region where the flow needs
to be modified. Sometimes it is desirable to provide a user
with control over the location and shape of the region. Zhang
et al. [6] describe such an operation for graphics applications
such as non-photorealistic rendering and texture synthesis. We
apply their algorithm to large scale CFD simulation datasets.
In addition, unlike Zhang et al. who accept a topological disk,
we now allow a region to have any number of boundaries.
Figure 16 shows the results of user-guided flow smoothing on
CFD simulation data of in-cylinder flow in a gas engine. The
field on the upper-right was obtained by a sequence of five
user-guided smoothing operations (the actual region bound-
aries are not shown). Notice the field is considerably simpler
than the original field (upper-left). The simplified vector field
retains the important larger scale tumble motion characteristics
while smoothing non-ideal behavior. Also compare the ECG
of the smoothed field (Figure 16, lower) with that of the
field before smoothing (Figure 12, lower). Figure 17 compares
the diesel engine dataset (left) with the one obtained from a
series of six user-guided simplification operations (right). Flow

Fig. 17. User-guided flow smoothing on CFD data simulating in-cylinder
flow through a diesel engine: before (left) and after (right).

smoothing is an efficient method of reducing the complexity
of a vector field.

VII. T OPOLOGY-BASED STREAMLINE V ISUALIZATION

Visualization is crucial for the analysis and design of
vector fields. Most existing visualization techniques, such as
texture- and streamlines-based methods, are designed for fixed
points. While they perform well for illustrating local patterns
such as fixed points, other features (separatrices and periodic
orbits) are often not well-preserved. In Figure 18, a vector
field with three periodic orbits is depicted using IBFV [18]
(a), and evenly-placed streamlines [45] (b). Notice that it is
difficult to see periodic orbits and separatrices using texture-
based methods such as IBFV. Streamline-based methods can
better illustrate trajectories. However, most existing methods
such as Jobard and Lefer [45] and Verma et al. [46] do
not take into account periodic orbits or separatrices in seed
placement and streamline termination criteria. This causes
visual discontinuity in periodic orbits and missing separatrices.

Several researchers have incorporated vector field topology
into texture-based methods [47]. Most of the figures in this pa-
per are created in that fashion. On the other hand, streamline-
based methods can better illustrate individual streamlines,
which makes it an attractive approach when interactive display
is not required. In this section, we describe a method for which
vector field topology is used for streamline placement.

We adapt the evenly-placed streamline method of Jobard
and Lefer [45] with the following modifications. First, we
extract periodic orbits and separatrices in the vector field and
make them the initial streamlines. To avoid visual clusterings
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(a) (b) (c) (d)
Fig. 18. An example of our streamline-based visualization technique on the plane: (a) a texture-based method (IBFV [18]), (b) a streamline-method [45],
(c) our streamline method which uses vector field topology, (d) same image from (c) with periodic orbits and separatrices being highlighted. Notice with our
method (c and d), vector field topology is well-maintained by streamlines and they are easily discernable.

near sources, sinks, and periodic orbits, we terminate a separa-
trix if it is within a distance from the non-saddle end. Next, we
add additional streamlines in the same manner as Jobard and
Lefer [45]. This modification ensures that vector field topology
is maintained in the visualization and no visual discontinuity
for periodic orbits (Figure 18, c). Finally, we highlight vector
field topology with colors (d) such that attracting periodic
orbits and incoming separatrices from saddles are colored in
red while repelling periodic orbits and outgoing separatrices
are colored in green. To avoid confusions near sources and
sinks, the only fixed points we include in the visualization are
saddles, which are colored in blue. Figure 6 shows additional
examples. Notice a periodic orbit on a 3D surface (middle-
left and middle right) is often partially visible from any
given viewpoint. They are difficult to discern without being
highlighted.

VIII. C ONCLUSION AND FUTURE WORK

In this paper, we have described a vector field design system
in which fixed points and periodic orbits can be created,
modified, and removed. At the core of our implementation are
results from Conley theory, which enable a unified framework
for the efficient control of fixed points and periodic orbits
through editing operations such as feature cancellation. To
our knowledge, this is the first vector field design system that
addresses periodic orbits. As part of the system, we provide
a novel technique for periodic orbit extraction by computing
the strongly-connected components of the underlying mesh
according to the flow and by extracting separation and at-
tachment points. Furthermore, we define a new graph-based
topological representation of a vector field, the ECG, and
propose efficient techniques to construct the ECG. We have
applied our vector field analysis and simplification techniques
to an engineering application: visualizing flows from engine
simulation. Both of our analysis and simplification techniques
can handle vector fields on curved surfaces. Finally, we
augment streamline-based vector field visualization techniques
by including vector field topology (separatrices and periodic
orbits) in the streamline generation and by highlighting them.

There are a number of future directions. First, our periodic
orbit detection method depends on efficient extraction of
separation and attachment points. While we have observed in
our experiments that these points tend to be close to periodic
orbits, a rigorous mathematical study on the subject is needed.

Second, our current MCG and ECG construction methods
assume closed surfaces. We are investigating means to extend
them to handle surfaces with boundaries. Third, we plan to
investigate automatic techniques for vector field simplification.
Fourth, we are exploring more intuitive illustration of the
ECG’s. In particular, we plan to explore graph and network
visualization techniques developed by researchers in the In-
formation Visualization community.

APPENDIX

COMPUTATION OF CONLEY INDEX

The triangular mesh, which is the underlying domain for our
system, consists of a collection of vertices,V whose elements
are denoted by〈vi〉, edgesE , whose elements are denoted by
〈vi ,v j〉, i 6= j, and trianglesT , whose elements are denoted
by 〈vi ,v j ,vk〉, i 6= j 6= k 6= i. Given a subsetX of the mesh,
let V (X), E (X), andT (X) denote the collections of vertices,
edges, and triangles which are contained inX.

Let C0(X), C1(X), and C2(X) be the free abelian groups
on the setsV (X), E (X), andT (X), respectively [48] and set
C−1(X) = 0. Recall, that if(N,L) is an index pair thenL⊂ ∂N.
Since,N is given as the union of a set of triangles,V (L) ⊂
V (N), E (L)⊂ E (N), andT (L) = /0. Thus, the quotient groups

Ci(N,L) := Ci(N)/Ci(L), i =−1,0,1,2

are free abelian groups.
SinceV (N), E (N), and T (N) induce a basis forC0(N),

C1(N), and C2(N), respectively, to define group homomor-
phisms ∂i : Ci(N) → Ci−1(N), for i = 0,1,2, it suffices to
prescribe the action of∂i on the individual vertices, edges,
and triangles. Define

∂0〈v0〉 := 0 (8)

∂1〈v0,v1〉 := 〈v1〉−〈v0〉 (9)

∂2〈v0,v1,v2〉 := 〈v0,v1〉−〈v0,v2〉+ 〈v1,v2〉 (10)

The ∂i are calledboundary operators. Observe that they
induce boundary operators on the quotient groups,∂i :
Ci(N,L)→Ci−1(N,L).

Let Zi(N,L) := {x ∈ Ci(N,L) | ∂ix = 0} and Bi(N,L) :=
∂i+1(Ci+1(N,L)). It is straightforward to check that∂i−1◦∂i =
0, henceBi(N,L)⊂Zi(N,L). Therelative homologyof the pair
(N,L) are the quotient groups

Hi(N,L) := Zi(N,L)/Bi(N,L) i = 0,1,2.
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Because we assume that the original triangular mesh is
a closed orientable surface embedded inR3, the relative
homology groups are free groups, that is

Hi(N,L) = Zβ
i

whereZ are the integers andβi is a non-negative integer.βi

is called thei-th Betti number.
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