Alexander Lex

Visualization design lab

Miriah Meyer

Alexander Lex

Ethan Kerzner

Alex Bigelow

Nina McCurdy

Jimmy Moore Cameron Waller

Sean McKenna

Sam Quinan

Carolina Nobre

Applied Visualization Research Biology, Medicine, Humanities, ... Visualization Design Models **User-centered Design Visualization Techniques** Visualization Frameworks

datavisyn.io

\leftarrow	\rightarrow	С	☆	6	www.	datavi	isyn.i	o			
				\perp		\downarrow		\perp	\downarrow		
\geq										\uparrow	data
<											
\geq											
\leq											
											-VV
\leq											
\leq											
\leq											

Ve develop data visualization solutions for applications in pharmaceutical and biomedical R&D.

Marc Streit CEO and Co-Founder

🖀 🎽 in

TEAM

Samuel Gratzl CTO and Co-Founder

Alexander Lex Co-Founder

- Card, Mackinlay, Shneiderman - Richard Wesley Hamming

Banana Date Cress Rice Brome

M. acuminata P. dactylifera Arabidopsis thaliana Oryza sativa Sorghum Sorghum bicolor Brachypodium distachyon

Musa acuminata 36,542 / 24,429

25,5

Phoenix dactylifer 28,889 / 19,027

Oryza sativa 40,612 / 27,049

Arabidopsis thaliana 27,169 / 21,950

[D'Hont et al., Nature, 20

VESUALEZAELOM

Cood ... makes data accessible ... combines strengths of humans and computers ...enables insight ... communicates

Can We Trust Statistics?

	Ι	
Х		У
	10	8.0
	8	6.9
	13	7.5
	9	8.8
	11	8.3
	14	9.9
	6	7.2
	4	4.2
	12	10.8
	7	4.8

II

III

	V	Х	V	X	V
. 0	8.04	10	9.14	10	7.46
8	6.95	8	8.14	8	6.77
.3	7.58	13	8.74	13	12.74
9	8.81	9	8.77	9	7.11
.1	8.33	11	9.26	11	7.81
4	9.96	14	8.1	14	8.84
6	7.24	6	6.13	6	6.08
4	4.26	4	3.1	4	5.39
2	10.84	12	9.13	12	8.15
7	4.82	7	7.26	7	6 1 7
5	5. Mea	n x: 9	y: 7.5	D	

Variance x: 11 y: 4.122 **Correlation x - y: 0.816** Linear regression: y = 3.00 + 0.500x

IV

 Х		У
	8	6.58
	8	5.76
	8	7.71
	8	8.84
	8	8.47
	8	7.04
	8	5.25
	19	12.5
	8	5.56
	8	7.91
		6.89

Mean x: 9 y: 7.50 Variance x: 11 y: 4.122 **Correlation x – y: 0.816** Linear regression: y = 3.00 + 0.500x

Same Stats, Different Graphs: Generating Datasets with Varied Appearance and Identical Statistics through Simulated Annealing, CHI 2017, Justin Matejka, George Fitzmaurice

X Mean: 54.2659224 Y Mean: 47.8313999 X SD : 16.7649829 Y SD : 26.9342120 Corr. : -0.0642526

Visualization in the Data Science Process

Figure 2-2. The data science process

Interacting with Data

The Future of Data Analysis is (also) Interactive

Insight Actions Context Reasoning Interaction

Communicates Interfaces Visualization

Selected & **Derived Data**

Algorithms **Statistics** Recommendations Classifications Aggregation

Data Informative, Incomplete, Noisy, Conflicting

Visualization =

Human Data Interaction

Large, Multivariate (Biological) Networks

Genealogies & Clinical Data

TUE)	Jepression Diag	Depressi	on True 10 B	polar ciag	aipolar			white	other) se death
A98 tal:32	H',D' Total:60	Bilbo.	Total:30	HI.D. Total:60	MaxBMI Total:59	AgeMaxBMI Total:58	(8 ⁰⁶ 98%	(ace	Cana
L	<u>h.</u>	48%	يسلسب		يحطلن			0.0%	
65 •	0 70		0 35 • •	20	15 45	0 80		* A	₩
0								-	gunshot woun
•	•		e ⁰	0.00		d 0		-	
			0	0				-	
0						0		-	
								-	
	0		0	0	0			-	

	—	—				-	asphyxia
,e	æ	· · · · · · ·	1494P	%	46.0 +	-	
	0	0	0	0	0	-	carbon monox
						-	
•				0	0	-	
_						-	
_						-	
0	0		0		0	-	
_						-	cardiac arre
	•			0		-	
_						-	
_				0		-	
	•			0	0	-	
				0		-	
)	00	0	• •	•		-	strangulatio
						-	
)						-	
•		0	0			-	
				0	0	-	
_					0	-	
				0	0	-	
						-	
		•				-	
			0			-	
						-	
_				0	0	-	
				0	0	-	
				•	0	-	
	0	0	0	0	0	-	
						-	

Multidimensional Data

Set Visualization

Average Rating	Times Watchec
2 4	0 2,000
	┣━━━━┥
	<u>ل</u>
	Φ
	┢┓ーーー┥
	þ
	()
	₽
	D
H	⊦∔1
Н	
H	-
I	I
\vdash	\vdash
НШН	
I	1
	⊕⊣
н	

Eleme	
p –	
ğo,000 -	
≷ 82,500 -	
Ē2,000 −	
1,500 -	
1,000 -	
500 -	
0 -	
1.	.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 Average Rating
+	Scatterplot 💠 🗲 🌛 🛞

Element Vieualizations

Query Filters

Э	Range	Average	Rating
_			

Minimum = 4 Maximum = 5

(+)	Name	\$ Contains
Que	ry Results	

lame	11010
Varrie	Date
Toy Story (1995)	1995
Sense and Sensibility (1995)	1995
Persuasion (1995)	1995
City of Lost Children, The 1995)	1995
Seven (Se7en) (1995)	1995

Rank	School Name	Country	Aca
1.	Massachusetts Insti	United States	
2.	Harvard University	United States	
З.	University of Camb	United Kingdom	
4.	Imperial College L	United Kingdom	
5.	University of Oxfor	United Kingdom	
б.	UCL (University Col	United Kingdom	
7.	Stanford University	United States	
8.	Yale University	United States	
9.	Princeton Universit	United States	
10.	University of Chica	United States	
11.	ETH Zurich (Swiss F	Switzerland	
12.	Columbia Universit	United States	
13.	University of Penns	United States	
14.	Cornell University	United States	
15.	University of Edinb	United Kingdom	
16.	Ecole Polytechniqu	Switzerland	
17.	King's College Lond	United Kingdom	
18.	University of Toron	Canada	
19.	McGill University	Canada	
20.	National University	Singapore	
21.	University of Michi	United States	
22.	University of Califo	United States	
23.	California Institute	United States	
24.	University of Bristol	United Kingdom	
25.	Duke University	United States	

17.99%

Multivariate Rankings

World University R	anking					Wor	ld Unive	rsity Ran	king
32.94% 19.63	3% 19.63%	4. 4.				40.00%	10.00%	20.00	Ж
Employer repu Facul	t <mark>y/</mark> Citation	1.1	Separator	Rank	1	Academic reputation	Empl	Faculty/s	stud
			A	1.					
				2.					
				3.					
				۷.					
			~~~~	5.					
				б.					
				7.					
				8.					
				9.					
				10.					
				11.					
				12.					
				13.					
				14.					
			$\sim 7^{-1}$	15.					
				16.					
93.7 (0.94)				17.					
				18.					
				19.	9	4.6 (0.95)	8	9.9 (0.9)	79.
				20.					
			A.	21.					
			$\times$	22.					
			$>$ $>$	23.					
				24.					
				25.					







2.75

134.43

caled estimate (TP DUD GBM Offc2552-883a-4e8f-9. 102a0737-7d27-46b8.



sort by I









#### Bilal Alshallak Hendrik Strobelt



**Brant Peterson** 





Mark Borowsky



Hanspeter Pfister Alexander Lex

#### Joseph Botros



## [InfoVis'15]

up by src		



## Scalable solution for isoform/ alternative splicing analysis

## Visualize measures for isoform abundance, base-pair/exon expression, junction reads

## for a large set of samples







## **Remove introns as part of the transcription process**

Exon





## **Omitted Exons**

#### Exon







#### Exon



## Isoforms

**Isoform 1** 

**Isoform 2** 

Isoform 3



## Reads from mRNA-seq data tell us about expression of exons Junction reads tell us about which (parts of) exons are spliced out



## Junction Information





## **Explore differences between samples** and groups of samples

## Quality control

## **Discover novel isoforms**

## The Competition: Sashimi Plots





#### [Katz et al, 2010]

#### [Sheng et al, 2014]

## Data & Visualization

Isoform abundance **Exon expression** Junction reads

...for hundreds of samples ...for multiple groups



## **Expression View**





	grp_ad_ad_br_br_he_li_lu_ly-2
~	grp_co_ki-1
	ovary
	prostate
	skeletal_muscle
	testes
	thyroid
	white_blood_cell

## Isoform View







] sort
• +
+
+
+
+
+
+
+
+
+
+
+



## Junction View









# Junction View - Group Comparison





# Junction View - Group Comparison





# Junction View - Group Comparison
# **Case Study: Leukemia vs Glioblastoma**





Visualizing Clinical Data in Genealogy Graphs



Carolina Nobre



Hilary Coon



Nils Gehlenborg



Alexander Lex



RelativeID	sex	E dece	ased suich	le Depri	Age10 P	Pepression Nr.Diag. Total:60	pepressi Bipol	ar (True) Age1D Bi Total:30	Polar Nr.Diag. Total:60	MaxBMI Total:59	AgeMaxBMI Total:58	1808	white Oth
	44%	60%	10%	52%		<u>h.</u>	48%	يسلس	ļ	يحتللن			0.0%
$\nabla_{\Delta}$	$\nabla_{\mathbb{A}}$	$\nabla_{\mathbb{A}}$	$\nabla_{\Delta}$	$\nabla_{\mathbb{A}}$	v 👞 🕫	° 👞 ″	$\nabla_{\mathbb{A}}$	° <i>⊸</i> _ "	° 👞 "	^D _{₹▲} ⁴	° 👞 °°	<b>T</b> A	$\nabla_{\mathbb{A}}$
					0.0	90		0 0	00 0	80	0.0*		-
#13789					0	0			0	0			-
						\$		00	0.00	00 0	du .		-
#48154					0	0		0	0				-
#54315						0			0	0	0		-
#67703													-
#9278					0	0		0	0	0	0		-

#26695				—			0	0	-	4
	- E - E		~ ⁰		00 ⁰ Ø	1494P	<b>%</b> 8	46.00	-	
#40329			0	0	0	0	0	0	-	(
#5170			_	_	_	_	0	0	-	
#43983			0	0	0			0	-	
#5181	11.1		_	_	_	_		0	-	
#42479			_	_	_	_	0		-	
#139			0	0		0	0	0	-	
#1967									-	
#5172			. 0	0		. 0			-	
#5171				_	_	_	0	0	-	
#10841							0		-	
#66710			. 0	0	0				-	
#6436					_			0	-	
#65130	11.1		0	00			0	0	-	
#65129									-	
#6428	11.1							0	-	
#4547				0	0				-	
#65491	11.1		_	_	_	_		0	-	
#39045			_	_	_	_			-	
#18524			_	_	_	_			-	
#4556			_	_	_	_			-	
#4551			0	0		0	0		-	
#62034			0		0		0	0	-	
#62036			0				0	0	-	
#17581								0	-	
#47083			0					0	-	
#47087	11.1					_			-	
#61319	11.1		0	0			0	0	-	
#61319		1.11						0	-	





### 



### **Understand Complex Psychiatric** Conditions **Discover Genetic Risk Factors** Dataset: 118k people, 19k suicide cases, 550 families









Age Sex Race Bipolar # diagnosis bipolar Depression **# diagnosis depression** Asthma # diagnosis asthma Obesity Schizophrenia **Cause of Death** Weapon Used

## **Multivariate Attributes and Graphs** How can we deal with graphs that contain rich attribute data?



b lysA CO2 D,L-Diaminopimelate



[McDonnel2009]

[Gehlenborg2010]



#### <u>ģ</u>ţģ 2 👼 📮 ġſġ ĝ ĝ 후¹8 후 6 616 🐐 6 616 6 승 태승 승 승 승 승 습 한

<u>Ş</u>lê

<u>e</u>é

Ø¢.

ēļģ

₽¢

<u>Ş</u>Ş

Ø

Ø18

<u>Ş</u> 2

<u>ę</u>ę

#### **Genealogy with ~400 members rendered with Progeny**





## 1. De-cycle and linearize graph

7	
L.	

												TUE	ġ	Ion	ssion									America		nici
le All		Expa	and All	)		KindredID	RelativeID	set (F	decea	sed suicid	e Deptes	Agel Total:32	DDeb	Nr.Diag	Bipolar	AgeID BI	Nr.Diag	MaxBMI	AgeMaxBMI	(8 ⁰⁸	White race	othe.	(Nativ	Black	race (H	cause dear
198	\$0	19 ⁶⁰	1980	2000	1017			44%	60%	10%	52%		_ <b>h.</b>		48%					50%	0.0%	0.0%	0.0%	0.0%	0.0%	
		Ø	a.		3	903988						•	65 O	70		<b>3</b> 6	0 20 • • •	) 15 <b>4</b>	5 0 80 • •			**	-	-	-	
				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		903988	#13789							I			0	0	•		-	-	-	-	-	gunshot wounre
	ă	-			3	903988						60	- 6			00	0.00		60		-	-	-	-	-	
				\	1 -	903988	#48154									•					-	-	-	-	-	
					1	903988	#54315											•	0		-	-	-	-	-	
		\rightarrow				903988	#67703						-					0			-	-	-	-	-	
					1	903988	#9278					•						•			-	-	-	-	-	
			-			903988	#26695						-						0		-	-	-	-	-	asphyxia b
	-0		·		7	903988		н.				- 4 ,8			- I	•• ₽	949 P	% 8	46.00		-	-	-	-	-	
				23		903988	#40329														-	-	-	-	-	carbon monox
Ĵ						903988	#5170							_				•	•		-	-	-	_	-	
						903988	#43983					•			10 I I						_	_	-	_	-	
						903988	#5181				Ξ.			_	E 1				•		_	_	_	_	_	
	/ •••					003088	#42470	÷.,	Ξ.	10	Ξ.		_					-			_	_	_	_	_	
		$\int dx$				002099	#42479	21			20				÷					- 21	_		_	_	_	
		p.	`	、 、		903988	#139	21	÷.,	÷.,	20				2.1		•			- 21	_	_	_	-	-	
	•					903988	#1967	20	20	20	2.1				÷				•	- 21	-	-	-	-	-	cardiac arre
						903988	#5172					•	•		- C	•	•		•		-	-	-	-	-	
	(H					903988	#5171						-						•		-	-	-	-	-	
$\ $	11					903988	#10841						-	_				•	0		-	-	-	-	-	
		0.			1	903988	#66710														-	-	-	-	-	
					1 -	903988	#6436						-	_				•	•		-	-	-	-	-	
	/				11	903988	#65130					•	60								-	-	-	-	-	strangulatio
					1	903988	#65129						-								-	-	-	-	-	
					1	903988	#6428					•						•			-	-	-	-	-	
					- 1	903988	#4547					•				•		0	•		-	-	-	-	-	
					1	903988	#65491						-					•	•		-	-	-	-	-	
					- 1 -	903988	#39045						-								-	-	-	-	-	
-				-	1	903988	#18524						-								-	-	-	-	-	
- T						903988	#4556						_								_	_	_	_	_	
						903988	#4551	Ξ.	Ξ.			•		•	10 H	•	•	•	0		_	_	_	_	_	
						002099	#62024	÷.,	÷.,	11	21				2 11					- 21	_	_		_		
		\ \				002089	#62026														_	_	_	_	_	
		````				903988	#02030									-						_	-	_	_	
		\ \				903988	#1/581								10 A						_	-	-	-		
						903988	#47083										U U				-	-	-	-	-	
						903988	#47087											•	•		-	-	-	-	-	
					1	903988	#61319						•			•	•	•	•		-	-	-	-	-	
					1	903988	#61318						-					•	•		-	-		-	-	

## Plot attributes in table

### De-Cycling



### De-Cycling







### Linearization









### Linearization









#### Can't show many people



				ot	E ece	ased	de pre	ssion (True)	gelD	Depression	Depression	(True) gelD	Bipolar K. Diag	sipolat		<u>م</u> د	(white)	(other)	Native	Black)	(Asian)	ispanic) ause
2000	2017	KindredID	RelativelD	<b>5</b> °	60%	<b>6</b> 0 10%	2%	Age Total:121	Total:2	Total:12	0.0%	Total:0	Total:12	MaxBMI Total:8	AgeMaxBMI Total:8	<b>**</b>	<b>*</b> ~ 0.0%	<b>**</b>	<b>۲</b> ۵	<b>*</b> 0.0%	<b>**</b> 0.0%	Cu
		<b>T</b> .	<b>V</b> .	-	$\mathbf{v}_{\mathbf{A}}$	<b>-</b>	$\mathbf{v}_{\mathbf{A}}$	0 👞 ¹²⁰	0 6	50 70	0	0 3	50 20	15 45	່ວ 80	_		7.		<b>T</b> .	<b>V</b>	T.
	1	38	#781				-				-					-	-	-	-	-	-	
	1	38	#784				-	•			-					-	-	-	-	-	-	
	1	38	#56604														-	-	-	-	-	gunshot
	-1-	38	#5444				-	•			-					-	-	-	-	-	-	
	→ 1 —	38	#778				-	•	—		-					-	-	-	-	-	-	
	1	38	#777				-	•			-					-	-	-	-	-	-	
	1	38	#11574				-	•			-					-	-	-	-	-	-	
	1	38	#11575				-	•			-					-	-	-	-	-	-	N.
	1	38	#23088				-	•			-					-	-	-	-	-	-	
		38	#23087				_				-					_	-	_	_	_	_	
	- E -	38	#37				_	•			_					_	_	_	_	_	_	
		38	#35				_				_					_	_	_	_	_	_	
	- 61-	38	#66559		11		_	•	<u> </u>		_					_	_	_	_	_	_	
	- 61-	38	#4022	Ξ.	10	10	_				_					_	_	_	_	_	_	<b> </b>
		20	#4055	Ξ.	10	10	_				_					_		_	_	_	_	
		20	#41082	÷.,	10	10	_				_							_	_	_		<b>\</b>
		30	#05051	21	÷.,	÷.,	-										_	_	_	_		
	62	38	#00501		-												-	-	-	-	-	gunshot
		38	#66560	Ξ.			-	•			-					-	-	-	-	-	-	()
		38	#53797	21	21		-	•			-					-	-	-	-	-	-	
	<del> </del> 1	38	#53798	-	-		-	•			-					-	-	-	-	-	-	
	- 1	38	#9348	21	-	-	-	•			-					-	-	-	-	-	-	
		38	#1073				-	•			-					-	-	-	-	-	-	t
		38	#24070				-	•		—	-				_	-	-	-	-	-	-	
	1	38	#61046						•	•							-	-	-	-	-	mixed dr
	1	38	#47326				-	•	<u> </u>		-					-	-	-	-	-	-	
<b>→</b>	1	38	#22124				-	٠			-					-	-	-	-	-	-	
\	1	38	#61047				-	•			-					-	-	-	-	-	-	
	1	38	#66556				-	•			-					-	-	-	-	-	-	
	1	38	#66557				-	•	—		-					-	-	-	-	-	-	
	1	38	#54490					•								-	-	-	-	-	-	<b>XI</b> V
		38	#34847				-				-					-	-	-	-	-	-	N
	1	38	#39657				-	•	—		-					-	-	-	-	-	-	
	1	38	#705				-				-					-	-	-	-	-	-	
1	1	38	#28375				-	٠			-					-	-		-	-	-	
	1	38	#34				_	•			_					_	_	-	_	-	_	
	1	38	#32				-	٠			-					-	-	_	-	_	-	
	- 11	38	#59713				_	•			_					_	_	_	_	-	_	
		38	#42257											•	•		_	_	_	_	_	queebot
		38	#17565				-										_	_	_	_	_	gunanot
		20	#11000				_															
		318	#/11/96				_	-														

#### Lots of missing data







#### People of Interest











#### One row for every person of interest







#### Others have to share a row



#### **Aggregated Rows**





### More Aggressive: Hiding







#### **Empty row**

#### Only data for #6 shown

## **Implict Encoding of Family**

#### Node of Interest (Suicide)













### Find all people with a certain attribute Sorting!





### Node Attributes



#### Numerical (Age)



#### **Categorical (Depression)**





	/	\ggrega	ate All		ŀ	lide All		Expar	nd All
172780 1800	182 ⁰	1840	1860	1880	,900	192 ⁰	1940	196 ⁰	



	olar	epression	repressiv	on (True)				ite) ath
S.	Total:11	NY.Dia9	Depres	MaxBMI Total:17	AgeMaxBMI Total:17	LabID	tace 1	white cause det
1, 35		0 70	28%	15 45	<b>.</b>		53%	<b>T</b> A
8					•	#68043		
						#86541		cardiac arre
						#64238		asphyxia
		•			•	#105690		gunshot woun
	0				•	#77553		hanging
					Obes	e	-	
	_	_		_		<u> </u>	-	
				_			-	
				_				
		_				#101444		gunshot woun
							-	
						#37136		gunshot woun
				•	0		-	anoxic brain
							-	
		•				#89602		hanging
				8	•	#89343		
					8	#93380		
			-				-	
			-				-	
							-	
								acute oxycod
						#59649		carbon monox
			-				-	
							-	
								self-inflict
							-	
		_	_				-	
		0		•	0			drug intoxic
							-	
					_		-	
		_		•	•	#113472		
	•	•		0				acute salicy
							-	
							-	
	_							gun shot wou

### 

### Improve multi-family exploration

### Add genetic data

### **Extend to other datasets** phylogenies,...

Find phenotype patterns across families









#### **Christian Partl**



#### Samuel Gratzl









H. Pfister



D. Schmalstieg



Alexander Lex

#### Pathfinder

Start Hanspet	er Pfis ⁻ End Ben S	Shneidern Q	Advanced Query	Length Paths	0 0	1 2 0 0
Path List						
<ol> <li>CHI</li> <li>TVCG chi_publications cited degree tvcg_publication</li> </ol>	Hanspeter Pfiste	Frank van Ham	Adam Perer	Ben Shneidern	nar	
1.	Hanspeter Pfiste	Krzysztof Z. Gajc	Desney S. Tan	Ben Shneidern	nar	
<ul> <li>CHI</li> <li>TVCG chi_publications cited degree tvcg_publication</li> </ul>						
1.	Hanspeter Pfister	Jean-Daniel Feke	Catherine Plaisan	Ben Shneidern	nar	
<ul> <li>TVCG chi_publications cited degree tvcg_publication</li> </ul>						
4.	Hanspeter Pfiste	Jean-Daniel Feke	Catherine Plaisan	Jennifer Golb	eck)(i	Ben Shneiderma
<ul> <li>CHI</li> <li>TVCG chi_publications cited degree tvcg_publication</li> </ul>						
4.	Hanspeter Pfiste	Jean-Daniel Feke	Wendy E. Macka	Ed Huai-hsin	Chi(f	Ben Shneiderma
<ul> <li>CHI</li> <li>TVCG chi_publications cited degree tvcg_publication</li> </ul>						
4.	Hanspeter Pfiste	Krzysztof Z. Gajc	Jeffrey Heer	Ed Huai-hsin	Chi(E	Ben Shneiderma
<ul> <li>CHI</li> <li>TVCG chi_publications cited degree tvcg_publication</li> </ul>						
4. ▶ CHI	Hanspeter Pfiste	Krzysztor Z. Gajc	Jeffrey Heer	Stuart K. Ca		sen Shneiderma
<ul> <li>TVCG chi_publications cited degree tvcg_publication</li> </ul>						

1 2 3 4 5 6 7 8 »

#### [EuroVis'16] **Honorable Mention Award**











#### Intelligence Data: How are two suspects connected?



#### Intelligence Data: How are two suspects connected?



#### **Biological Network:** How do two genes interact?



## **Coauthor Network:** How is HP Pfister connected to Ben Shneiderman?



#### How can we deal with graphs too large to sensibly render at once?





#### 







### Network Data





## Nodes

#### Edges

#### Attributes









# Pathfinder Approach


# Pathfinder Approach Show rookey inde alitagra



# Pathfinder Approach Update rankingrto aderatified in the second second









## Path Score













# Pathfinder Approach Update ranking to identify important paths









# 













![](_page_75_Picture_1.jpeg)

![](_page_75_Picture_2.jpeg)

![](_page_75_Picture_3.jpeg)

![](_page_75_Picture_4.jpeg)

**Biological Pathways** 

![](_page_75_Picture_6.jpeg)

# Example: KEGG Metabolism Overview

![](_page_76_Figure_1.jpeg)

01130-62435

Analysis 

# Two genes are co-expressed. What is their underlying connection?

# What are alternative routes from A to B?

# How is gene A connected to Pathway B?

# Is the connection from A to B the same in many pathways?

# Is the route connecting A and B active?

![](_page_77_Picture_7.jpeg)

![](_page_77_Picture_8.jpeg)

![](_page_78_Picture_8.jpeg)

![](_page_78_Picture_9.jpeg)

![](_page_79_Figure_0.jpeg)

![](_page_79_Picture_3.jpeg)

![](_page_80_Picture_0.jpeg)

![](_page_80_Picture_76.jpeg)

![](_page_80_Picture_77.jpeg)

# Query and Search

Specify start and end Start/end can be node lists Start/end can be defined through set membership

![](_page_81_Picture_2.jpeg)

![](_page_81_Picture_3.jpeg)

# Query and Search

# Specify start and end

# K-shortest path search

# Continue until all path of length of k-th path are found

![](_page_82_Picture_4.jpeg)

![](_page_82_Picture_6.jpeg)

K

### Path List

# Query Interface

	Path Topolog	у	
k			

### Path Statistics

Page All

![](_page_83_Picture_6.jpeg)

**\$ 0** 

# Query Interface

# Simple

Start Hanspeter Pfist End Ben Shneiderm

# Advanced

Start Autho Hanspeter Pfister	AND Sequence Authc Catherine

![](_page_84_Picture_5.jpeg)

![](_page_84_Figure_6.jpeg)

![](_page_84_Figure_7.jpeg)

T	End
Inordered	OR
	Authc Ben Shneiderman
Autho Daniel A. Keim	TVCG NodeTrix: a Hybrid \

![](_page_84_Figure_9.jpeg)

![](_page_85_Figure_0.jpeg)

![](_page_85_Picture_2.jpeg)

**†** 0

![](_page_86_Picture_0.jpeg)

![](_page_86_Picture_1.jpeg)

![](_page_86_Picture_2.jpeg)

![](_page_87_Figure_0.jpeg)

![](_page_88_Picture_0.jpeg)

# Path Representation

![](_page_89_Figure_1.jpeg)

### **Numerical Attributes**

# Path Representation

### 2.

### - CHI

A table!: improving Excentric Labeling LifeFlow: visualizin Query Previews in LifeLines: Visualiz The challenges of Organization over LifeFlow: visualizin ManyNets: an inte 'I hear the pattern' Scheduling on-off Aligning temporal

TVCG

UpSet: Visualization Visual Sedimentat SoccerStories: A H Promoting Insight-Temporal Summan Temporal Event So A Task Taxonomy Visualizing Chang chi_publications cited degree tvcg_publications

![](_page_90_Figure_6.jpeg)

Hanspeter Pfiste

![](_page_90_Figure_7.jpeg)

# Path Representation

### CHI TVCG 2. Hanspeter Pfiste A table!: improving CHI Excentric Labeling TVCG LifeFlow: visualizir Query Previews in LifeLínes: Visualiz The challenges of CHI Organization over LifeFlow: visualizir ManyNets: an inte 'I hear the pattern' Scheduling on-off CHI Aligning temporal **TVCG** UpSet: Visualizatio Visual Sedimentat SoccerStories: A I CHI Promoting Insight-Temporal Summa Temporal Event Se A Task Taxonomy Visualizing Chang CHI chi_publications cited degree tvcg publication

### Path List

![](_page_91_Figure_4.jpeg)

1.	O ASS1 → CL-A	1
<ul> <li>Pathways</li> <li>Arginine biosynthe Alanine, aspartate Biosynthesis of an Biosynthesis of an Neuroactive ligand Glutamatergic syn MAPK signaling pa Retrograde endoc Dopaminergic syn</li> </ul>		
Copy Number Ve	Λ	
	. <b> </b>	
- mRNA Expressio		
large_intestine		
pleura		
endometrium		
lung		
skin		
autonomic_gang		
kidney		
thyroid		
central_nervous_		
oesophagus		
upper_aerodiges		
biliary_tract		
stomach		
soft_tissue	· •	
urinary_tract		
breast		
prostate	нD	
pancreas		
salivary_gland		
haematopoietic_		
ovary		
bone	- H <b>E</b> -H	
liver		
3	9 16 3 9	
1.	O ASS1 → CL-A	1
Pathways	-	-
degree		Ē
Copy Number Va	0	
mRNA Expressio		

![](_page_92_Figure_1.jpeg)

# **Grouped Copy Number** and Gene Expression Data

![](_page_92_Picture_3.jpeg)

![](_page_93_Picture_0.jpeg)

![](_page_94_Figure_0.jpeg)

![](_page_94_Picture_2.jpeg)

![](_page_95_Figure_0.jpeg)

# Rank by Average Set Connection Strength Rank by Journal Set Connection Strength

Hanspeter Pfiste Frank van Ham Raghu Machiraju

![](_page_95_Figure_3.jpeg)

Visualizing Chang A Task Taxonomy Evaluation of Arte Balancing Systen 'Search, Show Cc Empirical Studies Video Snapshots MizBee: A Multisc MulteeSum: A To-Overview Use in ! Melange: Space A Principled Way What Makes a Vit FacetMap: A Sca SoccerStories: A ConTour: Data-Dr Entourage: Visua UnSat Minualisat

![](_page_95_Picture_5.jpeg)

![](_page_96_Picture_0.jpeg)

![](_page_96_Picture_1.jpeg)

# ERK-MAPK signaling cascade

![](_page_97_Figure_1.jpeg)

![](_page_97_Figure_3.jpeg)

### Search Paths from KRAS to MAPK3

Ranking by set connection reveals ERK-MAPK signaling cascade

![](_page_97_Picture_6.jpeg)

# **ERK-MAPK signaling cascade**

1.	
<ul> <li>Pathways</li> <li>MAPK signaling pat ErbB signaling path Ras signaling path Rap1 signaling path Chemokine signali FoxO signaling pa Sphingolipid signal PI3K-Akt signaling Dorso-ventral axis VEGF signaling pa Gap junction Signaling pathways Natural killer cell n T cell receptor sig B cell receptor sig B cell receptor sig B cell receptor sig Cholinergic synap Serotonergic syn</li></ul>	
Pancreatic cancer Endometrial cance Glioma	
Prostate cancer Thyroid cancer Melanoma Bladder cancer Chronic myeloid le Acute myeloid leuł Non-small cell lung Central carbon me	Prostate cancer

![](_page_98_Figure_2.jpeg)

### This cascade is important in many pathways.

![](_page_98_Picture_4.jpeg)

![](_page_98_Picture_5.jpeg)

![](_page_99_Picture_1.jpeg)

# Visualization Design Strategies

# 3. Use queries

**1. Encoding channel primacy** 2. Show relationships explicitly 4. User color sparingly 5. Enable annotation / provenance

# **1. Encoding Channel Primacy** Most important data is assigned most powerful encoding channel (position)

# **Example: Set Visualization**

![](_page_103_Figure_1.jpeg)

### [Wiles et al., BMC Systems Biology]

![](_page_103_Figure_3.jpeg)

28,889 / 19,027

### [D'Hont et al., Nature, 2012]

[Neale et al., BMC Genome Biology, 2014]

![](_page_103_Picture_8.jpeg)

8000

6000

4000

2000 -

				Phoenix_dactylifera
				Arabidopsis_thaliana
				Musa_acuminata
			В	rachypodium_distachyo
				Sorghum_bicolor
				Oryza_sativa
15000	10000 Set Size	5000	ō	

![](_page_104_Figure_7.jpeg)

# The Banana Chart Redesigned

![](_page_104_Figure_9.jpeg)

# different views

# 2. Show relationships explicitly Don't use highlighting to connect

Use smart layouts (position) or conneativelle

![](_page_106_Picture_3.jpeg)

![](_page_107_Figure_0.jpeg)

![](_page_107_Figure_1.jpeg)

										aue	sion	sio	n.		4						merice	F	
							2	ed	10. 5	sion Chu	Jepress	Depres	(True) Bi	polat	sipola			white	other	Native	Black	asian) ui	Ispanic,
	Expand All			KindredID	RelativeID	set	dece	Suic	Depres	Ageily	Nr.Dias	Bipolia	Ageil	Nr.Dias	MaxBMI		(ace	1ace	,ace	, ace	Tace	race	
1960	1980	2000	2017			44%	60%	10%	52%			48%					98%	0.0%	0.0%	0.0%	0.0%	0.0%	
			2	002099		-	-	-	-	es	0 70	-	0 35	o 20	15 45	io aoi		-	**	-	-	-	
			1	903988	#13780	Ξ.	Ξ.	Ξ.				71					- 61	_	_	_	_	_	
<u>ل</u> ا			3	903988	#13709		Ξ.	Ξ.			с. Ф.	÷.,	00	0.00	0 ⁰ 0	<b>6</b>	- 61	_	_	_	_	_	gu
Q				903988	#48154	÷.	Ξ.	1							0		1	_	_	_	_	_	
				903988	#54315	1												-	_	_	_	_	
			1	903988	#67703													-	-	-	-	-	
			1	903988	#9278					•			•					-	-	-	-	-	
		$\rightarrow$	1	903988	#26695					—					•			-	-	-	-	-	a
l			7	903988		Ξ.				9,8			±0°₿	9494P	<b>%</b>	4		-	-	-	-	-	
		23	1	903988	#40329					•			•			•		-	-	-	-	-	Ca
			1	903988	#5170													-	-	-	-	-	
			1	903988	#43983					•			•			0		-	-	-	-	-	
			1	903988	#5181													-	-	-	-	-	
			1	903988	#42479													-	-	-	-	-	
			1	903988	#139					•	0			•	•			-	-	-	-	-	
		7		903988	#1967	2.	5			_	_	÷.,	_		•	•	- 21	-	-	-	-	-	Ca
			- 1	903988	#5172	÷.,	2	2		•	•	20	•	•	•	•	- 21	-	-	-	-	-	
			-1	903988	#5171	21	2	2				-				0	- 21	-	-	-	-	-	
$\int dx$				903988	#10841	÷.,	21	2			_	20	-		•	•	- 21	-	-	-	-	-	
		\ \		903988	#66/10	21	Ξ.	2			•	21		•			- 21	-	_	_	_	_	
		<i>`</i>		903988	#6436	21	21	Ξ.									- 21	_	_	_			
		~		903988	#05130	÷.,	Ξ.	Ξ.		_	_	10	_				- 21	_	_	_	_	_	st
				903988	#6428	Ξ.	Ξ.				0	÷.,				0	- 5	_	_	_	_	_	
			- 6-	903988	#4547	10	Ξ.	1		•				•			- 6	_	_	_	_	_	
		-		903988	#65491					_	_	1	_					_	_	_	_	_	
			- 1	903988	#39045		ī.									•		-	-	-	_	-	
			1	903988	#18524											•		-	-	-	-	-	
			1	903988	#4556										•			-	-	-	-	-	
			- 1	903988	#4551									•	•	•		-	-	-	-	-	
			1	903988	#62034													-	-	-	-	-	
			1	903988	#62036						0		0	•	0			-	-	-	-	-	
	4		1	903988	#17581										0	•		-	-	-	-	-	
			1	903988	#47083					•				•				-	-	-	-	-	
			1	903988	#47087										•	0		-	-	-	-	-	
			1	903988	#61319					0			0	0	0	0		-	-	-	-	-	
			1	903988	#61318										•			-	-	-	-	-	

![](_page_107_Figure_3.jpeg)
## 3. Use queries especially for big data





**†** 0

### 4. User color sparingly Limit use to encode data Primarily use it to highlight items of





### Only one color for primary attribute (suicide, blue)



### Another color for highlights, to emphasize parent-child relationship (orange)

	1	38	#21768			•			
	11	38			-				-
D D	3	38			-	09			-
	1	38	#777			•			
	4	38			-	8.0			-
	3	38			-	• 8			-
	1	38	#61047			•	•	•	
	5	38			-	••8			-
	1	38	#24070			•			
	6	38			-	••••			-
	1	38	#42258			•			
	5	38			-	••••			-
	1	38	#16807			•			
	6	38			-	•			-
	1	38	#25707			•			
	8	38			-	0000			-
	1	38	#24460			•			
	9	38			-	<b>%</b>			-
	1	38	#65051			•			
	7	38			-	• • •			-
	1	38	#37542			•			
	6	38			-	• • •			-
	1	38	#1629			•			
	7	38			-	•••			-
	6	38			-	9900 O			-
	1	38	#39657			•	•	•	
	5	38			-	8.0			-
	13	38			-	• •			-





### Adding a color for an additional attribute (deceased yes/no, green)

#### #21768 . . 11 .... _ _ _ 38 ... 3 #777 ... #61047 5 #24070 6 0 #42258 _ 5 38 .... #16807 ... #25707 38 .... #24460 #65051 #37542 #1629 7 38 ... . . . 6 #39657 ÷. 13 38 ...

	•			
	<b>%</b> **			-
	99			-
	٠			
-				_
-	••			-
	٠	٠	•	
	00g			-
	•			
	• • •			-
	•			
	800.0			-
	0000			-
	4.48			-
	•			
	• •			-
	•			
	• •			-
	•			
-				-
-				-
	•	•	•	
	6° •			-
	• •			-

# 5. Enable annotation / provenance What did you see / think when looking at this visualization? How did I get here? Can I go back?



# We're hiring PostDocs and accept PhD Students!



### Miriah Meyer Alexan



Alexander Lex





#### Alexander Lex @alexander_lex http://alexander-lex.net

Visualizing Biological Dala: Allermalive Splicing



# Pakhway Graphs, Grenealogies, and

### Visualization design lab

### THE UNIVERSITY OF UTAH





