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Robust  
Structural  Inference

HD+TOPO



A simple example

A perfect circle
A noiseless point cloud sample from the circle
A point cloud sample with noise
A point cloud sample with noise and outliers



Another example



Robust Structural Inference

Kernel distance, kernel density estimate
Distance to a measure



Structural Inference 
using KDE



Geometric inference

Given:
An unknown object (e.g. a compact set) S ⇢ Rd

A finite point cloud P ⇢ Rd that comes from S under some
process

Aim: Recover topological and geometric properties of S from P ,
e.g. # of components, dimension, curvature...
e.g. preserve homeomorphism, homotopy type, or homology of S
from P .
e.g. homotopy equivalence: two spaces can be deformed
continuously into one another.

[Chazal Cohen-Steiner Merigot 2011]



Distance function based geometric inference

Sample points P from a triangle S with noise; Reconstructs an
approximation of S by o↵sets from P (i.e. union of balls).

[Chazal, Cohen-Steiner, Lieutier 2009]

Distance function: fP (x) = infy2P kx � yk
O↵set: (P )

r
= f�1

P ([0, r])

Hausdor↵ distance (measures sampling quality):
dH(S, P ) := kfS � fP k1 = infx2Rd

|fS(x) � fP (x)|  ✏
i.e. smallest ✏ � 0 s.t. S ✓ (P )

✏ and P ✓ (S)

✏.



Distance function based geometric inference

Sample points P from a figure-eight S with noise; Reconstructs an
approximation of S by o↵sets from P (i.e. union of balls).

[Image courtesy: Paul Bruillard]

Distance function: fP (x) = infy2P kx � yk
O↵set: (P )

r
= f�1

P ([0, r])

Hausdor↵ distance (measures sampling quality):
dH(S, P ) := kfS � fP k1 = infx2Rd

|fS(x) � fP (x)|  ✏
i.e. smallest ✏ � 0 s.t. S ✓ (P )

✏ and P ✓ (S)

✏.



Distance function based geometric inference: the intuition

[Hausdor↵ stability w.r.t. distance functions]
If dH(S, P ) is small, thus fS and fP are close, and subsequently, S,
(S)

r and (P )

r carry the same topology for an appropriate scale r.

Theorem (Reconstruction from fP )

Let S, P ⇢ Rd
be compact sets such that reach(S) > R and

" := dH(S, P )  R/17. Then (S)

⌘
and (P )

r
are homotopy

equivalent for su�ciently small ⌘ (e.g. 0 < ⌘ < R), if

4"  r  R � 3". [Chazal Cohen-Steiner Lieutier 2009] [Chazal Cohen-Steiner Merigot 2011]

R ensures topological properties of S and (S)

r are the same;
" ensures (S)

r and (P )

r are close, " ⇡ density of the sample.



Distance function based geometric inference

Not robust to outliers.

[Chazal Cohen-Steiner Merigot 2011]

If S0
= S [ x and fS(x) > R , then |fS � fS0 |1 > R :

o↵set-based inference methods fail...



Distance(-like) function that is robust to noise...

Desirable properties for g to be useful in geometric inference:

(D1) g is 1-Lipschitz: for all x, y 2 Rd, |g(x) � g(y)|  kx � yk.
(D2) g2 is 1-semiconcave: x 2 Rd 7! (g(x))

2 � kxk2 is concave.

(D3) g is proper: g(x) tends the infimum of its domain (e.g., 1) as
x tends to infinity.

(D1) ensures that fS is di↵erentiable almost everywhere and the
medial axis of S has zero d-volume;
(D2) is crucial, e.g. in proving the existence of the flow of the
gradient of the distance function for topological inference.



Kernels

A kernel is a similarity measure, more similar points have higher
value,

K : Rd ⇥ Rd ! R+

We focus on the Gaussian kernel (positive definite):

K(p, x) = �2
exp(�kp � xk2/2�2

)

.

x x x

Gaussian G Triangle T Ball B



Kernel density estimate (KDE)

A kernel density estimate represents a continuous distribution
function over Rd for point set P ⇢ Rd:

kdeP (x) =

1

|P |
X

p2P
K(p, x)

More generally, it can be applied to any measure µ (on Rd) as

kdeµ(x) =

Z

p2Rd

K(p, x)µ(p)dp



Kernel distance

For two point sets P and Q, define similarity

(P, Q) =

1

|P |
1

|Q|
X

p2P

X

q2Q
K(p, q)

If Q = {x}, (P, x) = kdeP (x).

The kernel distance (a metric between P and Q):

DK(P, Q) =

p

(P, P ) + (Q, Q) � 2(P, Q)

Self similarity minus cross similarity... [Phillips, Venkatasubramanian 2011]
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Kernel distance (w.r.t. any measure µ on Rd
)

For DK(µ, ⌫) between two measures µ and ⌫, define similarity

(µ, ⌫) =

Z

p2Rd

Z

q2Rd

K(p, q)µ(p)µ(q)dpdq

The kernel distance (a metric between µ and ⌫):

DK(µ, ⌫) =

p

(µ, µ) + (⌫, ⌫) � 2(µ, ⌫)

If ⌫ = unit Dirac mass at x, (µ, x) = kdeµ(x),

DK(µ, x) =

p

(µ, µ) + (x, x) � 2(µ, x)

=

q

cµ � 2kdeµ(x)

Kernel distance (current distance or maximum mean discrepancy)
is a metric, if the kernel K is characteristic (a slight restriction of
being positive definite, e.g. Gaussian and Laplace kernels).



Take home message

Geometric inference from a point cloud can be calculated by
examining its kernel density estimate (KDE) of Gaussians.

Such an inference is made possible with provable properties
through the vehicle of kernel distance.

Such an inference is robust to noise and scalable.

We provide an algorithm to estimate the topology of kernel
distance using weighted Vietoris-Rips complexes.



A bit more detail...

Geometric inference using the kernel distance, in place of the
distance to a measure [Chazal Cohen-Steiner Merigot 2011].

1. [Robustness] Kernel distance is distance-like: 1-Lipschitz,
1-semiconcave, proper and stable.

2. [Scalability] Kernel distance has a small coreset, making
e�cient inference possible on 100 million points.

3. [Relation to KDE] Geometric inference based on kernel
distance works naturally via superlevel sets of KDE:
sublevel sets of the kernel distance are superlevel sets of KDE.

4. [Algorithm] to approximate the sublevel set filtration of kernel
distance from a point cloud sample.



Why kernel distance?

People love and are familiar with KDE, especially with
Gaussian kernel

Kernel distance provides a proper way to relate KDE with
properties that are crucial for geometric inference

We could approximate the topology of kernel distance via
point cloud samples



Experiments

An example with 25% of P as noise, � = 0.05



Experiments

An example with 25% of P as noise, � = 0.003



Experiments

An example with 25% of P as noise, � = 0.001



Kernel Distance is Distance-Like

Similar properties hold for the kernel distance defined as

dKµ (x) = DK(µ, x) =

p

(µ, µ) + (x, x) � 2(µ, x)

=

q

c2µ � 2kdeµ(x)

For the point cloud setting,

dKP (x) = DK(P, x) =

p

(P, P ) + (x, x) � 2(P, x)

=

q

c2P � 2kdeP (x)

Specifically, the following properties of dKµ allow it to inherit the

reconstruction properties of dCCM
µ,m0

.

(K1) dKµ is 1-Lipschitz on its input.

(K2) (dKµ )

2 is 1-semiconvave: the map x 7! (dKµ (x))

2 � kxk2 is
concave.

(K3) dKµ is proper.

(K4) [Stability] kdKµ � dK⌫ k1  DK(µ, ⌫).



Advantages of the kernel distance summary

(I) Small coreset representation for sparse representation and
e�cient, scalable computation.

(II) Its inference is easily interpretable and computable through
the superlevel sets of a KDE.



Small coreset

There exists a small ✏-coreset Q ⇢ P s.t. kdKP � dKQk1  "
and kkdeP � kdeQk1  " with probability at least 1 � �.
Size O(((1/")

p

log(1/"�))2d/(d+2)
) [Phillips 2013].

The same holds under a random sample of size
O((1/"2)(d + log(1/�))) [Joshi Kommaraju Phillips 2011].
Operate with |P | = 100,000,000 [Zheng Jestes Phillips Li 2013].
Stability of persistence diagram is preserved:
dB(Dgm(kdeP ), Dgm(kdeQ))  ".
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Geometric inference with KDE

Recall dKP (x) =

q

c2P � 2kdeP (x) where c2P is a constant that

depends only on P . Perform geometric inference on noisy P by
considering the super-level sets of kdeP ,

{x 2 Rd | kdeP (x) � ⌧}

Key:

dKP (·) is monotonic with kdeP (·); as dKP (x) gets smaller,
kdeP (x) gets larger.

A clean and natural interpretation of the reconstruction
problem through the well-studied lens of KDE. Geometric
inference with sublevel sets of dKP (superlevel sets of kdeP ).



Experiments



Experiments: Power of Kernel Distance

10K points in [0, 1]

2, noise N(0, 0.005), 25% of P as noise

Distance Function Diagram
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Persistence diagram using standard distance function (no useful
features due to noise) and kernel distance.



Experiments: Coreset

Original data v.s. Coreset, 10K vs. 1384 points

KDE Diagram
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Other Kernels



Beyond Gaussian kernels

More general theory for KDE with systematic understanding
of family of kernels: distance to a measure (KNN kernel),
kernel distance (a larger class of kernels, e.g. Gaussian,
Laplace; triangle kernel may work OK in practice with less
perfect properties).



Alternative KDE

Laplace kernel K(p, x) = exp(�2kx � yk/�)



Alternative KDE

Triangle kernel: K(x, p) = max

n

0, 1 � kp�xk
�=0.05

o



Alternative KDE

Epanechnikov kernel: (reconstruction)

K(x, p) = max

n

0, 1 � kp�xk2
(�=0.05)2

o



Alternative KDE

Ball kernel: K(x, p) =

(

1 if kp � xk  � = 0.05

0 otherwise.

↵�shape can be viewed as using the ball kernel with � = ↵ and r = 1/n.



Alternative KDEs



Multi-dim / scale space persistence? Parameter selection?

Two parameters r (isolevel) and � (outlier/bandwidth) that
control the scale.

Figure: Sublevel sets for the kernel distance. Left: fix �, vary r. Right:
fix r, vary �. The values of � and r are chosen to make the plots similar.



Structural Inference 
using 

distance to measure



Distance to a measure [Chazal Cohen-Steiner Merigot 2011]

Intuition: W2 distance to m0 fraction of the space.
µ: probability measure on Rd

m0 > 0: a parameter smaller than the total mass of µ
The distance to a measure dCCM

µ,m0
: Rn ! R+, 8x 2 Rd,

dCCM
µ,m0

(x) =

✓

1

m0

Z m0

m=0
(�µ,m(x))

2
dm

◆1/2

where �µ,m(x) = inf

�

r > 0 : µ(

¯Br(x))  m
 

.

Wasserstein-2 distance W2(µ, ⌫) = inf⇡2⇧(µ,⌫)

⇣R
Rd⇥Rd ||x � y||2d⇡(x, y)

⌘1/2



Distance to a measure dCCM
µ,m0

is distance-like

(D1) 1-Lipschitz
(D2) 1-semiconcave
(D3) Proper (for Groves Isotopy Lemma).
(D4) [Stability] For probability measures µ and ⌫ on Rd and

m0 > 0, then kdCCM
µ,m0

� dCCM
⌫,m0

k1  1p
m0

W2(µ, ⌫).

Stability: two distance to a measure are close if their corresponding
measures are close.

[Chazal Cohen-Steiner Merigot 2011]



Tools for persistent 
homology computation



Computing PH
Ripser:

https://github.com/Ripser/ripser
http://live.ripser.org/

TDA-R:
https://cran.r-project.org/web/packages/TDA/index.html

DIPHA
https://github.com/DIPHA/dipha

PHAT
https://github.com/blazs/phat

GUDHI
https://project.inria.fr/gudhi/software/

https://people.maths.ox.ac.uk/otter/PH_programs

https://github.com/Ripser/ripser
http://live.ripser.org/
https://cran.r-project.org/web/packages/TDA/index.html
https://github.com/DIPHA/dipha
https://github.com/blazs/phat


Thanks!
You can find me at: beiwang@sci.utah.edu

Any questions?

mailto:beiwang@sci.utah.edu?subject=
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