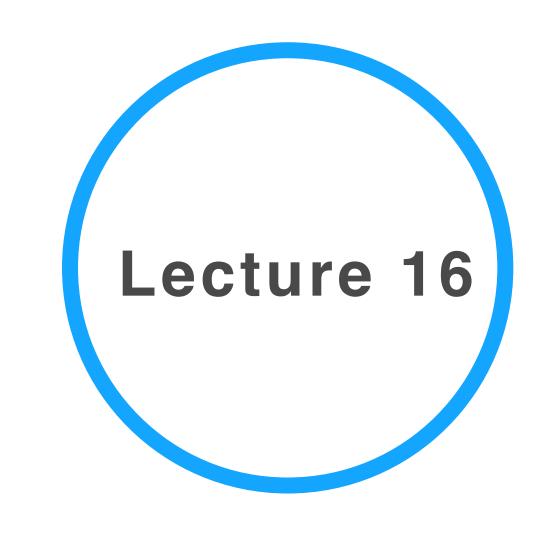
Advanced Data Visualization

CS 6965

Spring 2018

Prof. Bei Wang Phillips University of Utah



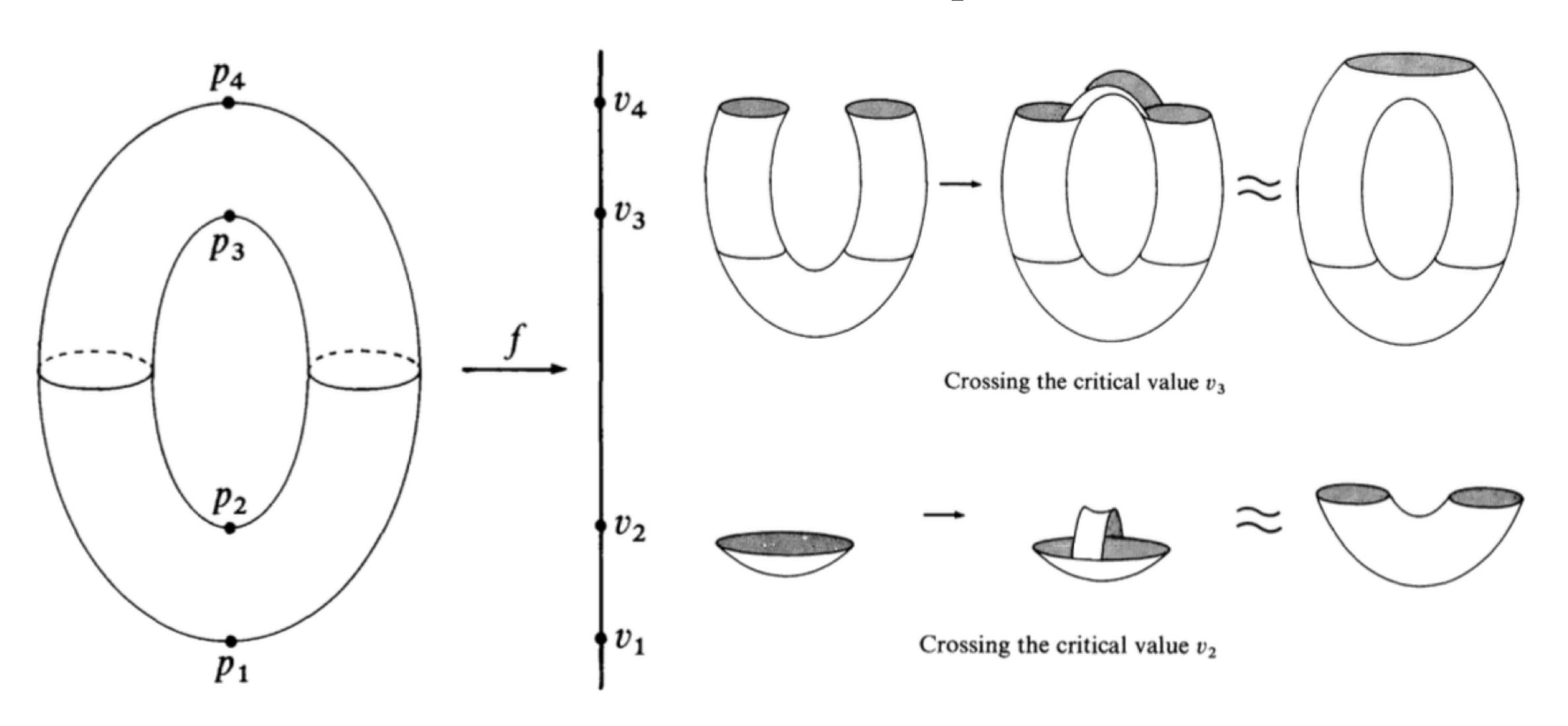
About...

This lecture can be mathematical...the goal is to give a brief introduction to Discrete Morse Theory and its applications

An Introduction to Discrete Morse Theory

Classic Morse Theory (CMT)

CMT Example

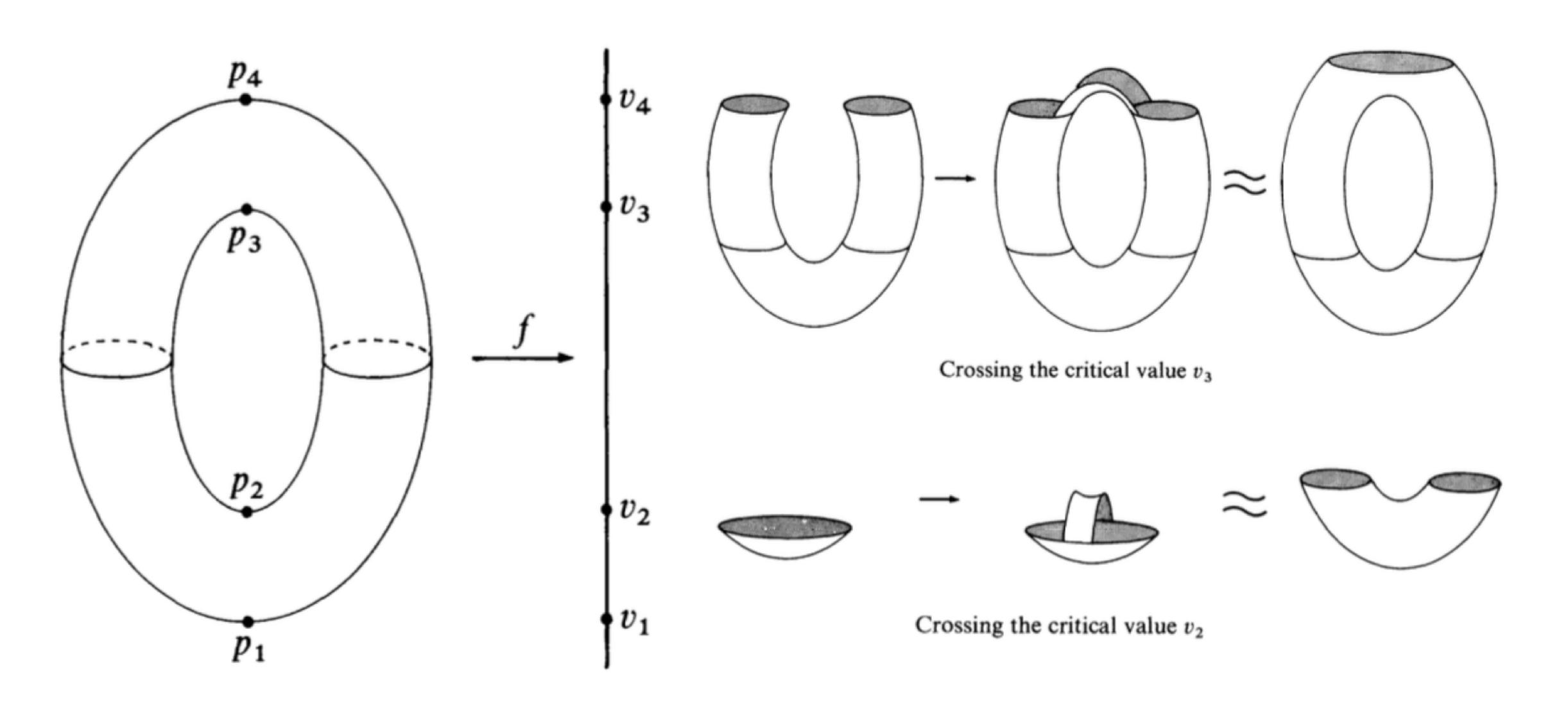


[GoreskyMacPherson1988]

Definitions

CMT studies the topological change of X_a as a varies.

- ullet X: a compact, smooth d-manifold
- $f: \mathbb{X} \to \mathbb{R}$: differentiable
- sublevel set: $X_a = f^{-1}(-\infty, a]$
- ullet A point $x \in \mathbb{X}$ is *critical* if the derivative at x equals zero
- $\lambda(x)$: the *Morse index* of a non-degenerate critical point x is the number of negative eigenvalues in the Hessian matrix
- Next page: p_1, p_2, p_3, p_4 , index 0, 1, 1, and 2
- f is a Morse function if all critical points are non-degenerate and its values at the critical points are distinct



[GoreskyMacPherson1988]

Fundamental Results of CMT

Theorem (CMT-A)

Let $f: \mathbb{X} \to \mathbb{R}$ be a differentiable function on a compact smooth manifold \mathbb{X} .

Let a < b be real values such that $f^{-1}[a,b]$ is compact and contains no critical points of f.

Then X_a is diffeomorphic to X_b .

Fundamental Results of CMT

Theorem (CMT-B)

Let f be a Morse function on X.

Consider two regular values a < b such that $f^{-1}[a,b]$ is compact but contains one critical point u of f, with index λ .

Then X_b is homotopy equivalent (diffeomorphic) to the space $X_a \cup_B A$, that is, by attaching A along B.

The pair of spaces $(A,B) = (D^{\lambda} \times D^{d-\lambda}, (\partial D^{\lambda}) \times D^{d-\lambda})$ is the Morse data, where d is the dimension of \mathbb{X} and λ is the Morse index of u, D^k denotes the closed k-dimensional disk and ∂D^k is its boundary.

$$(A,B) = (D^{\lambda} \times D^{d-\lambda}, (\partial D^{\lambda}) \times D^{d-\lambda})$$

Critical point

Morse data (A, B)

$$p_3$$
 v_4
 v_3
 v_2
 v_1
 v_2
 v_1
 v_2
 v_1
 v_2
 v_2
 v_2
 v_3
 v_4
 v_2
 v_3
 v_4
 v_5
 v_6
 v_7
 v_8
 v_8
 v_9
 v_9

[GoreskyMacPherson1988]

$$p_{1} \qquad \left(\begin{array}{c} \\ \\ \\ \end{array} \right) = (D^{0} \times D^{2}, \partial D^{0} \times D^{2})$$

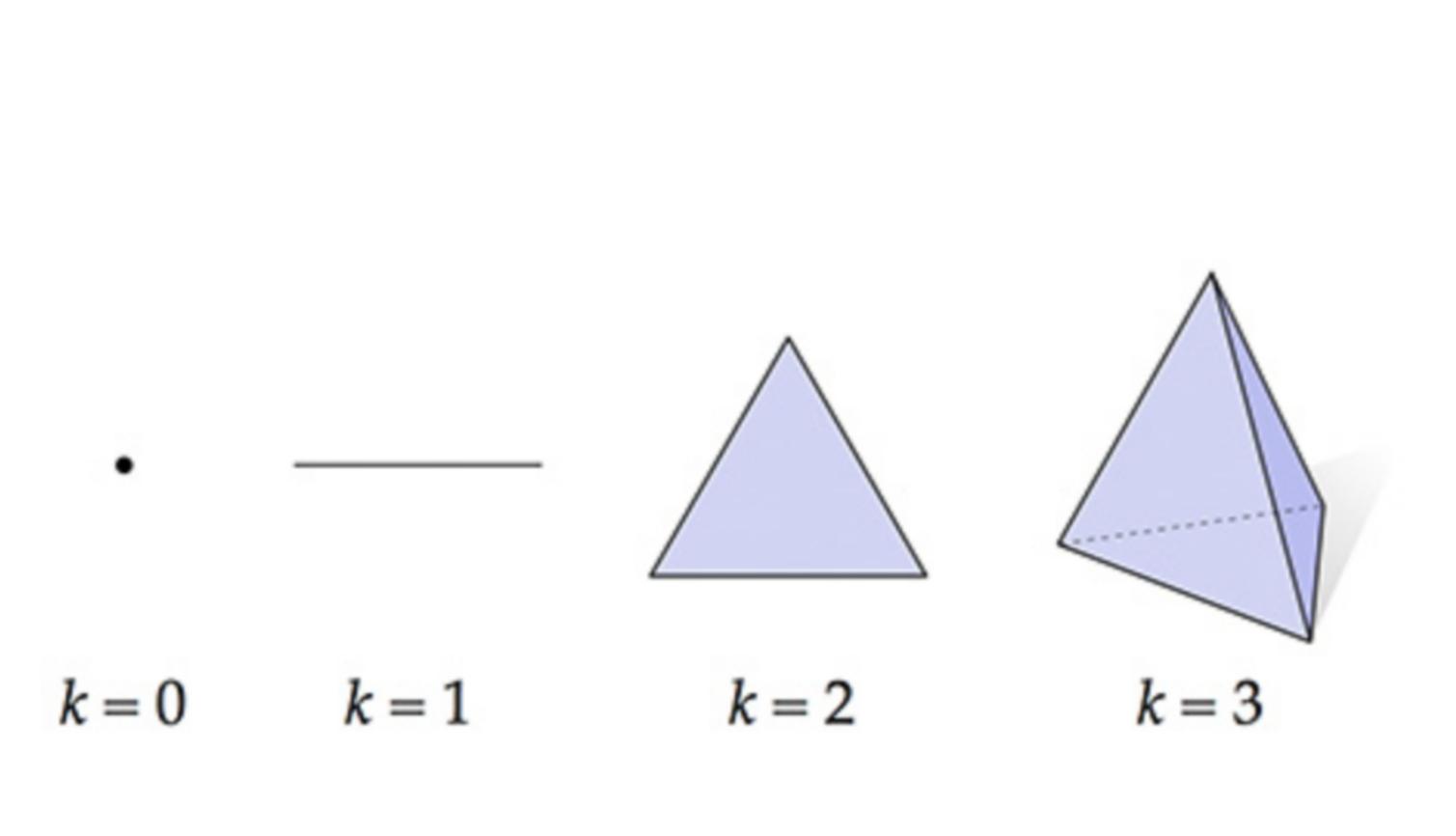
$$p_{2} \text{ or } p_{3} \qquad \left(\begin{array}{c} \\ \\ \end{array} \right) = (D^{1} \times D^{1}, \partial D^{1} \times D^{1})$$

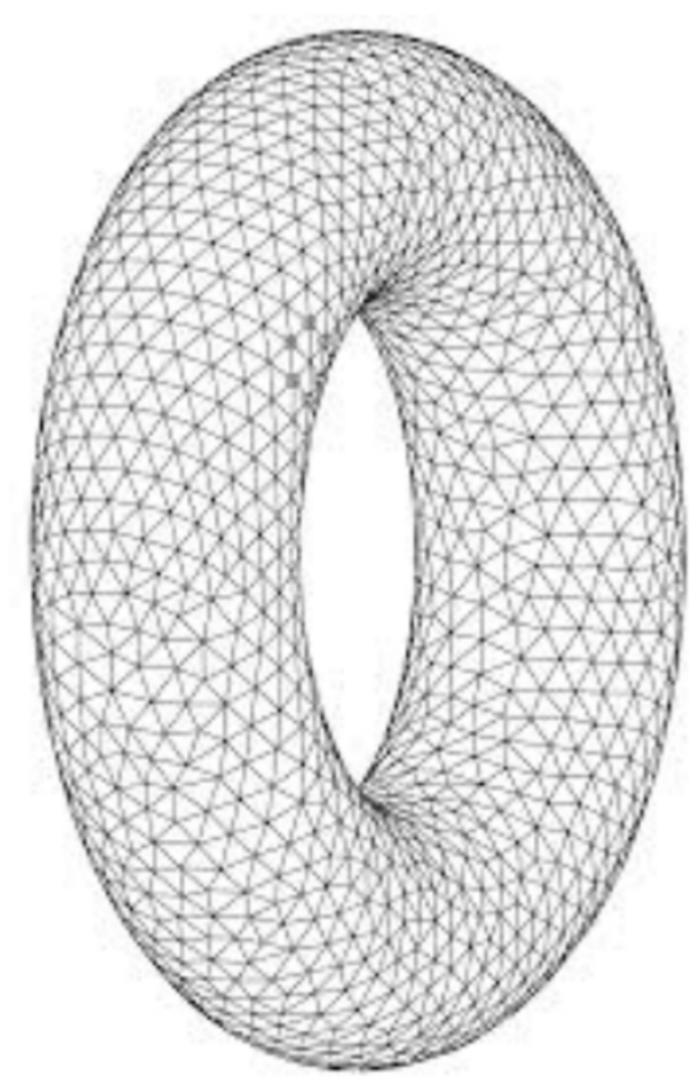
$$p_{4} \qquad \left(\begin{array}{c} \\ \\ \end{array} \right) = (D^{2} \times D^{0}, \partial D^{2} \times D^{0})$$

[GoreskyMacPherson1988]

Discrete Morse Theory (DMT)

Data as a simplicial complex





DMT Basic Setup

DMT is the combinatorial version of CMT.

- ullet K: a finite simplicial complex
- $\alpha^{(p)} \in K$: a simplex of dimension p.
- $\alpha < \beta$: α is a face of simplex β .
- $U(\alpha) = \{\beta^{(p+1)} > \alpha \mid f(\beta) \le f(\alpha)\}$
- $L(\alpha) = \{ \gamma^{(p-1)} < \alpha \mid f(\gamma) \ge f(\alpha) \}$
- $U(\alpha)$ contains the higher-dimensional cofaces of α with lower (or equal) function values
- $L(\alpha)$ contains the lower-dimensional faces of α with higher (or equal) function values.
- Let $|U(\alpha)|$ and $|L(\alpha)|$ be their sizes.

Discrete Morse Function

Definition

A function $f:K\to\mathbb{R}$ is a discrete Morse function if for every $\alpha^{(p)}\in K$,

- (i) $|U(\alpha)| \leq 1$ and
- (ii) $|L(\alpha)| \le 1$.

Definition

A simplex $\alpha^{(p)}$ is *critical* if (i) $|U(\alpha)| = 0$ and (ii) $|L(\alpha)| = 0$. A *critical value* of f is its value at a critical simplex.

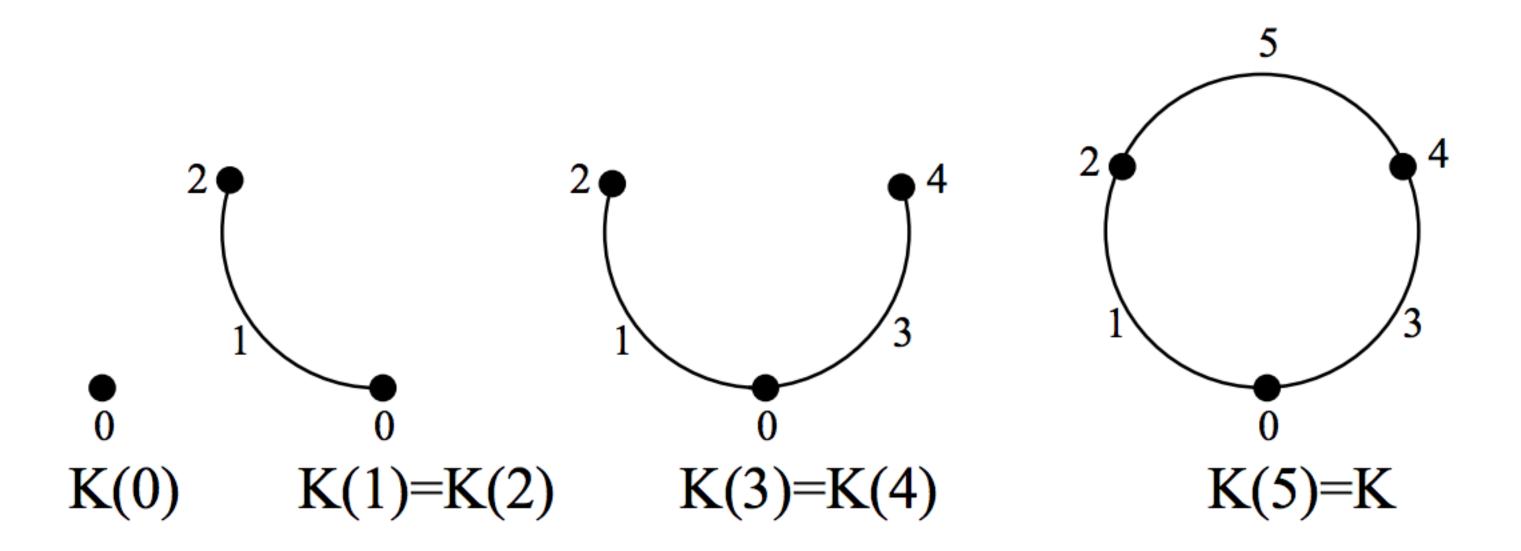
Discrete Morse Function

Definition

A simplex $\alpha^{(p)}$ is *noncritical* if either of the following conditions holds: (i) $|U(\alpha)| = 1$; (ii) $|L(\alpha)| = 1$; as noted above these conditions can not both be true ([Forman1998], Lemma 2.5).

Level Subcomplex

- Given $c \in \mathbb{R}$, we have the *level subcomplex* $K_c = \bigcup_{f(\alpha) \leq c} \bigcup_{\beta \leq \alpha} \beta$.
- K_c contains all simplicies α of K such that $f(\alpha) \leq c$ along with all of their faces.



The level subcomplexes of the discrete Morse function shown in Figure 2.2(ii)

Fundamental Results of DMT

Theorem (DMT-A)

Suppose the interval [a,b] contains no critical value of f. Then K_b is homotopy equivalent to K_a . In fact, K_a is a deformation retract of K_b and moreover, K_b simplicially collapses onto K_a .

Fundamental Results of DMT

Theorem (DMT-A)

Suppose the interval [a,b] contains no critical value of f. Then K_b is homotopy equivalent to K_a . In fact, K_a is a deformation retract of K_b and moreover, K_b simplicially collapses onto K_a .

Fundamental Results of DMT

Theorem (DMT-B)

Suppose $\sigma^{(p)}$ is a critical simplex with $f(\sigma) \in (a,b]$, and there are no other critical simplices with values in (a,b]. Then K(b) is homotopy equivalent to attaching a p-cell $e^{(p)}$ along its entire boundary; that is, $K_b = K_a \cup_{e(p)} e^{(p)}$.

Discrete Gradient Vector Fields

- Given a discrete Morse function $f: K \to \mathbb{R}$ we may associate a discrete gradient vector field.
- Since any noncritical simplex $\alpha^{(p)}$ has at most one of the sets $U(\alpha)$ and $L(\alpha)$ nonempty, there is a unique face $\nu^{(p-1)} < \alpha$ with $f(\nu) \geq f(\alpha)$ or a unique coface $\beta^{(p+1)} > \alpha$ with $f(\beta) \leq f(\alpha)$.
- Denote by V the collection of all such pairs $\{\sigma < \tau\}$.
- Then every simplex in K is in at most one pair in V and the simplices not in any pair are precisely the critical cells of the function f.
- ullet We call V the gradient vector field associated to f.
- We visualize V by drawing an arrow from α to β for every pair $\{\alpha < \beta\} \in V$.

Discrete Gradient Vector Fields

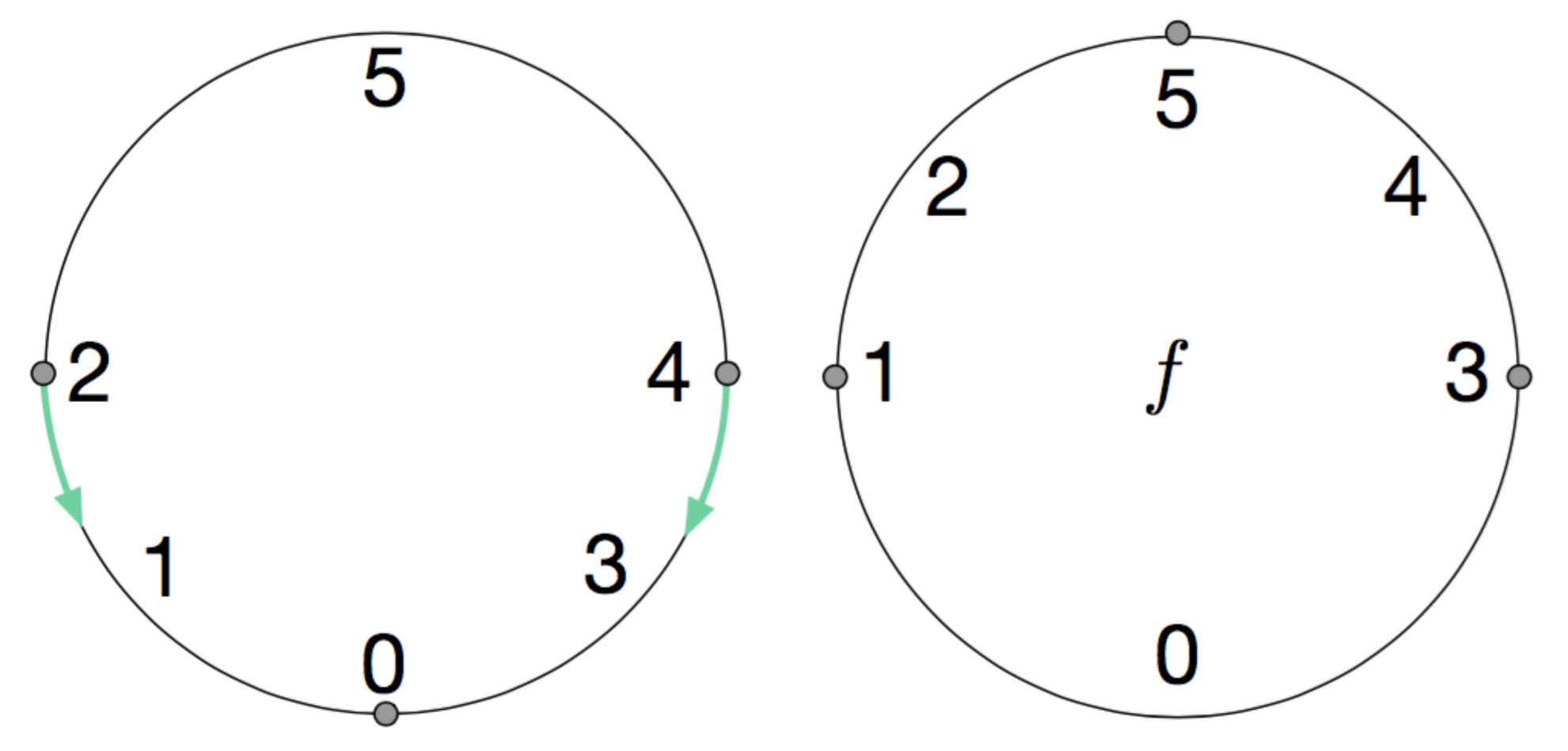
- ullet Data reduction: collapsing the pairs in V using the arrows.
- ullet By a V-path, we mean a sequence

$$\alpha_0^{(p)} < \beta_0^{(p+1)} > \alpha_1^{(p)} < \beta_1^{(p+1)} > \dots < \beta_r^{(p+1)} > \alpha_{r+1}^{(p)}$$

where each $\{\alpha_i < \beta_i\}$ is a pair in V. Such a path is *nontrivial* if r > 0 and *closed* if $\alpha_{r+1} = \alpha_0$.

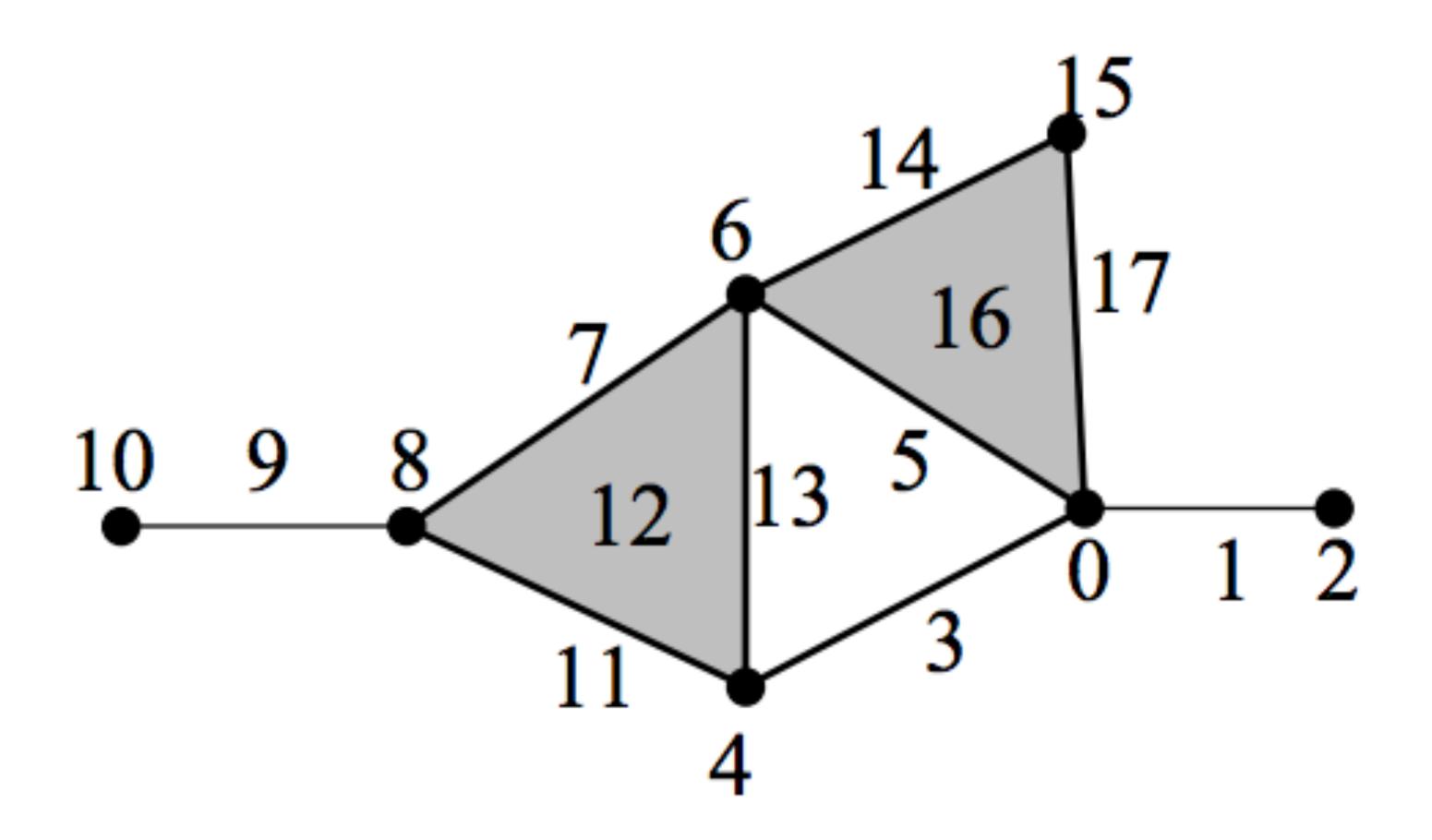
Theorem ([Forman1998])

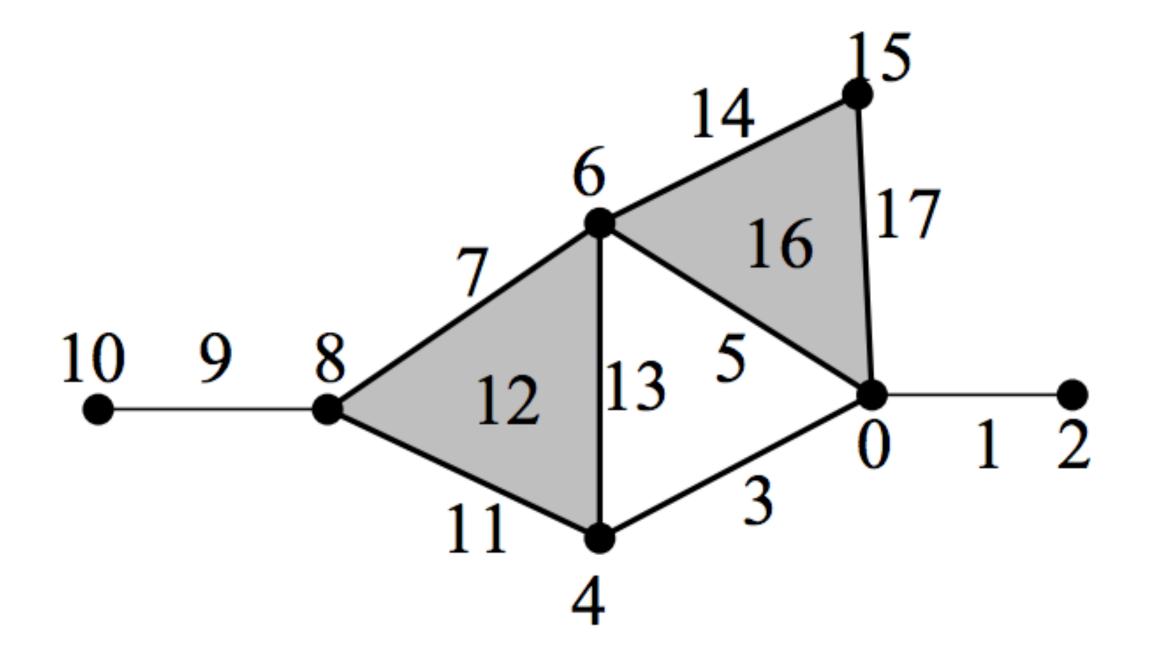
If V is a gradient vector field associated to a discrete Morse function f on K, then V has no nontrivial closed V-paths.

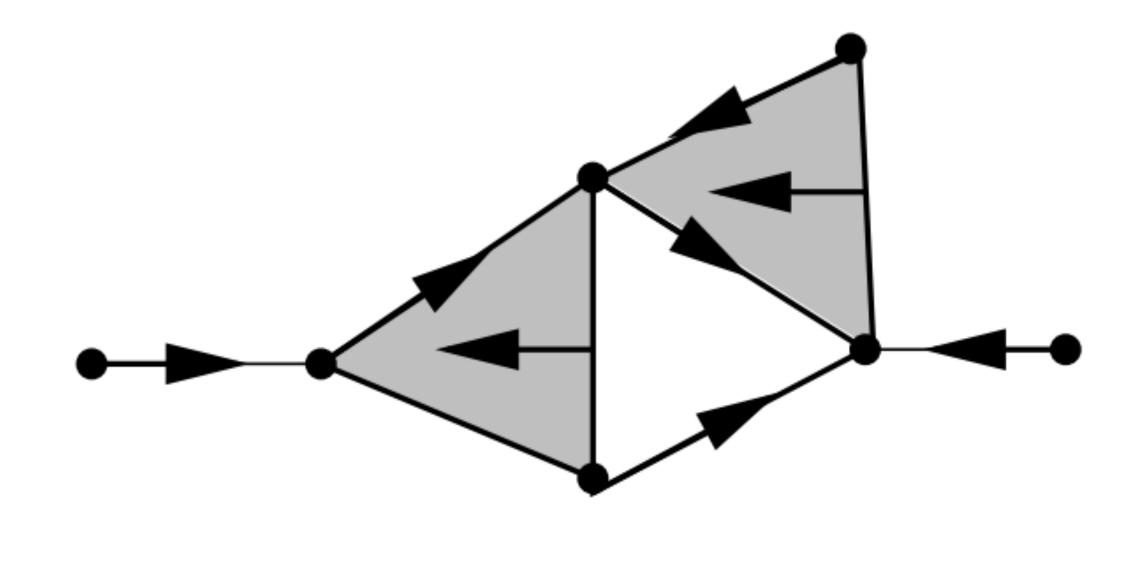


Forman 2002

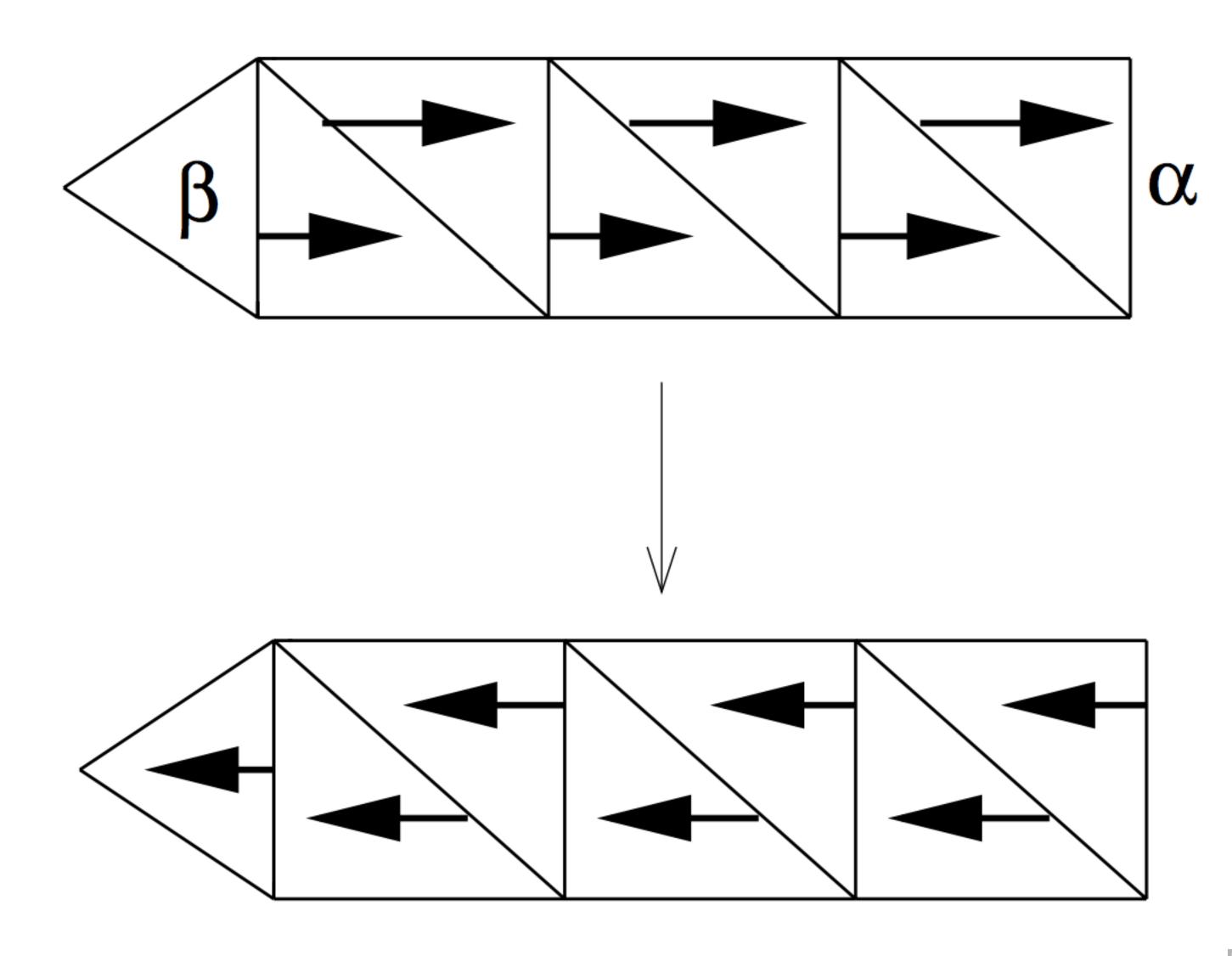
Draw the DVF







DMT Examples



Cancelling critical points.

Forman 2002

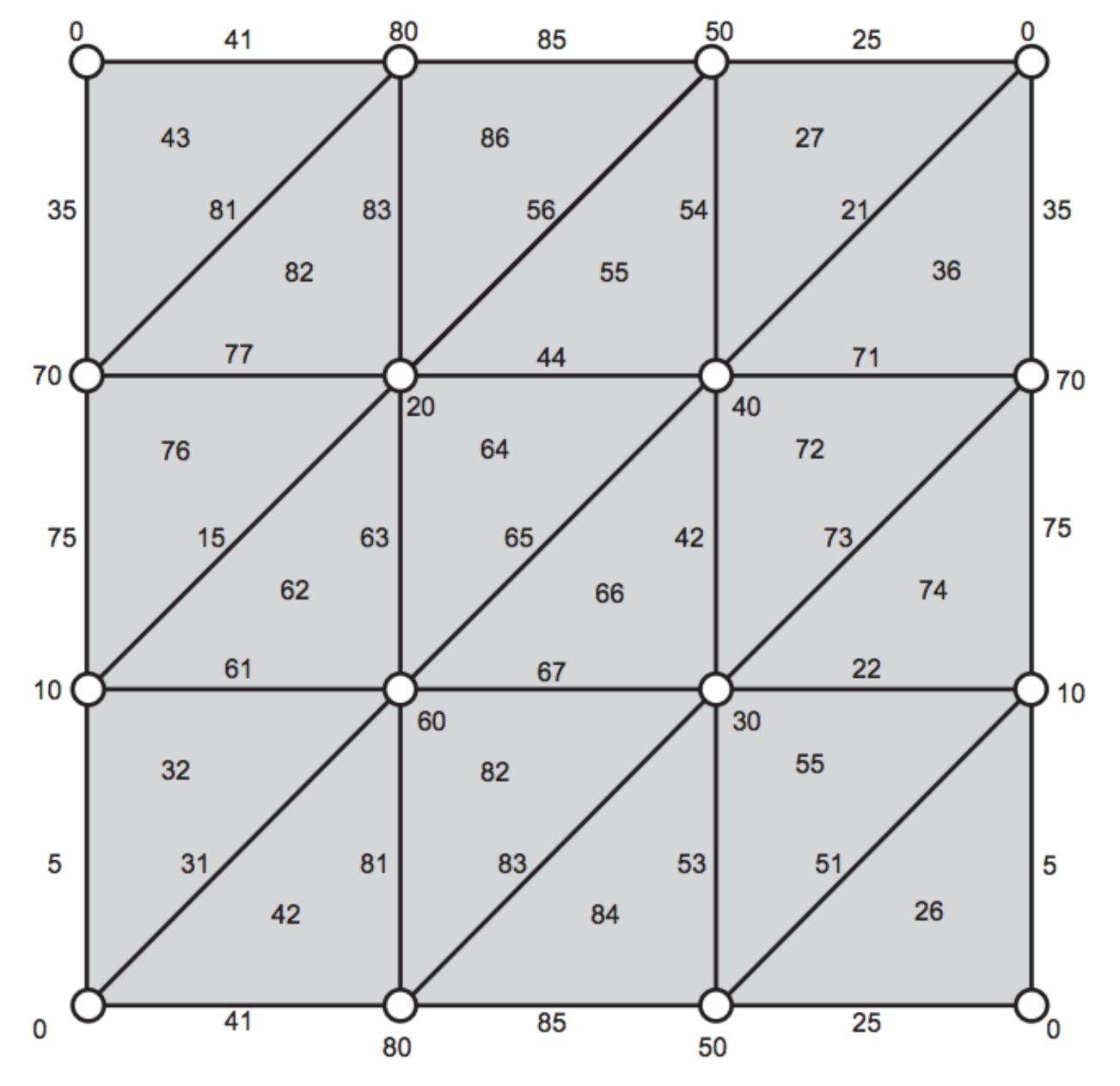


FIGURE 1. A discrete Morse function on the torus.

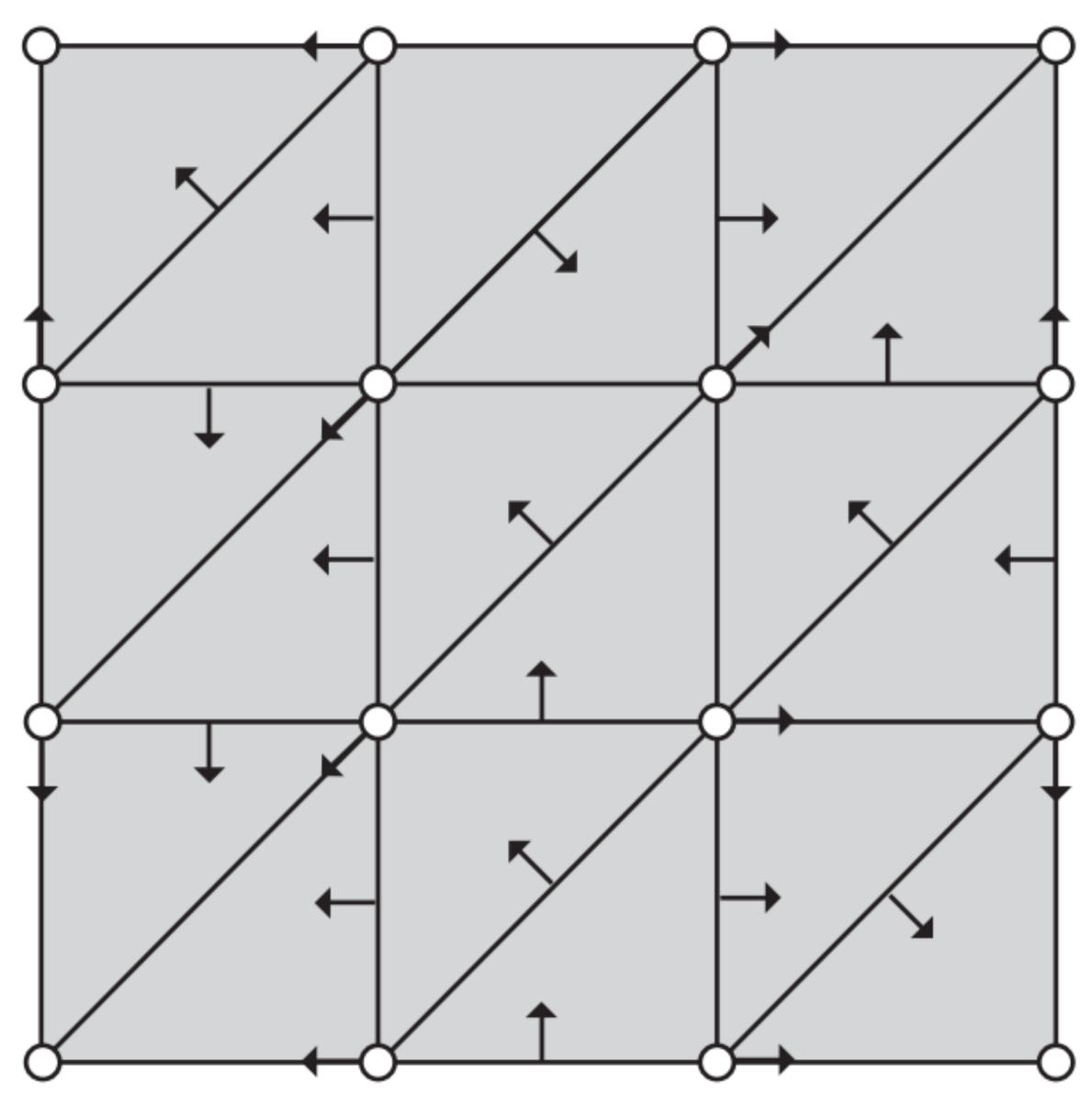
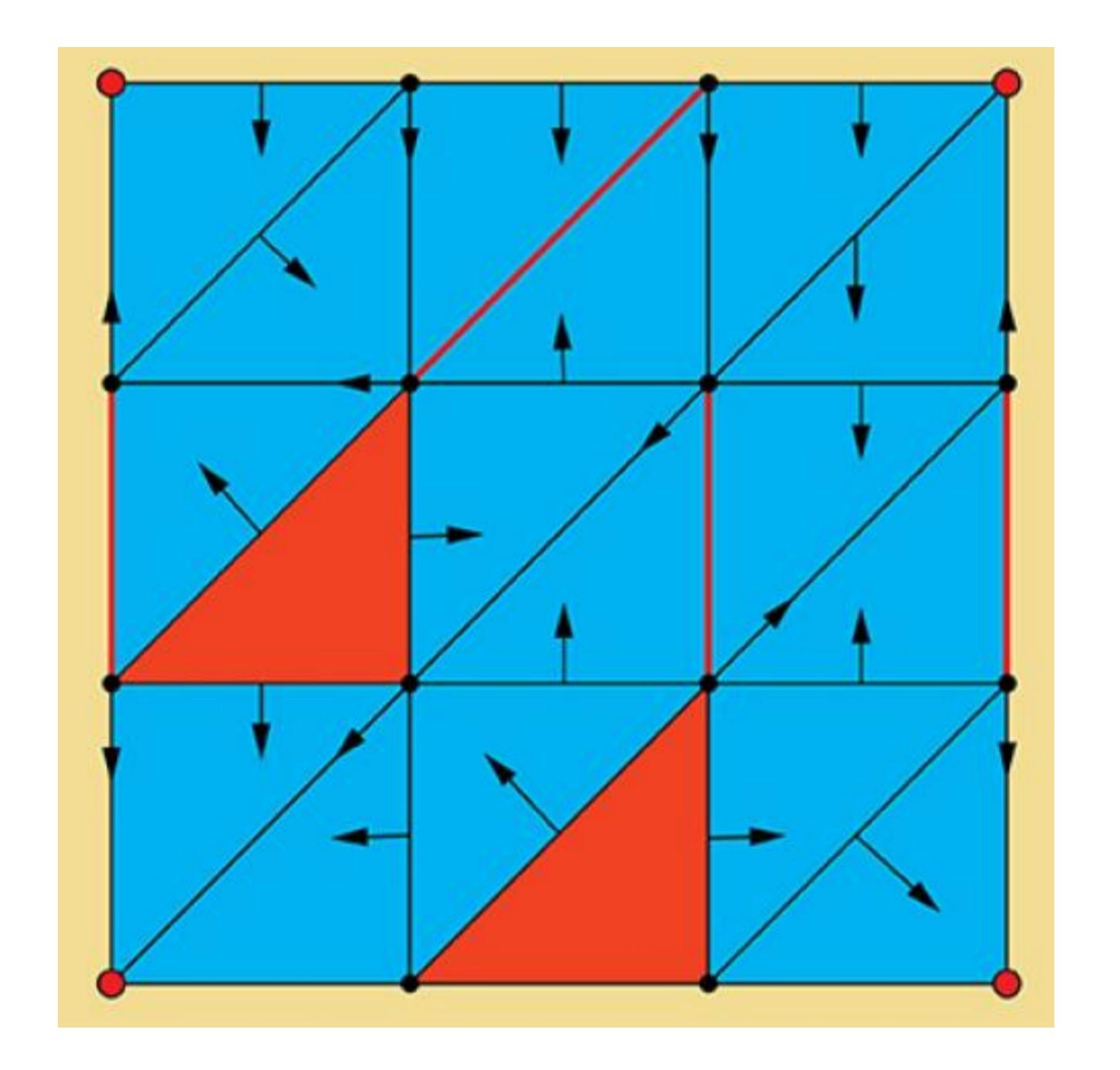
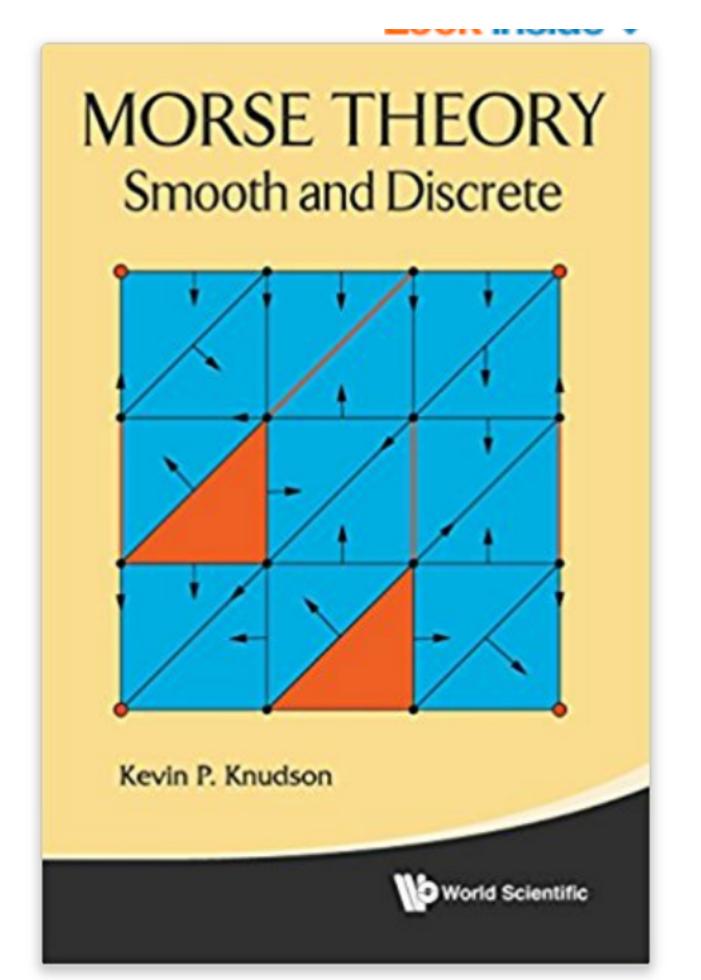


FIGURE 2. A gradient vector field on the torus.





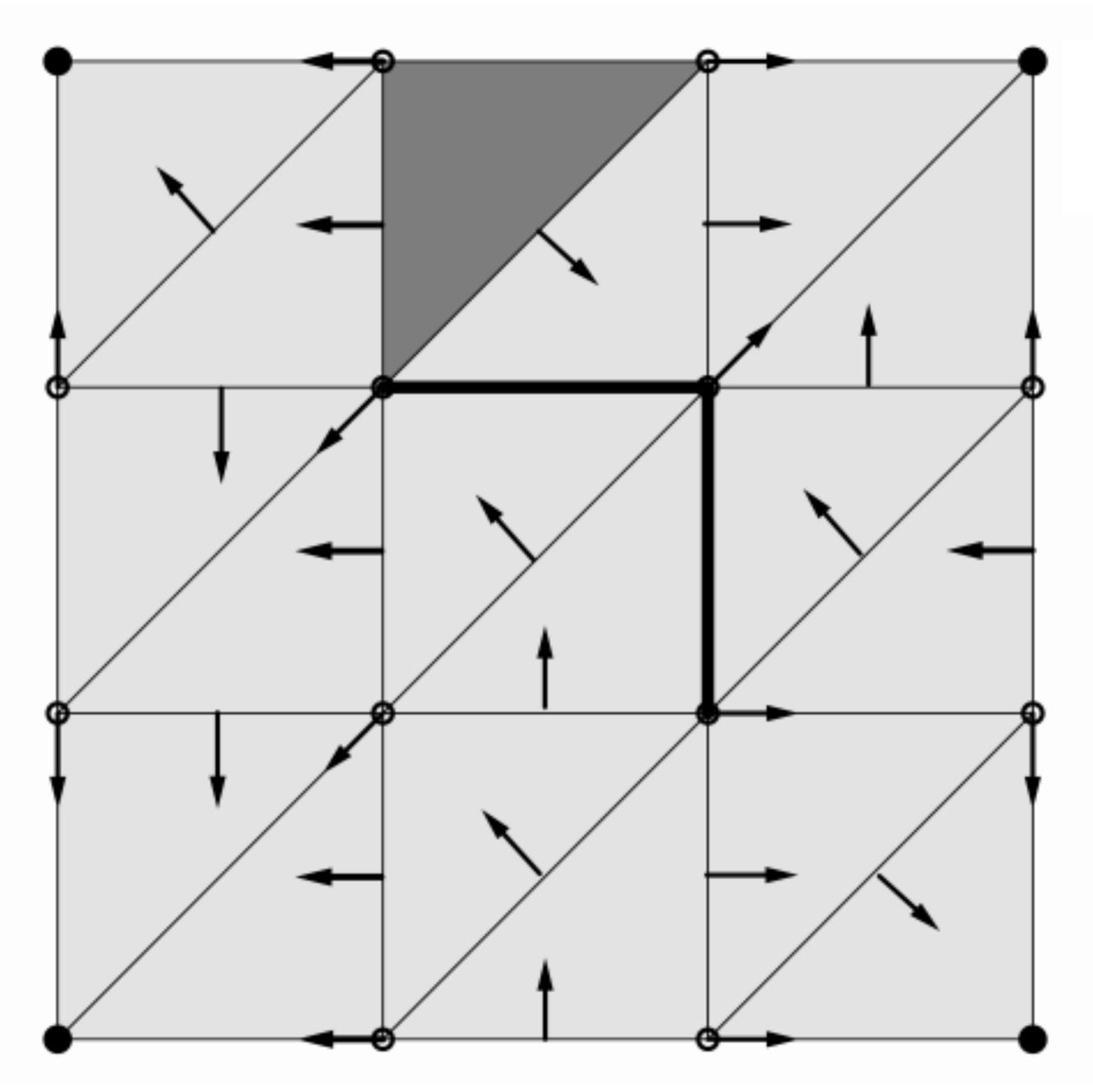


FIGURE 3. A discrete vector field on a triangulated torus. There are four critical cells: the top-center triangle (dark gray), the top and right edges of the center square (indicated with thicker lines), and the vertex obtained by identifying the four corners.

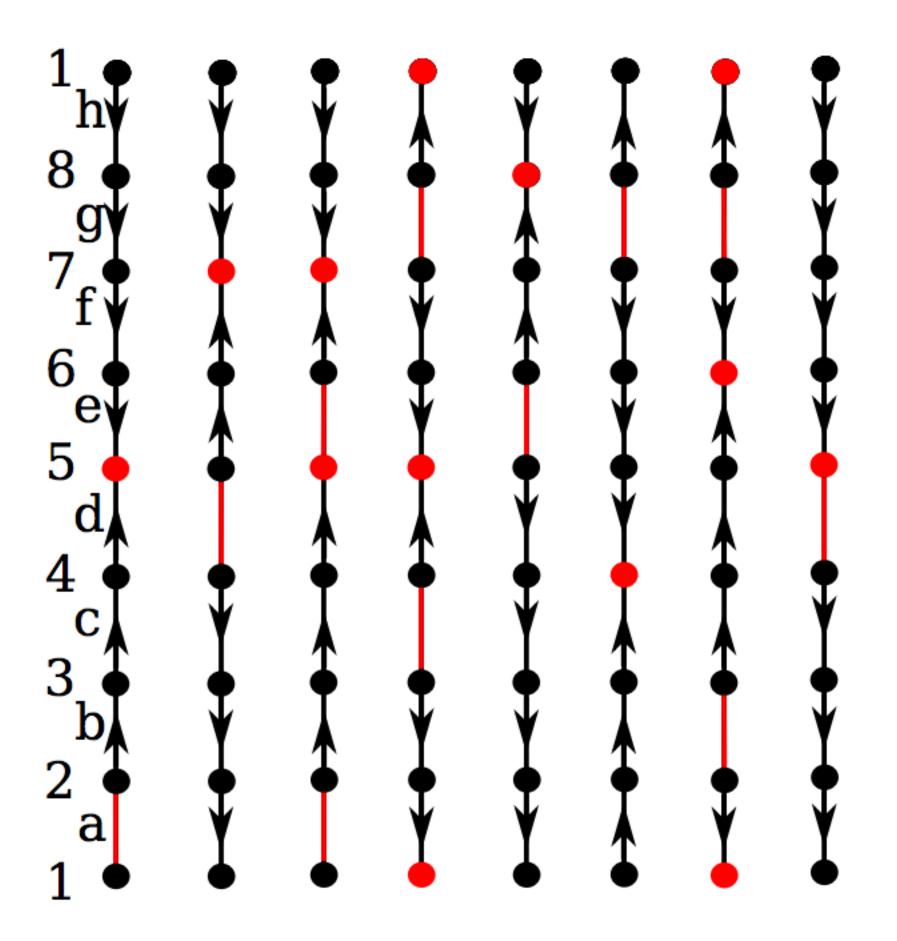


FIGURE 4. A family of discrete gradient fields on the circle. The slices are numbered left to right as $0, 1, \ldots, 7$.

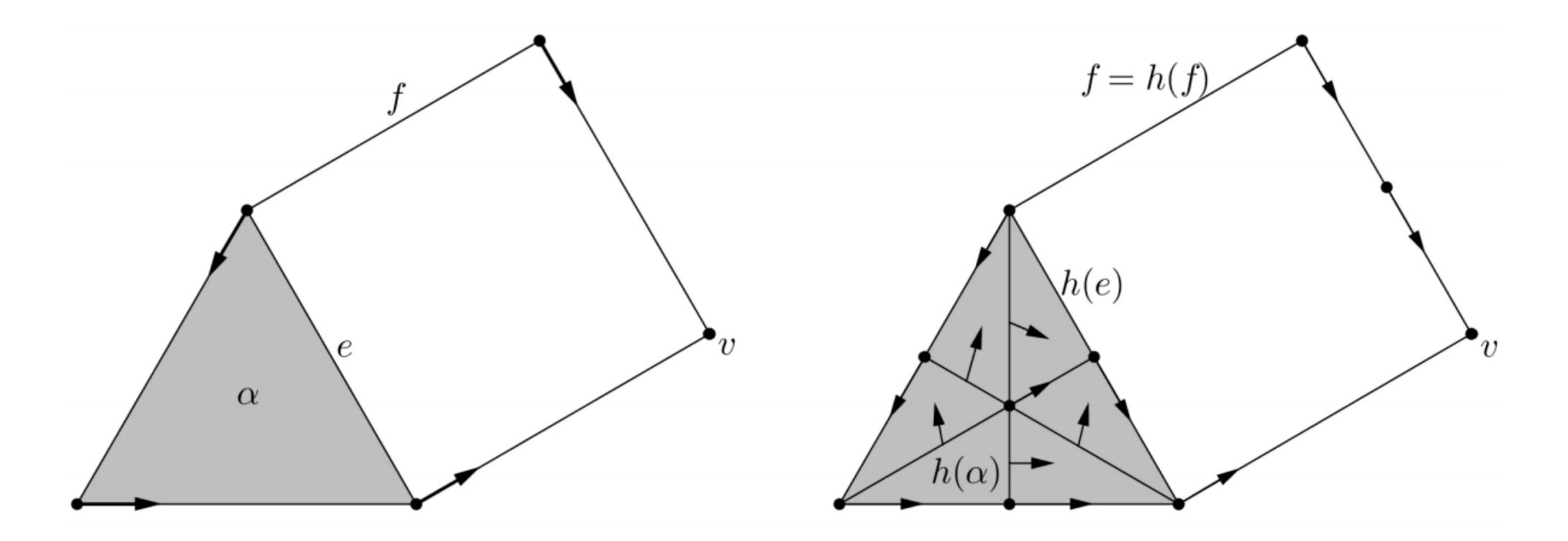
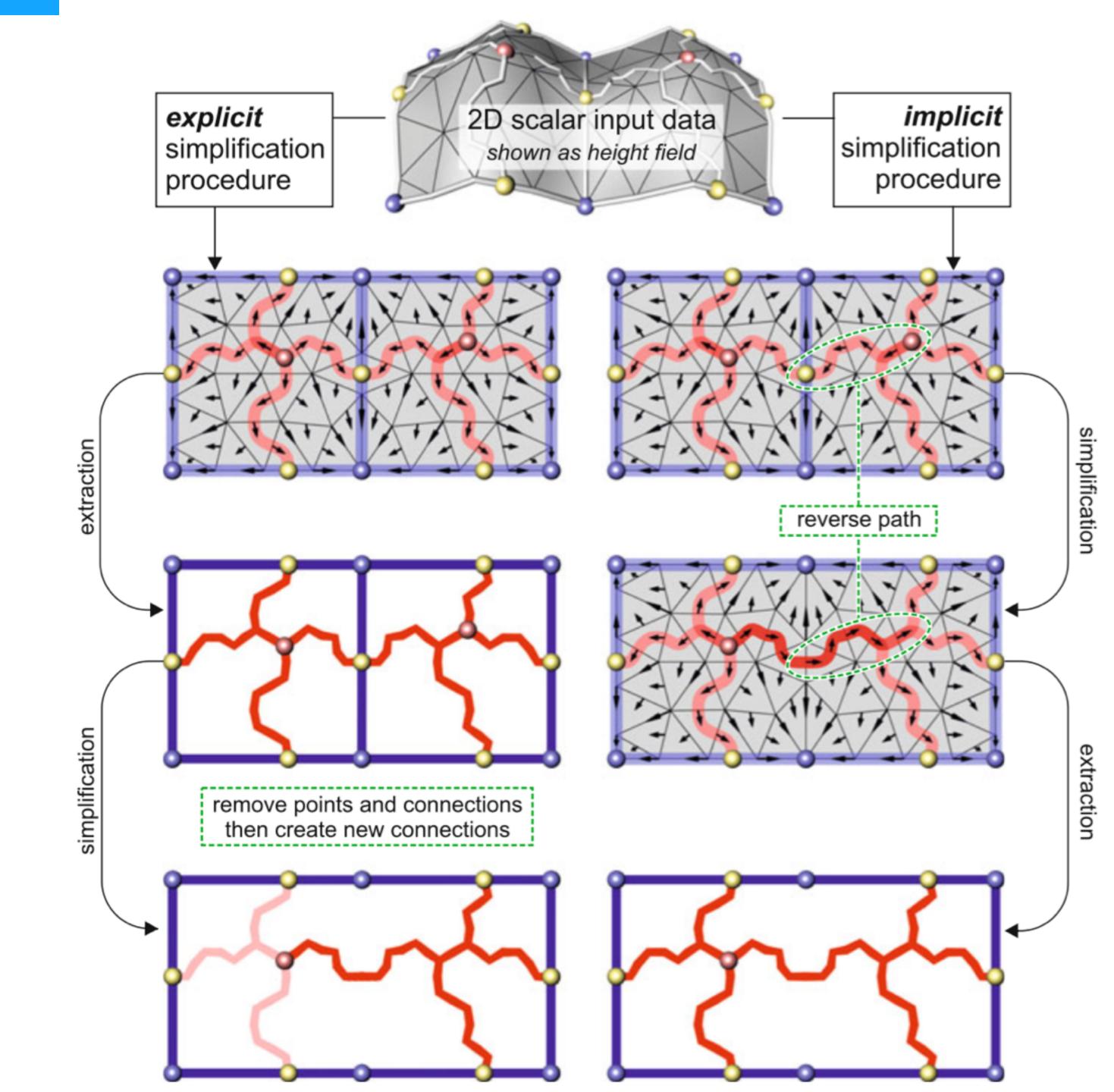


FIGURE 6. Left: A simplicial complex M with a discrete gradient V. The critical cells of V are α , e, f, and v. Right: A refinement N of M and a refinement W of V. The new critical cells $h(\alpha)$ and h(e) are indicated.

Applications

Simplification of MSC



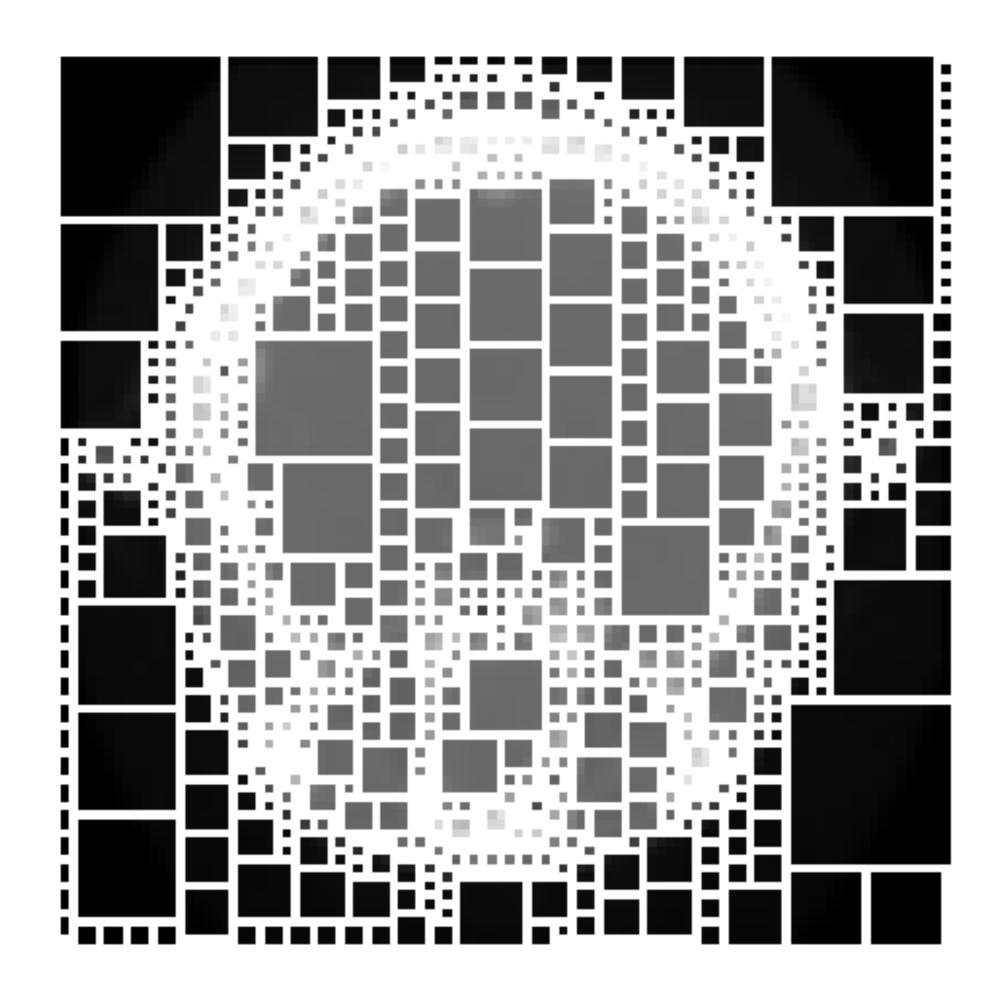


Figure 15. Reduced cell decomposition of a head CT scan.

Any questions?

You can find me at: beiwang@sci.utah.edu

CREDITS

Special thanks to all people who made and share these awesome resources for free:

- Presentation template designed by <u>Slidesmash</u>
- Photographs by <u>unsplash.com</u> and <u>pexels.com</u>
- Vector Icons by <u>Matthew Skiles</u>

Presentation Design

This presentation uses the following typographies and colors:

Free Fonts used:

http://www.1001fonts.com/oswald-font.html

https://www.fontsquirrel.com/fonts/open-sans

Colors used

