Alexander Lex

 Pathway Graphs, Genealogies, and Alternative splicing
visualization design lab

visualization design lab

Miriah Meyer

Alexander Lex

Ethan Kerzner

Nina McCurdy

Alex Bigelow

Jimmy Moore

Sean McKenna

Cameron Waller

Sam Quinan

Carolina Nobre

http://vdl.sci.utah.edu/

visualization design lab

Applied Visualization Research Biology, Medicine, Humanities, ...
Visualization Design Models
User-centered Design
Visualization Techniques
Visualization Frameworks

datavisyn.io


```
.visualizalion not numbers. pictures
- Card, Mackinlay, Shneiderman
- Richard Wesley Hamming
```

Banana M. acuminata Date P.dactylifera
Cress Arabidopsis thaliana Rice Oryza sativa
Sorghum Sorghum bicolor
Brome Brachypodium distachyon

4

Good ... makes data accessible Daka ... combines strengths of Visualizalion humans and computers
... enables insight
... communicates

Can We Trust Statistics?

I		II		III		IV	
x	Y	x	Y	x	Y	x	y
10	8.04	10	9.14	10	7.46	8	6.58
8	6.95	8	8.14	8	6.77	8	5.76
13	7.58	13	8.74		12.74	8	7.71
9	8.81	9	8.77	9	7.11	8	8.84
11	8.33	11	9.26	11	7.81	8	8.47
14	9.96	14	8.1	14	8.84	8	7.04
6	7.24	6	6.13	6	6.08	8	5.25
4	4.26	4	3.1	4	5.39	19	12.5
12	10.84	12	9.13	12	8.15	8	5.56
7	4.82	7	7.76	7	¢ 17	8	7.91
5	5. Mean x: 9 y: 7.50						6.89
	Variance x: 11 y: 4.122						
	Correlation x - y: 0.816						
	Linear regression: $y=3.00+0.500 x$						

Anscombe's Quartett

Mean x: 9 y : 7.50
Variance x : 11 y : 4.122
Correlation $\mathrm{x}-\mathrm{y}: \mathbf{0 . 8 1 6}$
Linear regression: $y=3.00+0.500 x$

Same Stats, Different Graphs: Generating Datasets with Varied Appearance and Identical Statistics through Simulated Annealing, CHI 2017, Justin Matejka, George Fitzmaurice

Visualization in the Data Science Process

Figure 2-2. The data science process

Interacting with Data

The Future of Data Analysis is (also) Interactive

Visualization =
Human Data Interaction

Research Areas

Large, Multivariate (Biological) Networks

Genealogies \& Clinical Data

Multidimensional Data

Cancer Subtypes / Omics Clustering and Stratification

Alternative Splicing / mRNA-seq

[InfoVis'15]
Visualizing Alternative Splicing

Hendrik Strobelt Bilal Alshallak

Mark Borowsky

Brant Peterson

Joseph Botros

Visualize measures for isoform abundance, base-pair/exon expression, junction reads

for a large set of samples

Splicing

Remove introns as part of the transcription process

Omitted Exons

Truncated Exons

Isoforms

Isoform 1

Isoform 2

Isoform 3

Reads

Reads from mRNA-seq data tell us about expression of exons
Junction reads tell us about which (parts of) exons are spliced out

Junction Information

Coals
 Explore differences between samples and groups of samples

Quality control

Discover novel isoforms

The Competition: Sashimi Plots

Data \& Visualization

Isoform abundance

Exon expression
Junction reads
...for hundreds of samples ...for multiple groups

Expression View

Isoform View

Junction View

Junction View -Group Comparison

Junction View - Group Comparison

Junction View - Group Comparison

Case Study: Leukemia vs Glioblastoma

hetp://vials.io

Lineage
 Visualizing Clinical Data in Genealogy Graphs

Carolina Nobre

Hilary Coon

Nils Gehlenborg

Alexander Lex

Mokivation

Understand Complex Psychiatric

 Conditions
Discover Genetic Risk Factors
 Dataset: 118k people, 19 k suicide cases, 550 families

Multivariate Attributes and Graphs

How can we deal with graphs that contain rich attribute data?

[McDonnel2009]

Genealogy with ~400 members rendered with Progeny

1. De-cycle and
linearize graph

2. Plot attributes in table

De-Cycling

De-Cycling

Linearization

Linearization

Can't show many people

Lots of missing data

Aggregation

Aggregation

One row for every person of interest

Others have to share a row

More Aggressive: Hiding

Only data for \#6 shown

Implict Encoding of Family

Find all people with a certain attribute

 Sorting!

Node Attributes

Numerical (Age)

Categorical (Depression)

Example

Improve multi-family exploration

Next Steps
Find phenotype patterns across families

Add genetic data

Extend to other datasets phylogenies, ...

hetp://lineage.caleydoapp.org

Pachfinder:

[EuroVis '16]
Honorable Mention Award Visual Analysis of Paths in Graphs

Christian Partl

H. Pfister

Marc Streit Anne Mai Wasserman

Samuel Gratzl

D. Schmalstieg Alexander Lex

Intelligence Data: How are two suspects connected?

Intelligence Data: How are two suspects connected?

Biological Network: How do two genes interact?

Coauthor Network: How is HP Pfister connected to Ben Shneiderman?

Challenge: Graph Size

How can we deal with graphs too large to sensibly render at once?

Approach: (Pakh) Queries

\&. Pathfinder

Start Christian Partl	End	Ben Shneidern	Q	Advanced Query	$\begin{array}{l}\text { Length } \\ \text { Paths }\end{array}$	0	0	1	2	3	4

Path List

antour Dun Dr

Critery Chary.
chipablicationy
chted
degme
on
 Average ss IF F 4267 $\stackrel{52}{\square}$ 를
4
4

s.

TVCG
C18
chi_publications
chied
angere
trice _publicion
trece_subication
6.
6.
TVC0

The Daka

Network Data

Nodes

Edges
\qquad

Attributes
\square

Sets

The Approach

Pathfinder Approach

Pathfinder Approach

Shcass rquexeyli ireds alliagrapn.

Pathfinder Approach

Pathfinder Approach

Update ranking to identify important paths

Biological Network

Example: KEGG Metabolism Overview

Two genes are co-expressed. What is their underlying connection?

What are alternative routes from A to B ?

How is gene A connected to Pathway B?

Is the connection from A to B the same in many pathways?

Is the route connecting A and B active?

Pathfinder Views

"—-リ[

Path Query and Search

Query and Search

Specify start and end

 Start/end can be node lists Start/end can be defined through set membership

Query and Search

Specify start and end

K-shortest path search

Continue until all path of length of k-th path are found

Path Statistics
क

Query Interface

Simple

Start Hanspeter Pfist End Ben Shneiderr		Q	Length	0	1	2	3	4
		Paths	0	0	0	3	105	

Advanced

\& Pathfinder

Pach Topology View: Gelling an Overview

Start Hanspeter Pfis End Ben Shneiderm

a
Advanced Query
Length
Paths

Path List View:

Investigating Paths in Detail

Path Representation

Numerical Attributes

Path Representation

2.

$-\mathrm{CHI}$
A table!: improvinc
Excentric Labelinc
LifeFlow: visualizit
Query Previews in
LifeLínes: Visualiz
The challenges of
Organization over
LifeFlow: visualizir
ManyNets: an inte
'I hear the pattern'
Scheduling on-off
Aligning temporal - TVCG

UpSet: Visualizatic Visual Sedimentat SoccerStories: A \mid Promoting InsightTemporal Summa Temporal Event Si A Task Taxonomy Visualizing Chang chi_publications
cited
degree
tvca publication

Path Representation

2.

－ CH
A table！：improvins
Excentric Labelinc
LifeFlow：visualizit Query Previews in LifeLínes：Visualiz The challenges of Organization over LifeFlow：visualizir ManyNets：an inte ＇I hear the pattern＇ Scheduling on－off Aligning temporal TVCG
UpSet：Visualizatic Visual Sedimentat SoccerStories：A t Promoting Insight－ Temporal Summa Temporal Event S A Task Taxonomy Visualizing Chang chi＿publications cited
degree
tvcg publication

気引

Pathways

Grouped Copy Number and Gene Expression Data

Palh Ranking: Identifying Relevant Paths

a Advanced Query
\qquad

Case Skudy: Biological Nework

ERK-MAPK signaling cascade

ERK-MAPK signaling cascade

This cascade is important in many pathways.

hetp://pathfinder.caleydoapp.org

Visualization Design Strategies

1. Encoding channel primacy 2. Show relationships explicitly
2. Use queries
3. User color sparingly
4. Enable annotation / provenance

1. Encoding Channel Primacy

Most important data is assigned most powerful encoding channel (position)

Example: Set Visualization

The Banana Chart Redesigned

2. Show relationships explicitly

Dont use highlighting ko connect differenk views
Use smart layouls (posikion) or conneclivily

3. Use queries

 especially for big data\& Pathfinder

4. User color sparingly

Limit use lo encode data
Primarily use il bo highlight items of interest
Pop out effect!

Only one color for primary attribute (suicide, blue)

Another color for highlights, to emphasize parent-child relationship (orange)

Adding a color for an additional attribute (deceased yes/no, green)

5. Enable annotation / provenance

 What did you see / Chink when Looking al this visualization?How did I get here? Can I go back?

We're hiring PostDocs and accept PhD Students!

visualization design lab

Miriah Meyer

Alexander Lex

Alexander Lex

@alexander_lex
http://alexander-lex.net
Visualizing Biological Daka: Pachway Craphs, Cenealogies, and Alkernalive Splicing

visualization design lab

