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Mapper Interactive

- Mapper Interactive is a web-based visualization of Mapper
algorithm. It is open source software and is released under the MIT
License.

https://mapper-interactive.org/


https://mapper-interactive.org/

Regression
Visual Mapping




Clarification: data vs dim space

Each column
is a “dim” point




Review: Clustering and Vis

~ Clustering points in the data space vs in the dim space
o Interplay of data manipulations either in the data space, the dim
space or both



Additional Readings

- [WenskovitchCrandellRamakrishnan2017]: Towards a Systematic
Combination of Dimension Reduction and Clustering in Visual
Analytics Clustering

- [SachaZhangSedimair2016]: Visual Interaction with Dimensionality
Reduction: A Structured Literature Analysis



Regression & VIS

Focus: the interplay between vis and regression analysis



Regression analysis + VIS

- Optimization and design steering (e.g., HyperMoVal)
- Explore multiple output or response variables
- The results require a qualitative examination
- Results are used to inform decisions
- Structural summaries (e.g., HDViz)
~Using regression to summarize data (e.g., skeleton
representations)




HyperMoVal

HyperMoVal: Interactive Visual Validation of Regression Models for

Real-Time Simulation

- Validating regression model against actual data

- Uses support vector regression (SVR) to fit a model to high-dim
data

- Highlights discrepancies between the data and the model

- Computes sensitivity information on the model



HyperMoVal: Model Validation

1. Comparing known and predicted results

2. Analyzing regions with a bad fit

3. Assessing the physical plausibility of models also outside regions
covered by validation data

4. Comparing multiple models

The key idea is to visually relate one or more n-dimensional scalar
functions to known validation data within a combined visualization.
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Figure 1: The layout of HyperMoVal for a real model predicting torque given four parameters. The focal point F is set to a
validation data point with a significant deviation. The matrix contains all paraxial 2D slices at F in the 5D model space.



HDViz

- Approximates a topological clustering (more on this later)

- Construct an inverse linear regression for each cluster of the data

- Regression is used as a post-processing step in order to present
summaries of the extracted subsets of data.



(b)

Fig. 3. Schematic illustration of the proposed method. The scalar func-
tion (a) is decomposed into piecewise monotonic regions (b) and each
region is approximated by a regression curve (c).

https://www.sci.utah.edu/software/hdvis.html [GerberBremerPacucci2010]



https://www.sci.utah.edu/software/hdvis.html [GerberBremerPacucci2010]



HDViz
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== | HDViz: Case Study
Combustion
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Fig. 15. Chemical composition in relation to heat released during a jet
flame combustion simulation. The three distinct minima correspond to
pure fuel, pure oxidizer and extinction/reignition. Graphs of chemical
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HDViz: Case Study
Nuclear Simulation
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Figure 5: SA of the new nuclear fuel dataset: (a) topology map,
(b) persistence diagram, (¢) linked scatter plot projection, (d) linear
coefficients, and (e) fitness view with stepwise R? scores.
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Take home message...

- Subspace clusterings + visualization
~ Clustering + regression
o Partition-based regression + visualization



Visual Mapping
of high-dim data



User Interactions

Review:
Visualization

pipeline for high-
dim data

[LiuMaljovecWang2017]



User Interactions
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’ § Linear Projection [23], [25], Dimension Space Exploration Optimization & Morse-Smale Complex
— —— g Nonlinear DR [26], [30], [47], 48], [49], Design Steering [166], [168], [169], [170],
Pl GransformaﬁoD = Control Points Projection [34], [37]  Subset of Dimension [51], [53], [61], [62], [63], Reeb Graph [174], [175], [181]
= Distance Metric [38, 39], Non-Axis-Parallel Subspace Structural Summaries Contour Tree [179, 180],
§ Precision Measures [42], [44] [56], [57], [58] [67], [68] Topological Features [191], [192]

\ 4
\ 4

: . Axis-Based Glyphs Pixel-Oriented Hierarchy-Based Animation Evaluation
_>< Vlsufll > S Scatterplot Matrix [70], Per-Element Glyphs  Jigsaw Map [109], Dimension GGob 1[119], Scatterplot Guideline
=\ _ Mapping S | Parallel Coordinate [77], [99], [100],  Pixel Bar Charts [108],  Hierarchy [113],  TripAdvisor™ 11227, [123]
’ E Radial Layout [89], [90], [101], [102], Circle Segment [107] Topology-Based [52], Parallel Coordinates
- _§ Hybrid Construction =~ Multi-Object Glyphs ~ Value & Relation ~ Hierarchy [197], [198], Rolling the Effectiveness [124],
’ ~ [93], [94], [95], [96] [103], [104], [105] Dispaly [110] Others [115], [117] Dice [120] Animation [127]
— < View > N
<=\ Transformation '*§ Illustrative Rendering Continuous Visual Representation  Accurate Color Blending  Image Space Metrics
’ § [llustrative PCP [128], Continuous Scatterplot [134], [135] Hue-Preserving Clutter Reduction
- 2 Illuminated 3D Scatterplot [129],  Continuous Parallel Coordinates [136], Blending [140], [142], [143],
E PCP Transfer Function [130], Splatterplots [138], Weaving vs. Blending Pargnostics [144],
’ 2 Magic Lens [132, 133] Splatting 1in Parallel Coordinates [136] [141] Pixnostic [145]
: ( User =

)
Visualization pipeline for HD data

[LiuMaljovecWang2017]



Visual Mapper

- Plays an essential role in converting analysis results from the
stage into visual structures for rendering in the
stage

- Several approaches based on differences in their structural patterns

and visual compositions:
- Axis-based

- Glyphs

> Pixel-oriented

- Hierarchical-based

-~ Animation




Overview

- Axis-based: contain axes corresponding to the original data
dimensions, projected dimensions, or combinations thereof.

- Glyphs: encode information into the size, color, shape, and
arrangement of small graphical symbols.

~ Pixel-oriented: encode individual data values as pixels and focus on
arranging the pixels in meaningful ways.

- Hierarchical-based: visualize nesting relationships in multi-
resolution and tree-like data.

- Animation: include a temporal element to convey information in the
changing of visual elements.

Finally, the effectiveness of visual encodings.




AXIs-Based Methods



Scatterplot Matrix for Iris Data
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A collection of bivariate scatterplots: view multiple bivariate relationships simultaneously




Review: correlation
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Pearson correlation coefficient



Review: correlation
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SPLOM

- Major drawback: scalabillity
~How do we improve the scalability by automatically or semi-
automatically identifying interesting plots?



Graph-Theoretic Scagnostics

Figure 3: Scaled graph-theoretic measures (blue=low, red=high) for
eleven scatter patterns
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SPLOM: other considerations

- Rank-by-feature: histogram distribution properties; or correlation
coefficients between axes [SeoShneiderman2004]

> Class labels play an important role in identifying interesting plots
and ranking order

- Class consistency: distance to the center of the class or entropies of
the spatial distributions of classes

- Class density measure or histogram density measure to rank
scatterplots




Inates
(PCP)
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PCP

- Instead of directly express bivariate relationships (as in SPLOM),
PCP allow patterns that highlight multivariate relations to be
revealed by showing all the axes at once

- Key question: determine the appropriate

- Users can only focus on visual patterns of nearby axes

-~ Reduce search space by focusing on localized axes orders:
consecutive dimension triples or pairwise dimensions




PCP: Combing quality metrics

B
)

Fig. 2. The synthetic data set reduced to 9 variables using different
quality metric weights and variable orders. In the top view clustering is
assigned a large weight and the variables are ordered to enhance the
cluster structures. In the bottom view a corresponding weighting and
ordering is made for correlation structures.

Use a weighted combination of quality
metrics for dimension selection and
automatic ordering of the axes to
enhance visual patterns such as
clustering correlation




PCP: Combing quality metrics

1. A data set is loaded into the system and the user selects qual-

ity metrics to use and sets the parameters for the quality metric
analysis.

. The system performs quality analysis for the selected metrics in-
dividually and determines a quality value for each variable and
metric.

. The relationship between the number of variables to keep and
loss of information is presented to the user in an interactive dis-
play. At this point the user can also modify the importance of
individual quality metrics, updating the display accordingly.

. The user decides on the number of variables to keep in the re-
duced data set and the system selects the most important vari-
ables from the original data set based on quality values and met-
ric importance.

. In the final step before the reduced data set is displayed, the user
selects which visual representations to use and which quality
metric the variable ordering should enhance.

. The reduced data set 1s displayed using the selected representa-
tions and orderings. From here any of the previous steps can be
repeated to modify the reduced data set.

> Quality metrics (for variables/

dimensions)

- Correlation analysis

- QOutliers

~ Cluster detection: uses a clustering
algorithm to identify low- dim sub-
clusters, which are then the base of
computing a cluster quality value
for every variable.




PCP: other considerations

> Visual clutter due to the number of dimensions and line density

o Clutter reduction via: filtering, aggregation, visual encoding, and
dimension reordering

- Example: line bundling



Figure 2: The effect of energy term weighting on visual clus-
tering: (a) No visual clustering; (b) 0c =0, go. = g4 = 15;
(c) 0c =0, go = qgqg = 30, (d) oc =0.15, go. = g4 = 30.

Figure 1: Energy Terms: (a) Curvature energy term; (b)

Gravitation energy term,; (c) Computing the force for the

gravitation energy term; (d) The range of neighboring lines [ZhouYuanQu2008]
for gravitation interaction. m is set to be 3 for Eq. 2 and 3.



Radial Layout
(star coordinate
plot, bi-plot)




Radial layout

= An extension of typical 2d and 3d scatter-plots to higher dimensions
with normalization.
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Hybrid

= Gonstructions

[YuanGuoXiao2007]




Hybrid Constructions

- Combine axis-based methods to create new visualizations
- In the previous example: embeds an MDS plot between a pair of
PCP axes
- Other examples:
~ Generalization of PCP and SPLOM
- Integrate PCP with glyphs
- Angular histograms



Thanks!

Any questions?

You can find me at: beiwang@sci.utah.edu


mailto:beiwang@sci.utah.edu?subject=
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Presentation Design

This presentation uses the following typographies and colors:

Free Fonts used:

http://www.1001fonts.com/oswald-font.nhtml
https://www.fontsquirrel.com/fonts/open-sans

Colors used



https://www.fontsquirrel.com/fonts/open-sans

