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Robust
Structural Inference




A simple example

- A pertect circle

~ A noiseless point cloud sample from the circle
- A point cloud sample with noise

- A point cloud sample with noise and outliers



Another example

Distance Function Diagram Kernel Distance Diagram
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Robust Structural Inference

- Kernel distance, kernel density estimate
- Distance to a measure



Structural Inference
using KDE




Geometric inference

Given:

@ An unknown object (e.g. a compact set) S C R

o A finite point cloud P C R? that comes from S under some
process

Aim: Recover topological and geometric properties of .S from P,
e.g. # of components, dimension, curvature...

e.g. preserve homeomorphism, homotopy type, or homology of S
from P.

e.g. homotopy equivalence: two spaces can be deformed
continuously Into one another.

[Chazal Cohen-Steiner Merigot 2011]




Distance function based geometric inference

Sample points P from a triangle S with noise; Reconstructs an
approximation of S by offsets from P (i.e. union of balls).

[Chazal, Cohen-Steiner, Lieutier 2009]

Distance function: fp(x) = inf,cp ||z — y|
Offset: (P)" = f51([0,7])

Hausdorff distance (measures sampling quality):

di (5, P) = ||fs = fPllec = inf,cpa | f5(2) — fP(z)] <€
i.e. smallest e > 0s.t. SC (P)°and P C (5)°.



Distance function based geometric inference

Sample points P from a figure-eight S with noise; Reconstructs an
approximation of S by offsets from P (i.e. union of balls).
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[Image courtesy: Paul Bruillard]

Distance function: fp(x) = inf,cp ||z — y|
Offset: (P)" = f5([0,r])

Hausdorff distance (measures sampling quality):
du (S, P) = ||fs = fPllec = inf era [fs(2) — fP(2)] < €
i.e. smallest e > 0s.t. SC (P)°and P C (5)-.



Distance function based geometric inference: the intuition

[Hausdorff stability w.r.t. distance functions]
If di7(S, P) is small, thus fg and fp are close, and subsequently, S,
(S)" and (P)" carry the same topology for an appropriate scale r.

Theorem (Reconstruction from fp)

Let S, P C RY be compact sets such that reach(S) > R and
e:=dy(S,P) < R/17. Then (S)" and (P)" are homotopy
equivalent for sufficiently smalln (e.g. 0 <n < R), if

46 S T S R — 35 . [Chazal Cohen-Steiner Lieutier 2009] [Chazal Cohen-Steiner Merigot 2011]

R ensures topological properties of S and (S)" are the same;
e ensures (S)" and (P)" are close, € ~ density of the sample.




Distance function based geometric inference

Not robust to outliers.

[Chazal Cohen-Steiner Merigot 2011]

If " =SUx and fg(x) > R, then |fs — fs/|coc > R :
offset-based inference methods fail...



Distance(-like) function that is robust to noise...

Desirable properties for g to be useful in geometric inference:
(D1) g is 1-Lipschitz: for all z,y € R?, |g(z) — g(v)| < ||z — y].

(D2) g2 is 1-semiconcave: = € R? — (g(z))? — ||z||? is concave.

(D3) g is proper: g(x) tends the infimum of its domain (e.g., o0) as
x tends to infinity.

(D1) ensures that fg is differentiable almost everywhere and the
medial axis of S has zero d-volume;

(D2) is crucial, e.g. in proving the existence of the flow of the
gradient of the distance function for topological inference.




EES

A kernel 1s a similarity measure, more similar points have higher

value,
K R¢x R 5 RT

We focus on the Gaussian kernel (positive definite):

K(p,x) = o exp(—|p — [|*/207)
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Kernel density estimate (KDE)

A kernel density estimate represents a continuous distribution
function over R? for point set P C R%:

KDEp(x) = % Z K(p,x)

More generally, it can be applied to any measure 1 (on R?) as

wory(r) = | K(pa)u(p)dp



Kernel distance

For two point sets P and (), define similarity

(P.Q) = (B 2 2 Kb

peP qeQ)

If Q ={x}, K(P,x) = KDEp(x).
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The kernel distance (a metric between P and ()):

Dk (P,Q) = V/K(P,P) + k(Q, Q) — 2:(P, Q)

Self similarity minus cross similarity... [Phillips, Venkatasubramanian 2011]



Kernel distance

For two point sets P and (), define similarity

(P.Q) = (g 2 2 K(p)

peP qeQ)

It Q ={z}, K(P,x) = KDEp(x).

BINNS,

The kernel distance (a metric between P and @)):

Dk (P,Q) = /k(P, P) + k(Q, Q) — 2x(P, Q)

O

Self S|m||ar|ty MmInus Cross Slmllarlty [Phillips, Venkatasubramanian 2011]



Kernel distance

For two point sets P and (), define similarity

Fig 2> K

peP qeQ)

(P, Q) =

If Q ={x}, K(P,x) = KDEp(x).

UANINNDS

The kernel distance (a metric between P and Q)):

Dk (P,Q) = VK(P, P) + k(Q, Q) — 2x(P, Q)

Self S|m||ar|ty MINUS Cross Slmllarlty [Phillips, Venkatasubramanian 2011]



Kernel distance (w.r.t. any measure ;; on R%)

For Dy (u,v) between two measures i and v, define similarity

R, V) = / i ) K (p, q)p(p)p(q)dpdg

The kernel distance (a metric between 1 and v):

\/’i:ua —I—IQVV)—QKJ(/L, )

If v = unit Dirac mass at z, k(u, z) = KDE, (),

Drc(p, ) = \/K(p, ) + K(z, ) — 26(p, )
= \/CM — 2KDE,, ()

Kernel distance (current distance or maximum mean discrepancy)
is a metric, if the kernel K is characteristic (a slight restriction of
being positive definite, e.g. Gaussian and Laplace kernels).




Take home message

@ Geometric inference from a point cloud can be calculated by
examining its kernel density estimate (KDE) of Gaussians.

@ Such an inference is made possible with provable properties
through the vehicle of kernel distance.

@ Such an inference is robust to noise and scalable.

@ We provide an algorithm to estimate the topology of kernel
distance using weighted Vietoris-Rips complexes.




A bit more detall...

Geometric inference using the kernel distance, in place of the
distance tO @ Measure [Chazal Cohen-Steiner Merigot 2011].

1. [Robustness| Kernel distance is distance-like: 1-Lipschitz,
1-semiconcave, proper and stable.

2. |Scalability] Kernel distance has a small coreset, making
efficient inference possible on 100 million points.

3. [Relation to KDE| Geometric inference based on kernel
distance works naturally via superlevel sets of KDE:
sublevel sets of the kernel distance are superlevel sets of KDE.

4. |Algorithm| to approximate the sublevel set filtration of kernel
distance from a point cloud sample.




Why kernel distance?

@ People love and are familiar with KDE, especially with
Gaussian kernel

@ Kernel distance provides a proper way to relate KDE with
properties that are crucial for geometric inference

@ We could approximate the topology of kernel distance via
point cloud samples



Experiments

An example with 25% of P as noise, o = 0.05




Experiments
An example with 25% of P as noise, o = 0.003




Experiments
An example with 25% of P as noise, o = 0.001
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Kernel Distance 1s Distance-Like

Similar properties hold for the kernel distance defined as

dyy (1) = D (p, ) = /6, ) + (2, 2) — 26(p, x)

= \/cl% — 2KDE,, (7)

For the point cloud setting,

A5 () = D (P, x) = \/k(P, P) + k(z, ) — 2k(P, x)
— \/02P — 2KDEp(x)

Specifically, the following properties of dff allow it to inherit the

. - CCM
reconstruction properties of dﬂ o -

(K1) dff Is 1-Lipschitz on its input.
K2 - . K (.))2 2
(K2) (d)* is 1-semiconvave: the map x — (d; (z))* — ||z||* is
concave.
(K3) dj; is proper.
(K4) [Stability] [ — d¥ s < Dic(j1,v).




Advantages of the kernel distance summary

(I) Small coreset representation for sparse representation and
efficient, scalable computation.

(I1) Its inference is easily interpretable and computable through
the superlevel sets of a KDE.



Small coreset

and |[KDEp — KDEQ||oo < € with probability at least 1 — 0.

@ Size O(((l/e)\/10g(1/€5))2d/(d+2)) [Phillips 2013].

@ [he same holds under a random sample of size
O((1/e*)(d +10g(1/8))) poshi Kommaraju Philips 2011].

@ Operate with |P| = 100,000,000 [zheng Jestes Philiips Li 2013].

@ Stability of persistence diagram is preserved:
dp(Dgm(KDEp), Dgm(KDEQ)) < €.

@ There exists a small e-coreset Q C P s.t. ||d — d-gHoo <e¢




Small coreset

and |[KDEp — KDEQ||oo < € with probability at least 1 — 0.

@ Size O(((l/e)\/log(1/€5))2d/(d+2)) [Phillips 2013].

@ [he same holds under a random sample of size
O((1/e*)(d +10g(1/8))) poshi Kommaraju Philips 2011].

@ Operate with |P| = 100,000,000 [zheng Jestes Philiips Li 2013].

@ Stability of persistence diagram is preserved:
dp(Dgm(KDEp), Dgm(KDEQ)) < €.

@ There exists a small e-coreset Q C P s.t. ||d% — dgHoo <e¢




Geometric inference with KDE

Recall d3s () = \/c% — 2KDEp(x) where ¢% is a constant that

depends only on P. Perform geometric inference on noisy P by
considering the super-level sets of KDEp,

{z € RY| KDEp(z) > 7}

Key:

o d5(+) is monotonic with KDEp(+); as d% (x) gets smaller,
KDEp(x) gets larger.

@ A clean and natural interpretation of the reconstruction
problem through the well-studied lens of KDE. Geometric
inference with sublevel sets of d%5 (superlevel sets of KDEp).




Experiments




Experiments: Power of Kernel Distance

10K points in [0, 1]%, noise N(0,0.005), 25% of P as noise
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Persistence diagram using standard distance function (no useful
features due to noise) and kernel distance.
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Other Kernels




Beyond Gaussian kernels

@ More general theory for KDE with systematic understanding
of family of kernels: distance to a measure (KNN kernel),
kernel distance (a larger class of kernels, e.g. Gaussian,

Laplace; triangle kernel may work OK in practice with less
perfect properties).




Alternative KDE

Laplace kernel K(p,z) = exp(—2||x — y||/0)




Alternative KDE

. | _ |p—a|
Triangle kernel: K(x,p) = max {07 1 0:0,05}




Alternative KDE

Epanechnikov kernel: (reconstruction)

212
K(z,p) = max {O, 1 ((!ZO.OHQQ }




Alternative KDE

1 if||p—2| <o =0.05

Ball kernel: K(x,p) =
() {O otherwise.

a—shape can be viewed as using'th'eofball' kernel with o = a and r = 1/n.



Alternative KDEs




Multi-dim / scale space persistence? Parameter selection?

Two parameters r (isolevel) and o (outlier/bandwidth) that
control the scale.

Figtjre‘: Sublevel sets for the kernel distance. Left: fix o, véry r. Right:
fix , vary o. The values of o and r are chosen to make the plots similar.



Structural Inference
using
distance to measure




DlSta nce tO d MeEASUre [Chazal Cohen-Steiner Merigot 2011]

Intuition: Wy distance to mg fraction of the space.
11 probability measure on R?
mgo > 0: a parameter smaller than the total mass of u

The distance to a measure dg%l\f R - RT Vz e R?

CCM L ; 12
S @ = (o [ Guunw)Pdm)

where 0, 1, () = inf {r > 0: u(B,(x)) < m}.

1/2
Wasserstein-2 distance Wa (u, v) = infﬁen(“ﬂ/) (fRded ||z — y||2d77(33> y)) /



Distance to a measure Is distance-like

CCM
du,m

(D1) 1-Lipschitz

(D2) 1-semiconcave

(D3) Proper (for Groves Isotopy Lemma).

(D4) [Stability] For probability measures 1 and v on R? and

H5T1Q V,mo

mo > 0, then ||[dS¢M — gSCM) < V;TOWQ(;L,V).

Stability: two distance to a measure are close if their corresponding
measures are close.
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Tools for persistent
homology computation




Computing PH

- Ripser:
o https://github.com/Ripser/ripser
o http://live.ripser.org/
- TDA-R:
o https://cran.r-project.org/web/packages/TDA/index.html
- DIPHA
o https://github.com/DIPHA/dipha
- PHAT
o https://github.com/blazs/phat
- GUDHI
> https://project.inria.fr/gudhi/software/



https://github.com/Ripser/ripser
http://live.ripser.org/
https://cran.r-project.org/web/packages/TDA/index.html
https://github.com/DIPHA/dipha
https://github.com/blazs/phat

Thanks!

Any questions?

You can find me at: beiwang@sci.utah.edu


mailto:beiwang@sci.utah.edu?subject=
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