Advanced Data Visualization

 CS 6965Spring 2018
Prof. Bei Wang Phillips University of Utah

A simple example

- A perfect circle
- A noiseless point cloud sample from the circle
- A point cloud sample with noise
- A point cloud sample with noise and outliers

Another example

Robust Structural Inference

- Kernel distance, kernel density estimate
- Distance to a measure

Structural Inference using KDE

Geometric inference

Given:

- An unknown object (e.g. a compact set) $S \subset \mathbb{R}^{d}$
- A finite point cloud $P \subset \mathbb{R}^{d}$ that comes from S under some process
Aim: Recover topological and geometric properties of S from P, e.g. \# of components, dimension, curvature...
e.g. preserve homeomorphism, homotopy type, or homology of S from P.
e.g. homotopy equivalence: two spaces can be deformed continuously into one another.

Distance function based geometric inference

Sample points P from a triangle S with noise; Reconstructs an approximation of S by offsets from P (i.e. union of balls).

[Chazal, Cohen-Steiner, Lieutier 2009]
Distance function: $f_{P}(x)=\inf _{y \in P}\|x-y\|$ Offset: $(P)^{r}=f_{P}^{-1}([0, r])$

Hausdorff distance (measures sampling quality):
$d_{H}(S, P):=\left\|f_{S}-f_{P}\right\|_{\infty}=\inf _{x \in \mathbb{R}^{d}}\left|f_{S}(x)-f_{P}(x)\right| \leq \epsilon$
i.e. smallest $\epsilon \geq 0$ s.t. $S \subseteq(P)^{\epsilon}$ and $P \subseteq(S)^{\epsilon}$.

Distance function based geometric inference

Sample points P from a figure-eight S with noise; Reconstructs an approximation of S by offsets from P (i.e. union of balls).

[Image courtesy: Paul Bruillard]
Distance function: $f_{P}(x)=\inf _{y \in P}\|x-y\|$
Offset: $(P)^{r}=f_{P}^{-1}([0, r])$
Hausdorff distance (measures sampling quality):
$d_{H}(S, P):=\left\|f_{S}-f_{P}\right\|_{\infty}=\inf _{x \in \mathbb{R}^{d}}\left|f_{S}(x)-f_{P}(x)\right| \leq \epsilon$
i.e. smallest $\epsilon \geq 0$ s.t. $S \subseteq(P)^{\epsilon}$ and $P \subseteq(S)^{\epsilon}$.

Distance function based geometric inference: the intuition

[Hausdorff stability w.r.t. distance functions]
If $d_{H}(S, P)$ is small, thus f_{S} and f_{P} are close, and subsequently, S, $(S)^{r}$ and $(P)^{r}$ carry the same topology for an appropriate scale r.

Theorem (Reconstruction from f_{P})

Let $S, P \subset \mathbb{R}^{d}$ be compact sets such that $\operatorname{reach}(S)>R$ and $\varepsilon:=d_{H}(S, P) \leq R / 17$. Then $(S)^{\eta}$ and $(P)^{r}$ are homotopy equivalent for sufficiently small η (e.g. $0<\eta<R$), if
$4 \varepsilon \leq r \leq R-3 \varepsilon$. [Chazal Cohen-Steiner Lieutier 2009] [Chazal Cohen-Steiner Merigot 2011]
R ensures topological properties of S and $(S)^{r}$ are the same; ε ensures $(S)^{r}$ and $(P)^{r}$ are close, $\varepsilon \approx$ density of the sample.

Not robust to outliers.

[Chazal Cohen-Steiner Merigot 2011]
If $S^{\prime}=S \cup x$ and $f_{S}(x)>R$, then $\left|f_{S}-f_{S^{\prime}}\right|_{\infty}>R$: offset-based inference methods fail...

Distance(-like) function that is robust to noise...

Desirable properties for g to be useful in geometric inference:
(D1) g is 1-Lipschitz: for all $x, y \in \mathbb{R}^{d},|g(x)-g(y)| \leq\|x-y\|$.
(D2) g^{2} is 1 -semiconcave: $x \in \mathbb{R}^{d} \mapsto(g(x))^{2}-\|x\|^{2}$ is concave.
(D3) g is proper: $g(x)$ tends the infimum of its domain (e.g., ∞) as x tends to infinity.
(D1) ensures that f_{S} is differentiable almost everywhere and the medial axis of S has zero d-volume;
(D2) is crucial, e.g. in proving the existence of the flow of the gradient of the distance function for topological inference.

Kernels

A kernel is a similarity measure, more similar points have higher value,

$$
K: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{+}
$$

We focus on the Gaussian kernel (positive definite):

$$
K(p, x)=\sigma^{2} \exp \left(-\|p-x\|^{2} / 2 \sigma^{2}\right)
$$

Kernel density estimate (KDE)

A kernel density estimate represents a continuous distribution function over \mathbb{R}^{d} for point set $P \subset \mathbb{R}^{d}$:

$$
\operatorname{KDE}_{P}(x)=\frac{1}{|P|} \sum_{p \in P} K(p, x)
$$

More generally, it can be applied to any measure μ (on \mathbb{R}^{d}) as

$$
\operatorname{KDE}_{\mu}(x)=\int_{p \in \mathbb{R}^{d}} K(p, x) \mu(p) \mathrm{d} p
$$

Kernel distance

For two point sets P and Q, define similarity

$$
\begin{aligned}
& \qquad \kappa(P, Q)=\frac{1}{|P|} \frac{1}{|Q|} \sum_{p \in P} \sum_{q \in Q} K(p, q) \\
& \text { If } Q=\{x\}, \kappa(P, x)=\operatorname{KDE}_{P}(x) .
\end{aligned}
$$

The kernel distance (a metric between P and Q):

$$
D_{K}(P, Q)=\sqrt{\kappa(P, P)+\kappa(Q, Q)-2 \kappa(P, Q)}
$$

Self similarity minus cross similarity... [Philifss, Venkatasubramanian 2011]

Kernel distance

For two point sets P and Q, define similarity

$$
\kappa(P, Q)=\frac{1}{|P|} \frac{1}{|Q|} \sum_{p \in P} \sum_{q \in Q} K(p, q)
$$

If $Q=\{x\}, \kappa(P, x)=\operatorname{KDE}_{P}(x)$.

The kernel distance (a metric between P and Q):

$$
D_{K}(P, Q)=\sqrt{\kappa(P, P)+\kappa(Q, Q)-2 \kappa(P, Q)}
$$

Self similarity minus cross similarity... [Phillips, Venkatasubramanian 2011]

Kernel distance

For two point sets P and Q, define similarity

$$
\kappa(P, Q)=\frac{1}{|P|} \frac{1}{|Q|} \sum_{p \in P} \sum_{q \in Q} K(p, q)
$$

If $Q=\{x\}, \kappa(P, x)=\operatorname{KDE}_{P}(x)$.

The kernel distance (a metric between P and Q):

$$
D_{K}(P, Q)=\sqrt{\kappa(P, P)+\kappa(Q, Q)-2 \kappa(P, Q)}
$$

Self similarity minus cross similarity... [Philips, Venkatasubramanian 2011]

Kernel distance (w.r.t. any measure μ on \mathbb{R}^{d})

For $D_{K}(\mu, \nu)$ between two measures μ and ν, define similarity

$$
\kappa(\mu, \nu)=\int_{p \in \mathbb{R}^{d}} \int_{q \in \mathbb{R}^{d}} K(p, q) \mu(p) \mu(q) \mathrm{d} p \mathrm{~d} q
$$

The kernel distance (a metric between μ and ν):

$$
D_{K}(\mu, \nu)=\sqrt{\kappa(\mu, \mu)+\kappa(\nu, \nu)-2 \kappa(\mu, \nu)}
$$

If $\nu=$ unit Dirac mass at $x, \kappa(\mu, x)=\operatorname{KDE}_{\mu}(x)$,

$$
\begin{aligned}
D_{K}(\mu, x) & =\sqrt{\kappa(\mu, \mu)+\kappa(x, x)-2 \kappa(\mu, x)} \\
& =\sqrt{c_{\mu}-2 \operatorname{KDE}_{\mu}(x)}
\end{aligned}
$$

Kernel distance (current distance or maximum mean discrepancy) is a metric, if the kernel K is characteristic (a slight restriction of being positive definite, e.g. Gaussian and Laplace kernels).

Take home message

- Geometric inference from a point cloud can be calculated by examining its kernel density estimate (KDE) of Gaussians.
- Such an inference is made possible with provable properties through the vehicle of kernel distance.
- Such an inference is robust to noise and scalable.
- We provide an algorithm to estimate the topology of kernel distance using weighted Vietoris-Rips complexes.

A bit more detail...

Geometric inference using the kernel distance, in place of the distance to a measure [Chazal Cohen-Steiner Merigot 2011].

1. [Robustness] Kernel distance is distance-like: 1-Lipschitz, 1 -semiconcave, proper and stable.
2. [Scalability] Kernel distance has a small coreset, making efficient inference possible on 100 million points.
3. [Relation to KDE] Geometric inference based on kernel distance works naturally via superlevel sets of KDE: sublevel sets of the kernel distance are superlevel sets of KDE.
4. [Algorithm] to approximate the sublevel set filtration of kernel distance from a point cloud sample.

Why kernel distance?

- People love and are familiar with KDE, especially with Gaussian kernel
- Kernel distance provides a proper way to relate KDE with properties that are crucial for geometric inference
- We could approximate the topology of kernel distance via point cloud samples

Experiments

An example with 25% of P as noise, $\sigma=0.05$

Experiments

An example with 25% of P as noise, $\sigma=0.003$

Experiments

An example with 25% of P as noise, $\sigma=0.001$

Kernel Distance is Distance-Like

Similar properties hold for the kernel distance defined as

$$
\begin{aligned}
d_{\mu}^{K}(x)=D_{K}(\mu, x) & =\sqrt{\kappa(\mu, \mu)+\kappa(x, x)-2 \kappa(\mu, x)} \\
& =\sqrt{c_{\mu}^{2}-2 \operatorname{KDE}_{\mu}(x)}
\end{aligned}
$$

For the point cloud setting,

$$
\begin{aligned}
d_{P}^{K}(x)=D_{K}(P, x) & =\sqrt{\kappa(P, P)+\kappa(x, x)-2 \kappa(P, x)} \\
& =\sqrt{c_{P}^{2}-2 \operatorname{KDE}_{P}(x)}
\end{aligned}
$$

Specifically, the following properties of d_{μ}^{K} allow it to inherit the reconstruction properties of $d_{\mu, m_{0}}^{\mathrm{CCM}}$.
(K1) d_{μ}^{K} is 1 -Lipschitz on its input.
(K2) $\left(d_{\mu}^{K}\right)^{2}$ is 1 -semiconvave: the map $x \mapsto\left(d_{\mu}^{K}(x)\right)^{2}-\|x\|^{2}$ is concave.
(K3) d_{μ}^{K} is proper.
(K4) [Stability] $\left\|d_{\mu}^{K}-d_{\nu}^{K}\right\|_{\infty} \leq D_{K}(\mu, \nu)$.

Advantages of the kernel distance summary

(I) Small coreset representation for sparse representation and efficient, scalable computation.
(II) Its inference is easily interpretable and computable through the superlevel sets of a KDE.

Small coreset

- There exists a small ϵ-coreset $Q \subset P$ s.t. $\left\|d_{P}^{K}-d_{Q}^{K}\right\|_{\infty} \leq \varepsilon$ and $\left\|\operatorname{KDE}_{P}-\mathrm{KDE}_{Q}\right\|_{\infty} \leq \varepsilon$ with probability at least $1-\delta$.
- Size $O\left(((1 / \varepsilon) \sqrt{\log (1 / \varepsilon \delta)})^{2 d /(d+2)}\right)$ [Phililips 2013].
- The same holds under a random sample of size $O\left(\left(1 / \varepsilon^{2}\right)(d+\log (1 / \delta))\right)$ [Joshi Kommaraju Phillips 2011].
- Operate with $|P|=100,000,000[$ ZZeng Jestes Phililips Li 2013].
- Stability of persistence diagram is preserved: $d_{B}\left(\operatorname{Dgm}\left(\operatorname{KDE}_{P}\right), \operatorname{Dgm}\left(\operatorname{KDE}_{Q}\right)\right) \leq \varepsilon$.

Small coreset

- There exists a small ϵ-coreset $Q \subset P$ s.t. $\left\|d_{P}^{K}-d_{Q}^{K}\right\|_{\infty} \leq \varepsilon$ and $\left\|\mathrm{KDE}_{P}-\mathrm{KDE}_{Q}\right\|_{\infty} \leq \varepsilon$ with probability at least $1-\delta$.
- Size $O\left(((1 / \varepsilon) \sqrt{\log (1 / \varepsilon \delta)})^{2 d /(d+2)}\right)$ [Phililps 2013].
- The same holds under a random sample of size $O\left(\left(1 / \varepsilon^{2}\right)(d+\log (1 / \delta))\right)$ [Joshi Kommaraju Phillips 2011].
- Operate with $|P|=100,000,000[$ [Zheng Jestes Phililips Li 2013].
- Stability of persistence diagram is preserved: $d_{B}\left(\operatorname{Dgm}\left(\operatorname{KDE}_{P}\right), \operatorname{Dgm}\left(\operatorname{KDE}_{Q}\right)\right) \leq \varepsilon$.

Geometric inference with KDE

Recall $d_{P}^{K}(x)=\sqrt{c_{P}^{2}-2 \operatorname{KDE}_{P}(x)}$ where c_{P}^{2} is a constant that depends only on P. Perform geometric inference on noisy P by considering the super-level sets of KDE_{P},

$$
\left\{x \in \mathbb{R}^{d} \mid \operatorname{KDE}_{P}(x) \geq \tau\right\}
$$

Key:

- $d_{P}^{K}(\cdot)$ is monotonic with $\operatorname{KDE}_{P}(\cdot)$; as $d_{P}^{K}(x)$ gets smaller, $\operatorname{KDE}_{P}(x)$ gets larger.
- A clean and natural interpretation of the reconstruction problem through the well-studied lens of KDE. Geometric inference with sublevel sets of d_{P}^{K} (superlevel sets of KDE_{P}).

Experiments

Experiments: Power of Kernel Distance

$10 K$ points in $[0,1]^{2}$, noise $N(0,0.005), 25 \%$ of P as noise

Persistence diagram using standard distance function (no useful features due to noise) and kernel distance.

Experiments: Coreset

Original data v.s. Coreset, 10 K vs. 1384 points

Other Kernels

Beyond Gaussian kernels

- More general theory for KDE with systematic understanding of family of kernels: distance to a measure (KNN kernel), kernel distance (a larger class of kernels, e.g. Gaussian, Laplace; triangle kernel may work OK in practice with less perfect properties).

Alternative KDE

Laplace kernel $K(p, x)=\exp (-2\|x-y\| / \sigma)$

Alternative KDE

Triangle kernel: $K(x, p)=\max \left\{0,1-\frac{\|p-x\|}{\sigma=0.05}\right\}$

Alternative KDE

Epanechnikov kernel: (reconstruction)
$K(x, p)=\max \left\{0,1-\frac{\|p-x\|^{2}}{(\sigma=0.05)^{2}}\right\}$

Alternative KDE

Ball kernel: $K(x, p)= \begin{cases}1 & \text { if }\|p-x\| \leq \sigma=0.05 \\ 0 & \text { otherwise } .\end{cases}$
α-shape can be viewed as using the ball kernel with $\sigma=\alpha$ and $r=1 / n$.

Alternative KDEs

Multi-dim / scale space persistence? Parameter selection?

Two parameters r (isolevel) and σ (outlier/bandwidth) that control the scale.

Figure: Sublevel sets for the kernel distance. Left: fix σ, vary r. Right: fix r, vary σ. The values of σ and r are chosen to make the plots similar.

Structural Inference using
 distance to measure

Distance to a measure [Chazal Colenesteiene Meigot 2011]

Intuition: W_{2} distance to m_{0} fraction of the space.
μ : probability measure on \mathbb{R}^{d}
$m_{0}>0$: a parameter smaller than the total mass of μ
The distance to a measure $d_{\mu, m_{0}}^{\mathrm{CCM}}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{+}, \forall x \in \mathbb{R}^{d}$,

$$
d_{\mu, m_{0}}^{\mathrm{CCM}}(x)=\left(\frac{1}{m_{0}} \int_{m=0}^{m_{0}}\left(\delta_{\mu, m}(x)\right)^{2} \mathrm{~d} m\right)^{1 / 2}
$$

where $\delta_{\mu, m}(x)=\inf \left\{r>0: \mu\left(\bar{B}_{r}(x)\right) \leq m\right\}$.

Wasserstein-2 distance $W_{2}(\mu, \nu)=\inf _{\pi \in \Pi(\mu, \nu)}\left(\int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}\|x-y\|^{2} \mathrm{~d} \pi(x, y)\right)^{1 / 2}$

Distance to a measure $d_{\mu, m_{0}}^{\mathrm{CCM}}$ is distance-like

(D1) 1-Lipschitz
(D2) 1-semiconcave
(D3) Proper (for Groves Isotopy Lemma).
(D4) [Stability] For probability measures μ and ν on \mathbb{R}^{d} and

$$
m_{0}>0, \text { then }\left\|d_{\mu, m_{0}}^{\mathrm{CCM}}-d_{\nu, m_{0}}^{\mathrm{CCM}}\right\|_{\infty} \leq \frac{1}{\sqrt{m_{0}}} W_{2}(\mu, \nu) .
$$

Stability: two distance to a measure are close if their corresponding measures are close.

[Chazal Cohen-Steiner Merigot 2011]

Tools for persistent homology computation

Computing PH

- Ripser:
- https://github.com/Ripser/ripser
- http://live.ripser.org/
- TDA-R:
- https://cran.r-project.org/web/packages/TDA/index.html
- DIPHA
- https://github.com/DIPHA/dipha
- PHAT
- https://github.com/blazs/phat
- GUDHI
- https://project.inria.fr/gudhi/software/

Thanks!

Any questions?

You can find me at: beiwang@sci.utah.edu

CREDITS

Special thanks to all people who made and share these awesome resources for free:
\square Presentation template designed by Slidesmash
\square Photographs by unsplash.com and pexels.com
\square Vector Icons by Matthew Skiles

Presentation Design

This presentation uses the following typographies and colors:

Free Fonts used:

http://www. 1001 fonts.com/oswald-font.html
https://www.fontsquirrel.com/fonts/open-sans
Colors used

