Advanced Data Visualization

 CS 6965Spring 2018
Prof. Bei Wang Phillips University of Utah

More case studies...

- Study of low-dimensional data inspires techniques for highdimensional data

Handles of 3D models

[DeyFanWang2013]
http://web.cse.ohio-state.edu/~wang.1016/papers/sig2013-loops.pdf

Graph obtained by continuos contraction of all the contours in a scalar field, where each contour is collapsed to a distinct point.

Review: Reeb Graph

A generalization of contour tree

High-level techniques

- Using Reeb Graph to find initial nontrivial loops/tunnels/handles
- Using optimization to find the ideal ones

Figure 2: γ_{1} is a handle loop and γ_{2} a tunnel loop. γ_{3} is neither.

Figure 1: $(a)-(d)$ shows the pipeline of our algorithm: (a) The height function on the input surface. (b) Reeb graph w.r.t. the height function. (c) Initial handle and tunnel loops. (d) Final handle / tunnel loops after geometric optimization. (e) The output is stable under noise.

Fast processing with original mesh

(a)

(b)

Figure 3: The output of (a) our algorithm and (b) the algorithm of [Dey et al. 2008] for an input mesh with 449 vertices. Note that due to the tetrahedral meshing, the algorithm of [Dey et al. 2008] changes the input surface mesh and significantly increases its complexity to 7943 vertices. Our algorithm obtained handle and tunnel loops of good quality from the original sparse mesh.

Figure 6: Various examples. From left to right: Knotty-cup, Filigree, Heptoroid and Casting.

Circular and Branching Structures in High-dim

[WangSummaPascucci2011]

Inferring circular structure

High-level techniques

- Persistent homology (PH), persistent cohomology (dual version)
- Circular parametrization

PH and parametrization

PH and parametrization

ε_{1}

$$
\operatorname{Rips}\left(X, \varepsilon_{0}\right) \subseteq \operatorname{Rips}\left(X, \varepsilon_{1}\right)
$$

PH and parametrization

ε_{1}

$$
\operatorname{Rips}\left(X, \varepsilon_{0}\right) \subseteq \operatorname{Rips}\left(X, \varepsilon_{1}\right)
$$

PH and parametrization

Parameter Space:

PH and parametrization

Born: ε_{1} Died: ε_{2} Persistence: $\varepsilon_{2}-\varepsilon_{1}$

ε_{2}

$$
\operatorname{Rips}\left(X, \varepsilon_{0}\right) \subseteq \operatorname{Rips}\left(X, \varepsilon_{1}\right) \subseteq \operatorname{Rips}\left(X, \varepsilon_{2}\right)
$$

Inferring branching structure

Branching and parametrization

Given a neighborhood around a point, attach simplicies which cross the neighborhood threshold to a dummy vertex ω.
In this way, we turn local branching features into circular structures.

Voting Data

1995 House of Representatives Voting
Record
885 votes (dimension)
205 Democratic congresspeople (points)
Record: (Yea/Nay/Absent)
94.27 seconds to compute
(92.15 Rips, 1.76 Persistence)

Outliers: switched party or resigned

Virus Data

1045 nucleotides (dimensions)
58 mutated genetic sequences
(points)
0.09 seconds to compute (0.05 Rips, 0.02 Persistence)

Motion Capture: Ballet

54 joint angles (dimensions) 471 frames (points)
417.38 seconds to compute (363.67 Rips, 30.47 Persistence)

Motion Capture: Ballet

Motion Capture: Ballet

Motion Capture - Walk/Hop/Walk

Thanks!

Any questions?

You can find me at: beiwang@sci.utah.edu

CREDITS

Special thanks to all people who made and share these awesome resources for free:
\square Presentation template designed by Slidesmash
\square Photographs by unsplash.com and pexels.com
\square Vector Icons by Matthew Skiles

Presentation Design

This presentation uses the following typographies and colors:

Free Fonts used:

http://www. 1001 fonts.com/oswald-font.html
https://www.fontsquirrel.com/fonts/open-sans
Colors used

