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Abstract —Robust analysis of vector elds has been established as an i mportant tool for deriving insights from the complex systems
these elds model. Traditional analysis and visualization techniques rely primarily on computing streamlines through numerical
integration. The inherent numerical errors of such approaches are usually ignored, leading to inconsistencies that cause unreliable
visualizations and can ultimately prevent in-depth analysis. We propose a new representation for vector elds on surfa ces that replaces
numerical integration through triangles with maps from the triangle boundaries to themselves. This representation, called edge maps,
permits a concise description of ow behaviors and is equiva lent to computing all possible streamlines at a user de ned e rror threshold.
Independent of this error streamlines computed using edge maps are guaranteed to be consistent up to oating point preci sion,
enabling the stable extraction of features such as the topological skeleton. Furthermore, our representation explicitly stores spatial and
temporal errors which we use to produce more informative visualizations. This work describes the construction of edge maps, the error
quanti cation, and a re nement procedure to adhere to a user de ned error bound. Finally, we introduce new visualizatio ns using the
additional information provided by edge maps to indicate the uncertainty involved in computing streamlines and topological structures.

Index Terms —Vector Fields, Error Quanti cation, Edge Maps.

1 MOTIVATIONS (i.e. the uniqueness of the solution of an ordinary difféiedn

ECTOR elds are a common form of simulation data®duation). Fig. 1 gives one such example, where a fourth-
V appearing in a wide variety of applications ranging frorRrder R_unge-Kutta integration technique creates two @rgss
computational uid dynamics (CFD) and weather predictiostréamiines.
to engineering design. Visualizing and analyzing the ow
behavior of these elds can help provide critical insightsoi
simulated physical processes. However, achieving a densis 7%
and rigorous interpretation of vector elds is dif cult, ipart
because traditional numerical techniques for integradiomot
preserve the expected invariants of vector elds.

-
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numerical techniques, we reconsider the most common w
to store vector elds. Both a discretization of the domai

well as a set of sample vectors (de ned at the vertices
the mesh) are required. The vector eld on the interior of a ™

triangle is approximated by interpolating vector valuesnfr T

the samples at the triangle's corners. Subsequently, congpu T
properties that require integrating these vector valuesgnts

a signi cant computational challenge. For example, coasidFig. 1. Left: Two streamlines are seeded traveling clock-
computing the ow paths (streamlines) of massless pasicl@vise around this sink (red ball) in a domain [ 1;1]
that travel using the instantaneous velocity de ned by telel. [ 1;1]. Right bottom: Initially, the magenta streamline is
Naive integration techniques may violate the property thageded outside of the blue streamline with respect to the
every two of these paths are expected to be pairwise disjoag@nter of the domain. Right top: After integration with a
step size of 0:025the streamlines cross, now the magenta
H. Bhatia, S. Jadhav, G. Chen, J.A. Levine and V. Pascucciaie the ~ Streamline is inside the blue streamline with respect to the
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step, in particular near unstable regions where the owmifuproperties of edge maps, a proof of their consistency, and

cates or spirals slowly. These errors can compound quicldy list of the possible con gurations of ow within each

to produce inconsistent views of the vector eld, resulting triangle can be found in [17]. In the current paper, we discus

inaccurate visualization and analysis of the eld. edge maps, and explain how edge maps enable consistent
Apart from the obvious problem of potentially including arvisualization of ow augmented by visualization of errofihe

unknown structural error in the analysis, traditional teignes main contributions of this work are:

can cause a more subtle yet equally important problem. By The de nition of edge maps, with time, for vector elds
hiding the errors inherent in the numerical integrationsthe de ned on triangulated surfaces, and an algorithm to
techniques create the perception of Certainty. The user is compute their approximation;

presented with crisp lines and clean segmentations which Quanti cation of both spatial and temporal error bounds
imply a false level of accuracy. Instead, a more nuanced due to this approximation;

approach that clearly indicates which information is known A re nement procedure for reducing both spatial and
and where possible instabilities might arise would provéide temporal mapping error; and
more candid view of the data. New visualizations of ow that highlight instabilities by
Considering these motivations, we propose a new data showing manifestations of these errors in space and time.
structure, callecedge mapsto represent vector elds. Edge
maps provide an explicit representation of ow by mappin
entry and exit points of ow paths on the edges of th% RELATED WORK
triangle. Thus, they encode the property most often need8ihce vector-valued data is a natural way to represent uid
by common analysis tools to compute visualizations an@w in simulations as well as other dynamical systems [15],
topological decompositions. We show how to compute mamyalyzing vector elds has received a signi cant amount of
of the same primitives robustly and directly on the edge map#ention in the visualization community. In addition, quuter
themselves. Moreover, the edge map data structure encodephics researchers have used vector elds for applicatio
numerical error, presenting a more complete view of th@nging from texture synthesis and non-photorealistic- ren
data illuminating the major features that demonstrate whettering [6], [44] to mesh generation [2], [30]. Regardless of
numerically unstable regions exist. This encoding enabld¥e application, there is a universal need to represenelarg
re nement of the maps to bound the amount of error incurregbmplex elds concisely. A reliable visualization must exe
by this representation. the important features of the eld and ensure that the method
While a method is required to compute the initial owused do not create contradictory views.
within each triangle, any subsequent computation assumeXipfer et al. [20], following the lead of Nielson and
the edge map to be ground truth. Such a strategy is akindang [26], propose a local exact method (LEM) to trace
recent techniques that robustly compute scalar eld togplo a particle on linearly interpolated vector elds de ned on
Gyulassy et al. [11], for example, convert a scalar eld inteinstructured grids. LEM solves an ODE representing the
a discrete gradient from which global properties such as thesition of the particle as a function of time, starting at a
topology can be extracted consistently. In both scalar agitven position. Consequently, it removes the need to perfor
vector elds the initial conversion can create discrefizat Step-wise numerical integration, and hence is free from the
artifacts. However, the net gain is signi cant. Using edgeumulative integration error and is as accurate as nunierica
maps, we can accumulate the error while performing compRkecision. Given an entry point of a particle to a simplex,
tation. Where discretization artifacts have occurred, wansh LEM gives its exit point from the simplex. We use this exact
these unavoidable errors explicitly to the user. Consettyyenmethod during the construction of edge maps, which removes
instead of providing a black box representation of the dad t the need for on-the- y numerical integration.
ignores the impact of discretization, we can provide arialys Consistency is particularly desirable when computingcstru
a visualization of the data that accounts for these arifadural properties of vector elds. Helman and Hesselink [14]
and indicates how errors may have affected the apparent ®@mpute a vector eld's topological skeleton by segment-
behavior. ing the domain of the eld using streamlines traced from
each saddle of the eld along its eigenvector directionse Th
nodes of the skeleton are critical points of the vector eld
and streamlines that connect them are called separatrices.
This research focuses on a new representation of vectos, el&ubsequently, the skeleton extraction has been extended to
called edge maps, aiming at encoding the ow behavior withiaclude periodic orbits [42]. By detecting closed streame$,
bounded error. Edge maps encode the in ow/out ow behavidischgoll and Scheuermann [42] propose a technique totdetec
over the boundary of a triangle, allowing the replacemeiiiit cycles in planar vector elds. Scheuermann et al. [34]
of integration with a simple map lookup. The analysis andok for the areas of non-linear behavior in the eld, and
visualizations generated using edge maps are guaranteedide higher order methods to preserve such features, which
be consistent up to oating point precision, as a byproduct @therwise would have been destroyed due to linear assumptio
the removal of numerical integration of streamlines. Three dimensional variants of the topological skeletonehav
A preliminary discussion on edge maps without a notion @lso been proposed [10], [18], [38], [41]. The readers ghoul
time appeared in [1], and a discussion on the mathematicefer to [22], [35] for more detailed surveys.

Contributions
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However, it is well known that computing the topologicaB.1 Foundations

skeleton can be numerically unstable due to errors inhergrli v pe a tangential vector eld de ned on a 2-manifold

in the integration of separatrices and inconsistenciesn@mMampedded iR3. V is represented as the set of vector values
neighboring triangles [9], [16], [26], [33]. As a result,/B8 sampled at the vertices of a triangulationMf. Speci cally,

of the fundamental topological invariants of a vector eléyn ogch vertexp; has the vector valu¥(p;) associated with it.
not be preserved, such as the Poigedopf index formula or The vector values on the interior of each trianBlavith ver-

the fact that streamlines are pairwise disjoint. Consetiyenticesf p; p;; pcg in the triangulation are interpolated linearly
computlng _the topologlcz_il skeleton numerically is _adequaﬁsingV(pi);V(pj);V(pk). Fig. 2 depicts the eld de ned in
for wsuahzmg the resulting structu.res but less suitafile g way for a single triangle. Note that we require that ¢hes
further analysis. A number of techniques have been proposgbe vectors reside in the plane of the triangle. A suitable

to extract the topologica.l skeleton in a stable a}nd ef ciefrojection might be needed for this, while ensuring that the
manner. Chen et al. [3] introduce the ECG (Entity Conneggcior eld is consistent across eddes

tion Graph) as a more complete topological representationgjven a vector eldV, we can

of vector elds on piecewise linear manifolds. They furthefe ne the ow x(t) of V. TreatingV
introduced the MCG (Morse Connection Graph) as a MOER a velocity eld, the ow describes
robust representation of vector eld topology [4] based ofye parametric path that a massless
Morse decompositionRecently, Szymczak and Zhang [37harticle travels according to the in-
propose an algorithm to compute the Morse decompositigfyntaneous velocity de ned by.
for piecewise constant (PC) vector elds by representing th((t) can be de ned as the solution
set of all trajectories in the eld as a nite transition giap of the differential equation:

Szymczak [36] extends this technique to produce a supefrset o Fig. 2. Flow through
transition graphs to re ect the error in the eld. While the PC dx(t) _ Y (x(t)): a triangle with vec-
eld is created from the original piecewise linear (PL) eld dt tors dened on its
there is no guarantee that the resulting Morse decompuositibhe path x(t) with x(0) = xo is vertices.

re ects the original vector eld. called thestreamlinestarting atxg.

Recent work of Reininghaus and Hotz [31] construct &ince generally, the analytic form of the vector eld is uaiyv
combinatorial vector eld based on Forman's discrete Morsable, solving this differential equation for a single strdiae
theory [8]. Using combinatorial elds allows the extragtio is typically accomplished using numerical integrationrsas
of a consistent topological structure. However, the apgiim Euler or Runge-Kutta methods.
of the original solve for the combinatorial vector elds is For a PL vector eld de ned by the three vector samples
limited by the high computational complexity, leading t@t the vertices of a triangle, we begin with assuming that:
later improvements to the algorithm [32]. While provably(l) the vectors at all the vertices of the triangle are namw.ze
consistent, it is unclear how close the resulting combinalto (2) the vectors at any two vertices sharing an edge are not
eld is to the original eld. By comparison, this work propes antiparallel, and (3) the vectors at two vertices on an eslge
an integration technique that is both consistent and hasar not both parallel te. Any such con guration violating one
bounded error with respect to the LEM. of these conditions is unstable, and can be avoided by éat sligh

A large section of visualization community concentrategerturbation. This perturbation ensures that no criticzihip
on error and uncertainty visualization [19]. Pang et al.] [29ies on the boundary of the triangle and there is no streamlin
identi ed three sources of uncertainty: (a) Uncertaintyata, along any edge of the triangle, which signi cantly simplse
(b) Uncertainty due to derivation, (c) Uncertainty due tewi the analysis of edge maps, as will be clear in the following
alization. The earlier work on vector eld uncertainty vadu Sections.
ization concentrated on visualizing extended glyphs fatme
samples to represent uncertainty [29], [43] and compasie®dn 3.2 De nition

streamlines using different integration schemes, stes<ind 1o nderstand and represent the ow behavior through a tri-
data resolutions [40]. Recently, Otto et al. described 0wt 5,q1 e rst summarize the formal de nitions given in [17]

to obtain uncertain topological segmentations by samphir®y | et p pe a triangle with boundar§fD. An origin-destination
random 2D vector e_Id [27], and_later e>_<tending it to 3D VETIO(o-d) pair is a pair of points(p;q), where bothp and q lie
elds [28]. While their method tries to simulate the uncemgi -, gp and there exists a streamline between them which lies
in data probabilistically, disregarding the uncertainigdo the entirely in the interior ofD. We call p an origin point andj
computation and visualization itself, the edge maps assh&ee 5 yestination point. LeP be the set of all the origin points
given data as certain, and enable visualization of unceytai 5, ¢ andQ be the set of all the destination points .
introduced during computation and visualization only. The edge map oD, x: P! Q, is dened as the point-to-

point mapping between the boundary of the triangle, such tha

3 EDGE MAPs 1. For each vertexy;, we use mean value coordinates in 3D [7] to project
In the following, we de ne edge maps, describe their cortstruthe star ofpi, S (pi) onto a 2D plane. The vector(pj) is then projected

. . ._onto every triangle irS (p;), and an average vector is computed in 2D. The
tion, and discuss how edge maps can be used for a consis fse projection (to 3D) of the average vector is then cdetpdor every

propagation. triangle inS (pj) giving a consistent representation\6(p;).
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x(p)= qif (p;g) is an o-d pairq is called the image op hold becausex* (or x ) is no more a one-to-one map. In
under x. If there exists a critical point in the interior of theeither case, for a trianglB, x* andx completely describe
triangle, some points ofiD will not be a part of any o-d pair, the behavior of the ow througtb.
since they ow to or emerge from the critical point.

Edge maps provide a point-to-point mapping between en@y3 Edge Map Generation
and exit points of streamlines through a triangle. Fig. 3(gb generate a compact representation of the ow, edge maps
visualizes an edge map as a graph of the point-to-poiiibdivide D into connected maps of ow between origin
mappings. To ef ciently represent the edge maps, we merg@id destination interval, called links. While the endpoints
adjacent origin points that have adjacent destinationtpoinof the links represent the ow accurately, an approximation
This merging creates a more compact representation of #¥h be made to represent the ow at the interior of links.
point-to-point mapping as a mapping between connected sulg- ensure consistent integration, any approximation can be
sets of the boundary of a triangle, calietervals The interval chosen as long as it preserves the ordering of streamlines
obtained by merging adjacent origin points is calleddhigin  within a link. In this work, we use a linear approximation
interval, while the interval obtained by merging their respecof the links. Thus, the ow representation in edge maps is
tive destination points is called thiestination intervalPairing  approximate but consistent. Edge maps, however, do notégno
up of an origin and its corresponding destination intergaifs  this approximation error, but represent it explicitly (a#l e
alink. A link is an interval-interval map, representing a regio@iscussed in Section 4).
of unidirectional ow. Fig. 3 depicts the results of this ngerg An edge map (forward and backward) can be encoded
process. concisely as a collection of links of a triangle, such tha th

intervals are non-intersecting other than at their endppin
A

S and covers the entire boundary of the triangle (see Fig.f3). |
-‘E“ c S there is a critical point present in the triangle, some lintesy

N include the critical point as a source or destination irdgkrv

§ 8 Thus, to store the edge map for a triangle, we only need to
2 AL B\ - . encode a collection of links.

Boundary of triangle As discussed in Section 3.2, intervals are constructed by
@ ®) merging adjacent origin points whose destinations are also
adjacent. At the maximum level of merging, the intervals are
Fig. 3. Edge map for the triangle from Fig. 2. (a) The bounded by either: (iyerticesof the triangle; (ii) images of
edge map visualized as a plot, mapping the origin points vertices (Fig. 4(a)); (iii)transition points points where the
(horizontal axis) to destination points (vertical axis). Each  ow changes between inow and outow (Fig. 4(b)); (iv)
point on the plot represents a streamline between an o-d images of transition points and (\9epx points where the
pair. Since the edge map is only de ned for origin points  separatrices of a saddle exit or enter (Fig. 4(c)).
on the boundary, the plot is disconnected at the points
where the boundary switches from in ow to out ow, or
vice-versa. (b) Edge maps subdivide the boundary into a
set of links, which map in ow to out ow for a triangle.

To facilitate practical applications like streamline igita-
tion, the edge map needs to account for the critical points
as well. We de ne dorward edge mapx* : P! D such that
given a pointp where a streamline enters the triangle, the map
gives us the unique point where it exits the triangle. If éical Fig. 4. Splitting of the boundary of a triangle into intervals:
point exists within the triangle, the ow may never exit, anda) A triangle with a forward vertex image (grey dot) of the
x* returns the location of the critical point. Hence the rangewer right vertex; (b) A triangle with a single transition
of x* can include the interior of the triangle. On the pointgoint (white circle) from internal ow and its forward and
on the boundary, where ow does not enter the triangle, bbackward image (grey dots); (c) A triangle with a saddle
instead, exits it, we de ne hackward edge mag : Q! D. point (black dot), its four sepx points (grey dots), and a
For a pointq on the boundary db, x (q) describes the unique transition point from external ow (white square). Note
point where ow entered the triangle on its pathdpor the thatin most cases, vertices also act as external transition
critical point wherep originated from. points.

We note that the edge mapas de ned in [17] is a bijection  Fig. 5 gives the algorithm for computing the edge map for
and its inversex ! represents the edge map of inverted owa triangle without a critical point. When the triangle has a
However, according to the de nition presented hexd, (or critical point (detected using [24]), the algorithm is dSani
x ) is a bijection if and only if there is no critical point prege except that there can be additional cuts (from separajrices
in the triangle. For such triangles, = (x*) 1, since for and the critical point itself can act as an interval.
pointsp;g2 D, x* (p)= qif and only if x (g)= p. As for Recently, we showed that there exist 23 equivalent classes
triangles with critical point, this inverse relationshipe$ not of edge maps for linearly varying ow [17]. Here equivalence

@ (b)
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to critical points. The error due to this approximation aited

ConstructEdgeMayiy):
g A to the last step of propagation.

1) Identify the transition points orfD. Advect the
internal transition points forward and backward {o
nd their images.
(There can be at most 6 transition points in p
triangle: 1 per edge and 1 per vertex. [17])

2) Advect any vertices oD that are not transition
points forward (resp. backward) to nd their im
ages.

(The transitions points, vertices, and their images (@) (b)
cut D into intervals of unidirectional ow.)

3) Using the direction (in ow/out ow), and connec-
tivity implied by advecting, pair intervals to form
links.
(Collection of these links compose the edge map.)

10

Time
o

NN

A B [} A
Boundary of triangle

Fig. 6. (a) Edge map from Fig. 3. (b) The forward time-
edge map (x") maps origin points to the time taken by
them to reach their respective destinations.

The forward time-edge map is then extendedifa P! R,

. laorithm f i the ed ; 2nal such that for an origin point, it de nes a unique destination
Fig. 5. Algorithm for creating the edge map for atriangle. iyt ang the time taken to reach the destination point
The advection of vertices and transition points are com- X" (p) =t

puted using LEM [26].

is de ned as invariance under rotation of triangle and isi@m 3.5 Linear Approximation of Edge Maps

of ow. Linearity of the ow implies that there is a bounded The encoding of ow as edge maps ultimately allows us to
number of intervals on the boundary of a triangle, which cafetermine structural properties of the ow through thergjie
be connected only in a limited number of ways to create ging a simple lookup. Consequently, this leads to comgutin
valid edge map. Since the number of classes is I|m|ted, thﬁ/\/-based properties ef Cienﬂy_ For examp|6, we can query
overhead for storing the edge maps of a single triangle is bghe edge maps to determine destinations of points under the
bounded and relatively low. ow by trivially performing lookup and composition on the
maps. At each lookup, we have preserved the property that
origin intervals are mapped onto the same destinationvialer
they would have in the original PL ow in a consistent manner.
While some ow properties like the topological segmentation In particular, streamlines can be approximated on a per-
are invariant to the vector magnitudes, others like stramml link level by linearly interpolating between the origin and
propagation are not. To represent the ow accurately, it @estination intervals. Hence, edge maps provide a way to
important that the edge maps encode the speed of the owagsproximate streamlines. As Fig. 7(a) shows, for an origin
well. point on D, its path to its destination can be approximated by

Every origin point onfD, whose destination is also dfD, linearly interpolating in the origin interval correspondito the
takes a nite time to reach its respective destination pdiieé origin point and projecting that point to the same barydentr
de ne atime-edge mapx;, as the mapping between origincoordinate in the destination interval.
points onfD to the time they take to reach their corresponding Using the precomputed edge maps, any numerical inte-
destination, i.ex;: P! R. Thus, a complete description of thegration to calculate streamlines (such as the simplestrEule
ow through D is encoded using andx. Fig. 6(b) shows the integration) given by
time-edge map for the triangle in Fig. 3.

During the generation of edge maps, LEM also computes
the time taken by the vertices and transition points to reachn be replaced by a simple lookup
their images. This time information can be stored in edgesmap +
for every point that is advected. Thus, the endpoints ofilrig Xnr1= X (%) 1)
intervals are assigned the time they take to reach the emigpoi 1= tht X (Xn)
of their respective destination intervals.

3.4 Encoding Time in Edge Maps

Xt 1= Xnt(ther  th) V(Xn)

ence, edge maps enable computation of streamlines in a
Note that, however, if a triangle contains a critical poméonsmtent manner, and as will be discussed below, have a

C, the origin points that ow in to the critical point take bounded error that can be explicitly computed and reduced.
an in nite amount of time to reach the critical point. Edge

maps replace the in nite time with an approximation at the

endpointsp of the links,t = dy=jvpj, whered, = kp Ck, 4 REPRESENTING ERROR

andw, is the vector atp. During the analysis or visualization The most common approach for tracing streamlines is numer-
of a streamline, this approximation assumes a constantspéml integration. From a given starting point these techag

of the particle betweep andC, and is important to ensure arepeatedly take small steps to approximate the next positio
computationally feasible termination of the streamlinetng in the path. The resulting error is controlled only indihgdty
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Boundary of Triangle
Time
o

A B C A A B C A
Boundary of triangle Boundary of triangle

(b)

Fig. 7. (a) Linear approximation of the edge map from Fig. 3(b) (b) We reproduce the plots of x and x; from Figs. 3(a)
and 6(b) here, and compare them (solid) with their linear approximation made by edge maps (dashed). The deviation
between the two curves is the error of edge maps due to this approximation, shown in Fig. 8.

choosing a step size [12]. Since typically the true streenli
is not known, this error cannot be quanti ed explicitly. il
some schemes are more accurate than others and sophikticateii  0.004
techniques exist to locally adapt the step size, the intirec £
control over an unknown error represents a fundamental re-
striction. On the contrary, edge maps represent and control 0 ;
the error in representation explicitly and do not requiriisg A B c A
a Step size. Boundary of triangle
Furthermore, integrating streamlines numerically cam als
lead to inconsistencies, such as intersecting streaménels
signi cant differences between forward and backward tdace
lines. Edge maps replace integration with a one dimensional
barycentric mapping that guarantees non-intersectirgaisty
lines and consistency between forward and backward traces
up to the oating point precision of the linear interpolatio
Here we study the approximation errors in edge maps, and

provide tools to quantify and visualize them. Fig. 8. The error plots for (top) spatial and (bottom)
temporal errors for the linearly approximated map shown

Approximation Errors in Edge Maps in Fig. 7(a). Note that the average edge length of the

As discussed in Section 3.5, streamline propagation can tbi@ngle in consideration (Fig. 3) is 0.03.

performed with a bounded error using edge maps as given in

Eqg. 1. Since the edge map approximates the true exit gpintvhereq andd, are the spatial and temporal errors of the link

and the true exit timé of a point p by linearly interpolating | which containsp. Thus, two oating-point values are stored

within the link asg® andt® respectively, it incurs some error.per link to represent the mapping error in edge maps.

The spatial error can be calculated as the deviation of tite ex As explained in Section 3.3, the vertices, saddle sepeeatri

point given by the map, from that given by the exact methahd transition points are advected to split the trianglénpeter

(e= kq qg%). Similarly, the temporal error can be calculateéhto intervals. Since we use the LEM for this advection, the

as the deviation of the exit time given by the map, from thandpoints of the intervals are accurate up to the oatingpoi

given by the exact methodd(= t t9. Fig. 7(b) shows this precision of the system. These intervals are paired inkslin

deviation using a comparison between the true ow and ite construct the edge map. Hence, the mapping errors (both

linear approximation using edge maps, and Fig. 8 shows shae spatial and temporal errors) are zero at the endpoints of

the error plots for the spatial and temporal error. the link.

The errors for both the spatial and temporal deviations areln our experiments, we found that typically the spatial erro
computed by sampling the link. Fig. 8 plots the spatial and unimodal in a link. However, the error can also be bimodal,
temporal errors as a function of the boundary of the trianglas shown in Fig. 9(a). Similarly, the temporal error can be
We use the maximum spatial error in a lihkas thespatial both positive and negative within the same link, as shown in
error of the link g. Similarly, we can de ne theemporal Fig. 9(b).
error of the link d; as the maximum temporal error within a We observe that certain types of ow are less prone to error
link. than others. For example, consider concentric circulaitorb

To account for the amount of error incurred during ther a linear ow where any two streamlines do not diverge
propagation, we de ne; : P! Randxj: P! R such that from or converge to each other. The mapping error is zero for

Xt (p)= q such a case since the actual ow agrees to the linear mapping
e+ within each link. Fig. 10 corroborates this intuition bytteg
X3 (p)=d the edge map propagation in a purely rotational ow. Hence,

0.006

or

Spatial

0.002

Temporal Error

A B C A
Boundary of triangle
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Fig. 9. (a) A (forward) edge map with bimodal spatial
error in the green link). Note the horizontal axis has
been scaled to the range [x;C] to illustrate the error. (b)
A (forward) edge map with both positive and negative
temporal error within the green link. The horizontal axis
has been scaled to range [A;C] to illustrate the mapping
error. In the destination interval on edge AB, there is no
temporal error de ned under the forward edge map. The
average edge length of both the triangles in consideration
are 0.3.

Fig. 10. Comparison between propagation using RK45
(blue) and edge maps (magenta) on a vector eld de ned
by a counter-clockwise orbit seeded at the same point
(yellow). The magenta and blue lines overlap in the be-
ginning but a substantial deviation in RK45 streamline is
observed after only one revolution around the critical point
(purple). In the absence of mapping error, the mapped
lines are accurate up to oating-point precision.

. . . . t
in the absence of mapping error, the propagation using ecgq
maps is as accurate as the underlying method for advectlorU

used for map generation.

An upper limit to the mapping errors can be imposed by

user parametersayax and dyax. If for a link, g > ayax

map shown in Fig. 12(a).

The level of re nement needed for a given ow is subject to
the nature and magnitude of ow and the triangle size. Thus,
the computation time and memory consumption of re ned
maps depend upon these factors.

5 VISUALIZING SPATIAL ERROR

Explicit representation of error in edge maps enables error
visualizations of ow. Here, we discuss how to generate
visualizations of spatial error using edge maps.

5.1 Expansion of Exit Points

We have been using the forward
(x*) and backwardX ) edge maps
as tools to look up the streamlines
of individual particles. However, we
can also represent the spatial er-
ror explicitly by rede ning the edge  ~
maps as a one-to-many map.

X" (pw)=Q

where, for an entry poinp, instead
of a single exit pointq the map
gives a range of possible exit points
a segmentQ, under theexpansion
factor w. This is illustrated in Fig. 11. The length of the
segmentQ is directly proportional to the expansion factor.
Thus, we callQ the expansionof the exit pointq.

The spatial errote for p encodes the deviation of its exit
point ¢ de ned by the edge map from the true exit poipt
Therefore, the expansion of the exit pof@tcalculated using
w= xz (p) provides an upper bound on the possible exit points
of p. Furthermore, since the streamlines at the endpoints of
the links are accurate, the expansion cannot span acrdss lin
and thus is truncated at the endpoints of the link containing
both p andq.

Fig. 11. Expansion
of exit points
represents error as
a range of possible
destinations.

5.2 Streamwaves

The one-to-many mapping given by edge maps under the con-
sideration of spatial error can be visualized bgteeamwave
which is de ned as the set of possible destinations that a
massless particle may reach when accounting for possible
expansions. Alternatively, a streamwave can be seen as the
expansion of a streamline due to spatial uncertainties. In
the current work, we quantify and visualize the spatial rerro
as streamwaves propagate, by settmg g. However, any

her kind of error can be modeled as the expansiofor
eamwaves.

sing edge maps, we can compute the streamwaves as
follows

X1 = X (Xa; W)

or dy > duax, we split the link at the point of maximum where Xg = fx,g represents the seed point of the wave and
error to improve the accuracy of the map. We call this proceXg the set of points currently at the front of the wave. Since
re nement of edge maps-ig. 12 shows the effect of spatiala streamwave models the spatial error only, the speed of the
(Fig. 12(b)) and temporal (Fig. 12(c)) re nement on the edgwave is re ective of the linear time approximation of the edg
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Fig. 12. Reducing the mapping error (middle row: spatial error, bottom row: temporal error) by re nement of edge
maps (top row). Level of re nement increases from left to rig ht. The length of the edge AC is 0.0354, and the average
time taken by a particle to travel across the triangle is 1.7. (a) No re nement. (b) Spatial re nement with gyax = 0:003
splits the green link into two, creating two new links (green and blue) with smaller spatial and temporal errors. (c)
Temporal re nement with dyax = 0:06 splits the red link twice, creating three new links (red, cyan and magenta) with
even smaller spatial and temporal errors.

maps. The temporal error in the edge maps is ignored. Usipgpgresses from green to red as it propagates forward in time
traditional techniques to compute streamwaves as a doltectas an indication of the speed of the streamwave.

of streamlines can become computationally expensive andStreamwaves also present a method to visualize error
requires delicate processing in regions of high divergendsounds of other integration techniques. For example, Hg. 1
Using edge maps, however, propagating a wave is only slsows the integration of a streamline connecting a source
expensive as the number of links in the triangles currerttly @ a sink using three different techniques. By showing a
the front. streamwave, whose expansion is set larger than the maximum

Furthermore, if there exist no bifurcations in a trianglee,rror for Euler integration, we can visualize a comparisen b
then only extremes of the range of exit points.1 are of tween Euler integration, fourth-order Runge-Kutta, andvLE
interest, and all intermediate points are handled impfidior

triangles with bifurcation, a streamwave may split into twg.3 Visualization of Fuzzy Topology

streamwaves, each of which can be propagated independeF\‘%ological structures in vector elds, such as their tagital

Fig. 13 shows streamwaves computed on simulation ofskeleton [14], are one of the key features used to analyze
slice of a homogeneous charge compression ignition (HCG#@ctor eld data. Traditionally, the skeleton is computed b
engine combustion [13]. The computation of edge maps foacing four separatrices out of each saddle (two forwad an
816642 triangles in the dataset took 223 seconds and 20@ backward) by computing streamlines starting in thedire
MB. As shown in the gure, a streamwave is the superséibns of the eigenvectors of all the saddles. These sep=zsitr
of a single streamline, so analyzing only the streamlindh@ tterminate when they arrive at another critical point or &av
presence of error is an incomplete analysis. Since expansibe boundary of the domain. However, this approach faces
of a streamwave in the presence of error may cause it dballenges since compound integration error can cause the
revisit a certain region, we truncate the streamwave so astttace to end at an incorrect critical point. In particularstable
avoid going into in nite ow loops. This is consistent withus  topologies, such as when a pair of saddles is connected by a
de nition of streamwave since we only want to visualize theeparatrix, suffer from this form of inconsistency.
region that can be visited (at least once) by the streamwaveWe can use the streamwave construction to study the robust-
The shape of streamwave re ects the nature of the underlyingss of topological representations. By growing a strearawa
ow. A linear' streamwave will be obtained if the ow is with w= 0, in the forward direction from all sources and in
mostly linear (little or no rotation), e.g. Fig. 14. If thewis the reverse direction from all sinks we can perform a partial
highly rotational, the streamwave revisits certain regiamd topological decomposition of a vector eld that is analogou
becomes “blob-like', e.g. Fig. 13. The color of the streamavato stable and unstable manifolds in scalar eld topology. [5]
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Fig. 14. A streamline using RK4 (black dashed) using
stepsize Dt = 0:005 Euler (black dotted) using stepsize
Dt = 0:005 and local exact method (LEM) (white solid),
and a streamwave using edge maps with w= 0:0001were
seeded at the same point. Considering the local exact
method to be the ground truth, some deviation is ob-
Fig. 13.  Visualizations of streamwaves on HCCI served in Euler and RK4 streamlines. It is also observed
dataset [13]. The 640 x 640 data is mapped to a [-1,1] that the streamwave, centred around the LEM streamline,

x [-1,1] plane. Top left: original vector eld visualized with  bounds the two erroneous streamlines at all the times.
IBFV [39]. Top right: two streamlines, one near a saddle's

separatrix. Bottom: Two images show streamwaves at
different levels of error (0:0001and 0:0002. Streamwaves
are colored from green to red, showing the distance the
ow has propagated as a measure of the number of maps
the streamwave has travelled through. Note that the error
levels have been exaggerated to illustrate expansion and
bifurcation of streamwaves.

These streamwaves are initiated from the segments of the
boundary owing out of and in to the triangles containing the.. . o .
sourcesryand sirgljks respectively. While weg cannot accognt Tf)'p' 15. Visualization of the (Ieft) topology anq .(”ght)
centers, streamwaves can provide important informatiautb uzzy topology for a synthetic dataset containing 3
the structure of the ow. In particular, in the absence ofseld Sources (green), 2 sinks_(red) an<_j 3 saddles (blue).
orbits, the union of the forward and backward streamwav: dreamwaves with (left) w = 0 and (right) w> 0 are used
creates a covering of domain similar to the segmentati

or such a construction.
induced by traditional vector eld topology. o ) ) . )

However, in our construction fow > 0, each point in the inevitable inconsistencies at the boundaries of the bsbble
domain may be part of several streamwaves creating a notiof 19- 17 shows an additional example of fuzzy topology
of fuzzytopology as shown in Fig. 15. Setting= g highlights comput_ed_on a combust_|0_n chamber datas_et [23] with re ned
the regions of the domain that are unstable/uncertain uhéer Maps, indicating the swirling structure on its surface.cgin
approximation errors of edge maps as thick red bands. TH Spatial error in the maps is very low, the fuzzy regiores ar
provides important information about any potential ingities  Negligible.
in the topological segmentation. In particular it providesrs
with an intuitive measure of how certain a given structure is

To illustrate the new concept of fuzzy topology we com6 VISUALIZING TEMPORAL ERROR
pare streamwaves with traditional scalar eld techniquses
Fig. 16. Laney et al. [21] use topological analysis on thEor a streamline that is computed assuming error-free propa
interface surfaces between heavy and light uids Rayleigh- gation, there is a unique time instant given for every positi
Taylor instability. In particular, the unstable manifolds of theand vice versa. While all numerical integration techniques
height function segment the surfaces into bubbles, thegrgsim have some associated error, however small or big, this error
feature of interest. Similarly, we can compute the gradieigt generally ignored [29]. Using edge maps, we can bound
eld of the same dataset, and construct the manifolds usilagd visualize the temporal error in streamlines, as discliss
streamwaves. Both techniques provide a similar view of thelow. Here, we consider the temporal errors in the map only,
data but our representation is richer by also showing tlad assume no spatial error.
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Fig. 16. Visualizations of a Rayleigh-Taylor instability.
Top row: We reproduce the results from Laney et al. [21]
(left) side-by-side with our edge map computation of the
unstable manifolds using w = 0 (right). Bottom row: when
the error factor, w > 0 is accounted for (left) we can
observe the emerging overlaps (right).

Fig. 17. Visualization of the stable (left) and unstable
(right) manifolds of the ow de ned on the surface of
a combustion chamber [23]. The ow has 13 sources
(green), 15 sinks (red) and 27 saddles (blue). With suf-
ciently re ned maps, the fuzzy regions are negligible
indicating a more accurate representation.

6.1 Temporal Error in Streamlines

The temporal error of a linKd;) represents the maximum

temporal error of the links it passes through is accumulated
Oh+1= Ch+ XJ (%n)

Thus, every pointx, on the streamline is associated with a
time t,, and a temporal errod,.

Time
\
\
\
Ay
\

Streamline

Fig. 18. The accumulation of temporal error shown as an
error plot for a streamline in time space. Every point on
the streamline has an associated temporal error, shown
by the vertical thickness of the dashed envelope. (The
vertical thickness of the envelope is twice the amount of
temporal error)

Fig. 19. The accumulated temporal error in streamlines
is shown for the ocean dataset on a regular grid of 573
X 288 vertices. The ow contains 3 repelling foci (green
balls), 2 attracting foci (red ball) and 4 saddles (blue balls).
The seed points of the streamlines are shown as small
magenta balls. The color map cyan-dark blue is mapped
to increasing temporal error along the streamline. A sharp
increase in accumulated errors near the saddle at the
center of the eld indicates a region of high temporal error.

Fig. 18 illustrates the accumulation of temporal error glon
a streamline. Given a poirg on the streamline, the time and
the temporal error can be easily found by interpolating the
data stored in the streamline. The accumulated temporad err
is visualized as an error eld along the streamline in Fig. 19

possible deviation in edge map's approximation of time frofi-2 Visualizing Temporal Error Spatially

the true time. The points on the streamline correspondirgy td'he temporal errod,, for a pointx, on a streamline de nes
temporal error will span across triangles. Since an edge mapange of possible values of timMfg  dp;t,+ dy] that can

is not aware of the vector eld in neighboring triangles, #nc be associated witkx,. This range is shown as the vertical
not return a temporal expansion of points as in the casethfckness of the error envelope in Fig. 18. Another way
the spatial expansion (see Section 5.1). Instead, the t@pdo visualize the temporal error is to understand its spatial
expansion of points is computed indirectly using the terapommanifestation, which gives a more intuitive understandfig
error. When a streamline is integrated using edge maps, tbe behavior under error.
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Fig. 20. Computation of the spatial range corresponding
to the temporal error in a streamline. For every time
instant tj, represented by the (dashed blue) horizontal
line, its intersections with the temporal error envelope
(black dashed) are computed, and then projected on to
horizontal axis (the streamline). This gives the spatial
range of points (p® p®§ on the streamline, shown in green.
To compute the true position (considering no error), the
intersection with the actual time curve (black solid) is
projected (p;), shown in magenta.

Fig. 21. Visualization of temporal error in streamlines
on vector eld from Fig. 13. Two streamlines are seeded
in the ow: one in the bottom left (exiting from top left),
and the other in the upper center (exiting from the bottom
right). Increasing time steps are shown with increasing
size of the magenta ball, and thickness of the green tube.
With increasing time, the magenta ball travels along the
streamline representing the movement of the particle.
The green tube represents the spatial range due to the
temporal error in the propagation. Spatial range is shown
for 10 equidistant time steps starting from 0.

the time ranges between adjacent points on streamline to
include the points on the interior of triangles. This is agalus

to intersection a horizontal line representing some valtie o
time, with the time envelope, and projecting this intergect
onto the horizontal axis as shown in Fig. 20. Thus, we get a
spatial range centered around the true (in absence of tampor
error) position of the particle at every time instant.

Fig. 21 shows the visualization of the spatial range due to
temporal error. The spatial range presents a way to visualiz
the error bounds on the uncertainty in the position of the
particle at a given time. Note that the extracted spatiagean
is only a spatial manifestation of temporal error. An equal
amount of temporal error will produce a longer spatial range
for higher vector magnitudes. By showing the positional ex-
tents of these temporal errors, we can investigate thepiater
between velocity magnitude and time.

7 DEMONSTRATIONS

We demonstrate each of the visualization techniques discus
above on a 200 x 200 tile of a larger depth slice of a 3D
simulation of global oceanic currents as shown in Fig. 22.
These simulations were produced using a technique based on a
boundary impulse response functions [25]. The tile is mdppe
to a planar domain of siz¢ 1;1] [ 1;1]. Although the

ow in the original 3D simulation is incompressible, a depth
slice from this 3D domain does not satisfy incompressipilit
anymore. The slicing creates sinks and sources due to the ow
across depths. We visualize the streamwaves, spatial cargge

to temporal error, and fuzzy topology (unstable manifoids)
Fig. 23 (left to right) at increasing re nement levels (top t
bottom).

Fig. 23(a) shows a streamwave at two different error thresh-
olds. We notice that the streamwave hits a saddle beforiagxit
the domain from top-left. At high error, the streamwaves
ows into many slowly rotating critical points. A sudden and
substantial increase in the thickness of the streamwawalev
the sensitivity of this region to the spatial error.

Fig. 23(b) shows the spatial range corresponding to the
temporal error as a sequence of time instants starting from 0
with a step of 0.3. A steady increase in the lengths of thergree
tubes is observed re ecting a steady increase in the terhpora
error. This behavior is in conjunction with a steady inceeas
in the thickness of the streamwave (Fig. 23(a)) until it it
saddle. Visualizing both these error together is important
get a complete understanding of how the ow behaves under
error.

Fig. 23(c) shows the unstable manifolds grown from all the
sources in the ow. These regions overlap with each other
based on the approximation error in the ow. This overlap
indicates the fuzziness in the boundary between them due
to this error. Observe that the overlaps reduce with higher
re nement. There are many sources in the domain with very

A streamline generated using edge maps can be queried divergence, in which case the corresponding manifold
for all the points which could be visited at a given time does not grow enough to be noticeable at this scale, esjyecial
This query returns every point whose time range contaias the higher re nement (bottom). Spatial re nement of edge
t. However, since an edge map streamline contains only timaps increases their delity to piecewise linear ow. Thianc
points lying on the edges of the triangulation, we interflacreate cycles which were previously absent in the ow. Such
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Nevertheless, edge maps have some disadvantages, most
notably the storage overhead per triangle. Furthermoigyap
ing texture-based ow visualization techniques for edgepma
such as IBFV, requires some additional effort. Extending th
edge map construction to volumetric domains could pose a
signi cant challenge given the number of potential map sées
per tetrahedral element. While edge maps remove the need
for numerical integration, the consistency guaranteeddgee
maps is still up to oating-point precision as the round-off
error during map-lookups still needs to be accounted for.

In this work, we have discussed techniques to visualize
spatial and temporal errors using edge maps, independently
in the form of streamwaves and spatial ranges due to temporal
error. An obvious next step in this research is to integriaée t
way errors are propagated to produce a single visualization
spatio-temporal errors.

We have presented edge maps for triangulated domains;
however, as a general concept, the idea of edge maps is
applicable to other kinds of surface domains as well. For
Fig. 22. The oceanic currents in the Gulf of Mexico example, for structured grids and unstructured quadrﬂiﬁe
and the Caribbean Sea. This 200 x 200 tile is taken edge maps can be created between the boundaries of the cells.
In these domains, different interpolations in the inteabcells
will be required and the types of ow behaviors shown in [17]
will need to be rede ned. However, on a conceptual level of
replacing integration with a boundary mapping, the idea of
edge maps is both extensible as well as applicable to differe
discretizations of domain. Also, a different approximatio
scheme could be used to approximate the edge maps instead
) ) . of the linear scheme used here.
cycles bound these growing regions. It is observed thatlarg there exist some interesting opportunities to exploit the

regions of the dataset remain untouched by these manifol§,sistency and discrete nature of edge maps. One such poten
suggesting that the ow in these regions is not associated Wija| anpjication of edge maps is in vector eld simpli catio
the sources in the domain. Hence, the ow in these untouchgd o se the ow can be represented discretely and error can

regions must either be bounded by orbits, or owing in frony, oncoded explicitly, we can merge edge maps to reduce

the boundary of the domain. _ _the complexity of the ow elds, or to perform domain
The computation of edge maps for this dataset contalnlggnp" cation keeping the error in the ow bounded.
63,010 triangles took 19 seconds and 19 MB, giving, on

an average 23 links per triangle. Spatial re nement (from

unre ned maps) of @001 took 2% minutes and 36 MB ACKNOWLEDGMENTS

giving 4:2 links per triangle, and temporal re nement (fromrpis work is supported in part by the National Science
unre ned maps) of 001 took 25 minutes and 35 MB, giVing o yndation awards 11S-1045032, OCI-0904631, OCI-0906379

from a larger simulation of oceanic currents [25] (inset),
and mapped to a [-1,1] x [-1,1] plane. The region has
56 sources (green balls), 63 sinks (red balls) and 117
saddles (blue balls). The increasing speed of the ow is
mapped to color from cyan to purple. We demonstrate
our visualization techniques using edge maps on this ow
data.

4:1 links per triangle. and CCF-0702817, and by King Abdullah University of Sci-
ence and Technology (KAUST) Award No. KUS-C1-016-04.
8 DiscussION AND FUTURE WORK This work was also performed under the auspices of the

Edge maps establish a novel way to represent and anal\Z&. Department of Energy by the University of Utah under
sampled vector elds. Compared to traditional interpaati contracts DE-SC0001922, DE-AC52-07NA27344, and DE-
schemes they have several attractive properties: (1) ncaher FC02-06ER25781, and Lawrence Livermore National Labo-
integration (and thus all error accumulation) is con nedtte ratory (LLNL) under contract DE-AC52-07NA27344. We are
map construction; (2) unavoidable errors accumulatedndurigrateful to Jackie Chen for the dataset from Fig. 13, Robert
integration or inherent in the representation can be eXlglic S. Laramee for the combustion chamber dataset from Fig. 17,
encoded; and (3) ow information extracted from the mapand Paul Miller, William Cabot, and Andrew Cook for the
is guaranteed to be consistent. These advantages trandiatebles dataset from Fig. 16. We also thank Mathew Maltude
into a number of useful visualization and analysis toolshsuérom the Climate, Ocean and Sea Ice Modelling program at
as streamwaves, topological descriptions, and visuaizat Los Alamos National Laboratory (LANL) and the BER Of ce
of how temporal errors manifest spatially. The edge may Science UV-CDAT team for providing us access to the
representation can also reproduce published results glusatean data from Figs. 22 and 23. Attila Gyulassy and Philippe
integration schemes), as well as provide richer intergicgta.  P. Pebay provided many useful comments and discussions.
that are not possible using existing techniques. LLNL-JRNL-485511.
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(a) (b)

(©

Fig. 23. Visualizations using edge maps on the oceanic current data from Figure 22. (a) Streamwave visualization at
spatial error re nement of 0.1 (top) and 0.0001 (bottom). (b ) Spatial range due to temporal error at temporal re nement
of 0.01 (top) and 0.0001 (bottom). (c) Unstable manifolds at a spatial re nement of 0.0001 (top) and 0.00001 (bottom).

REFERENCES

(1]

[2]
(3]

(4]

(5]

(6]
(71
(8]

(9]

[10]

[11]

[12]

H. Bhatia, S. Jadhav, P.-T. Bremer, J. A. Levine, L. G. Nopand
V. Pascucci. Edge Maps: Representing ow with bounded erro#th
IEEE Paci ¢ Visualization Symposiunpages 75-82, March 2011.

D. Bommes, H. Zimmer, and L. Kobbelt. Mixed-integer quadnaag
tion. ACM Trans. Graph.28(3):77, 2009.

G. Chen, K. Mischaikow, R. S. Laramee, P. Pilarczyk, andZkang.
Vector eld editing and periodic orbit extraction using M decompo-
sition. IEEE Trans. Vis. Comput. Graphl3(4):769-785, 2007.

G. Chen, K. Mischaikow, R. S. Laramee, and E. Zhang. Efti®orse
decompositions of vector elds.|IEEE Trans. Vis. Comput. Graph
14(4):848-862, 2008.

H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierar@higlorse-
Smale complexes for piecewise linear 2-manifoldsDiscrete and
Computational Geometry80(1):87-107, 2003.

M. Fisher, P. Sctisder, M. Desbrun, and H. Hoppe. Design of tangent
vector elds. ACM Trans. Graph.26(3):56, 2007.

M. S. Floater, G. Kos, and M. Reimers. Mean value coordisan 3D.
Computer Aided Geometric Desigh2:623-631, 2005.

R. Forman. A user's guide to discrete Morse theoryPinc. of the 2001
Internat. Conf. on Formal Power Series and Algebraic Coratorics
page 48, 2001.

C. Garth, H. Krishnan, X. Tricoche, T. Tricoche, and K. Joy.
Generation of accurate integral surfaces in time-dependsator elds.
IEEE Trans. Vis. Comput. Graphl4(6):1404-1411, 2008.

A. Globus, C. Levit, and T. Lasinski. A tool for visuailigy the topology
of three-dimensional vector elds. ItEEE Visualization pages 33-41,
1991.

A. Gyulassy, V. Natarajan, V. Pascucci, and B. Hamann. cié&it
computation of Morse-Smale complexes for three-dimensionalasc
functions. IEEE Trans. Vis. Comput. Graphl3(6):1440-1447, 2007.
E. Hairer, S. P. Norsett, and G. Wann&olving Ordinary Differential

(13]
(14]
(18]
(16]

(17]

(18]

[19]
(20]

(21]

(22]

Equations |: Nonstiff Problems Springer Series in Computational
Mathematics, 1993.

E. R. Hawkes, R. Sankaran, P. P. Pbay, and J. H. ChenctDitenerical
simulation of ignition front propagation in a constant volumth
temperature inhomogeneities: Il. Parametric studgombustion and
Flame 145(1-2):145 — 159, 2006.

J. Helman and L. Hesselink. Representation and displasector eld
topology in uid ow data sets.|[EEE Computer22(8):27-36, 1989.
M. W. Hirsch, S. Smale, and R. L. DevaneRifferential Equations,
Dynamical Systems, and An Introduction To ChaBksevier Academic
Press, 2 edition, 2004.

J. P. Hultquist. Constructing stream surfaces in stefdl vector elds.
In Proc. of IEEE Vis. '92 pages 171-178, Los Alamitos, CA, USA,
1992. IEEE Computer Society Press.

S. Jadhav, H. Bhatia, P.-T. Bremer, J. A. Levine, L. G. &lon and
V. Pascucci. Consistent approximation of local ow behavior 2D
vector elds using edge maps. [Fopological Methods in Data Analysis
and Visualization Il — Theory, Algorithms, and Applicatsorspringer,
2012. To Appear.

K. M. Janine, J. Bennett, G. Scheuermann, B. Hamann, and. K.
Joy. Topological segmentation in three-dimensional vectdds. IEEE
Trans. Vis. Comput. Graph10:198-205, 2004.

C. R. Johnson and A. R. Sanderson. A next step: Visugierrors and
uncertainty.|[EEE Computer Graphics and Applicatigns:6-10, 2003.
P. Kipfer, F. Reck, and G. Greiner. G.: Local exact pdetitracing on
unstructured gridsComputer Graphics Forup22:133-142, 2003.

D. E. Laney, P.-T. Bremer, A. Mascarenhas, P. Miller, &dPascucci.
Understanding the structure of the turbulent mixing layehymrody-
namic instabilities|IEEE Trans. Vis. Comput. Graphl2(5):1053-1060,
2006.

R. S. Laramee, H. Hauser, L. Zhao, and F. H. Post. Topolwaged
ow visualization: The state of the art. Ifopology-Based Methods in
Vis,, Mathematics and Visualization, pages 1-19. Springer, 2007

[23] R. S. Laramee, D. Weiskopf, J. Schneider, and H. Hauseestigating



FLOW VISUALIZATION WITH QUANTIFIED SPATIAL AND TEMPORAL ERRORS USING EDGE MAPS, VOL. X, NO. Y, ZZZZ 2011 14

[24]

[25]

[26]

[27]

(28]

[29]
(30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]

[41]

[42]

[43]

[44]

swirl and tumble ow with a comparison of visualization techues. In
Proceedings |IEEE Visualization Qpages 51-58, 2004.

Y. Lavin, R. Batra, and L. Hesselink. Feature comparisof vector
elds using earth mover's distance. Proc. of IEEE/ACM Visualization
'98, pages 103 —109, Oct. 1998.

M. Maltrud, F. Bryan, and S. Peacock. Boundary impulspoaise func-
tions in a century-long eddying global ocean simulatiBnvironmental
Fluid Mechanics 10:275-295, 2010.

G. Nielson and I.-H. Jung. Tools for computing tangentves for
linearly varying vector elds over tetrahedral domain$EEE Trans.
Vis. Comput. Graph.5(4):360 —372, oct. 1999.

M. Otto, T. Germer, H.-C. Hege, and H. Theisel. Uncertaih vector
eld topology. Computer Graphics Forup29(2):347-356, 2010.

M. Otto, T. Germer, and H. Theisel. Uncertain topology3@i Vector
Fields. InProceedings of 4th IEEE Pacic Visualization Symposium
pages 65-74, 2011.

A. T. Pang, C. M. Wittenbrink, and S. K. Lodha. Approash®
uncertainty visualizationThe Visual Computerl3:370-390, 1996.

N. Ray, B. Vallet, W.-C. Li, and B. &vy. N-symmetry direction eld
design.ACM Trans. Graph.27(2):10, 2008.

J. Reininghaus and |. Hotz. Combinatorial 2D vector dlspology
extraction and simpli cation. Infopological Methods in Data Analysis
and Visualization.2009.

J. Reininghaus, C.&wen, and I. Hotz. Fast combinatorial vector eld
topology. IEEE Trans. Vis. Comput. Graph2010. In Press.

G. Scheuermann, T. Bobach, H. Hagen, K. Mahrous, B. Hami&nh
Joy, and W. Kollmann. A tetrahedra-based stream surfaceitigo
In VIS '01: Proceedings of the conference on Visualization, 'Pages
151-158, Washington, DC, USA, 2001. IEEE Computer Society.
G. Scheuermann, H. Kiger, M. Menzel, and A. P. Rockwood. Visual-
izing nonlinear vector eld topologylEEE Trans. Vis. Comput. Graph.
4(2):109-116, 1998.

G. Scheuermann and X. Tricoche. Topological methods im \asual-
ization. Inln Visualization Handbogkpages 341-356, 2004.

A. Szymczak. Stable Morse decompositions for piecewisest@ant
vector elds on surfaces. lfEuroVis 2011: Joint Eurographics - IEEE
Symposium on Visualizatip011. to appear.

A. Szymczak and E. Zhang. Robust Morse decompositionseckepise
constant vector elds. IEEE Trans. Vis. Comput. Graph2011. To
Appear.

H. Theisel, T. Weinkauf, H.-C. Hege, and H.-P. Seideddde connec-
tors - an approach to visualizing the topological skeletbrcamplex
3D vector elds. InIEEE Visualization pages 225-232, 2003.

J. J. van Wijk. Image based ow visualizatio’ACM Trans. Graph.
21(3):754-754, 2002.

V. Verma and A. Pang. Comparative ow visualizatiofEEE Trans.
Vis. Comput. Graph.10(6):609-624, 2004.

T. Weinkauf, H. Theisel, K. Shi, H.-C. Hege, and H.-Pid& Extracting
higher order critical points and topological simpli catiaf 3D vector
elds. In IEEE Visualization pages 559-566, 2005.

T. Wischgoll and G. Scheuermann. Detection and visatitin of closed
streamlines in planar owslEEE Trans. Vis. Comput. Graph/(2):165—
172, 2001.

C. M. Wittenbrink, A. T. Pang, and S. K. Lodha. Glyphs fasualizing
uncertainty in vector eldslEEE Trans. Vis. Comput. Grapi2(3):266—
279, 1996.

E. Zhang, K. Mischaikow, and G. Turk. Vector eld design surfaces.
ACM Trans. Graph.25(4):1294-1326, 2006.

Harsh Bhatia is currently a graduate student in
Computer Science at the Scientic Computing
and Imaging (SCI) Institute at the University
of Utah. He received a B.Tech. in Information
and Communication Technology from DA-IICT,
India in 2007. His research interests include
topological analysis of scalar and vector elds,
uncertainty visualization, computer graphics and
scienti ¢ visualization, and modeling and simu-
lation.

Shreeraj Jadhav is a graduate student at the
University of Utah, School of Computing. He
recieved a B.E. in mechanical engineering in
2006 from University of Pune, India. Currently,
he is working as a research assistant at the
Scienti ¢ Computing and Imaging (SCI) Institute
at the University of Utah. His research interests
include topology based methods in visualization
and data analysis, uncertainty quanti cation,
progressive and multi-resolution methods.

Peer-Timo Bremer is a computer scientist and
project leader at the Center for Applied Scienti ¢
Computing at the Lawrence Livermore National
Laboratory (LLNL) and a research professor at
the SCI Institute of the University of Utah. Prior
to his tenure at CASC he was a postdoctoral
research associate at the University of lllinois,
Urbana-Champaign. Peer-Timo earned a Ph.D.
in Computer science at the University of Cali-
fornia, Davis in 2004 and a Diploma in Mathe-
matics and Computer Science from the Leipniz
University in Hannover, Germany in 2000. He is a member of the IEEE
Computer Society.

Guoning Chen received a bachelors degree
in 1999 from Xi'an Jiaotong University, China
and a masters degree in 2002 from Guangxi
University, China. In 2009, he received a PhD
degree in computer science from Oregon State
University. His research interests include scien-
ti ¢ visualization, computational geometry and
topology, and computer graphics. Currently, he
is a postdoctoral research associate at the Sci-
enti c Computing and Imaging (SCI) Institute at
the University of Utah. He is a member of the
IEEE and ACM.

Joshua A. Levine received bachelors degrees
(2003) and a masters degree (2004) from Case
Western Reserve University. He achieved the
PhD in computer science from The Ohio State
University (2009). He is currently a postdoctoral
research associate at the Scienti c Computing
and Imaging (SCI) Institute at the University
of Utah. His research interests include mesh
generation, geometric modeling, computational
geometry, and scienti ¢ visualization. He is a
member of the IEEE and ACM.

Luis Gustavo Nonato received the PhD degree
from the Pontif cia Universidade Catolica do Rio
de Janeiro, Rio de Janeiro, in 1998. He joined
the Universidade de So Paulo in 1999 and has
been an associate professor since 2006. His re-
search interests include visualization and geom-
etry processing. His teaching activities include
geometry processing, numerical analysis, and
geometric modeling.

Valerio Pascucci received the EE laurea (mas-
ter) degree from the University La Sapienza in
Rome, Italy, in December 1993, as a member of
the Geometric Computing Group, and the PhD
degree in computer science from Purdue Univer-
sity in May 2000. He is a faculty member at the
Scienti c Computing and Imaging (SCI) Institute
at the University of Utah. Before joining SCI, he
served as a project leader at the Lawrence Liv-
ermore National Laboratory, Center for Applied
Scienti ¢ Computing (from May 2000) and as an
adjunct professor at the Computer Science Department of the University
of California, Davis (from July 2005). Prior to his tenure at CASC, he was
a senior research associate at the University of Texas at Austin, Center
for Computational Visualization, CS, and TICAM Departments.



