CAAM 453 - NUMERICAL ANALYSIS |

Lecture 38: Bracketing Algorithms for Root Finding

7. Solving Nonlinear Equations.

Given a function f : R — R, we seek a point x, € R such that f(x.) = 0. This z, is called a
root of the equation f(x) = 0, or simply a zero of f. At first, we only require that f be continuous
a interval [a,b] of the real line, f € Cla,b], and that this interval contains the root of interest.
The function f could have many different roots; we will only look for one. In practice, f could
be quite complicated (e.g., evaluation of a parameter-dependent integral or differential equation)
that is expensive to evaluate (e.g., requiring minutes, hours, ...), so we seek algorithms that will
produce a solution that is accurate to high precision while keeping evaluations of f to a minimum.

7.1. Bracketing Algorithms.

The first algorithms we study require the user to specify a finite interval [ag, bo], called a bracket,
such that f(agp) and f(bg) differ in sign, f(ag)f(by) < 0. Since f is continuous, the intermediate
value theorem guarantees that f has at least one root z, in the bracket, z. € (ao, bp).

7.1.1. Bisection.
The simplest technique for finding that root is the bisection algorithm:
For £k =0,1,2,...

1. Compute f(cg) for ¢ = %(ak + by).
lak, cx], if fak)f(ck) <O;

ek, bk, i f(cr) f(be) <O.
3. Stop when the interval byi1 — ag4q is sufficiently small, or if f(cg) = 0.

2. If f(cr) =0, exit; otherwise, repeat with [ag41, bkr1] == {

How does this method converge? Not bad for such a simple method. At the kth stage, there must
be a root in the interval [ay, bx]. Take ¢ = %(ak + bi) as the next estimate to z,, giving the error
er = ¢ — Tx. The worst possible error, attained if z, is at ag or by, is %(bk —ag) =271 (by — ag).

Theorem. The kth bisection point ¢ is no further than (by — ag)/2*+! from a root.

We say this iteration converges linearly (the log of the error is bounded by a straight line when
plotted against iteration count — an example is given later in this lecture) with rate p = 1/2.
Practically, this means that the error is cut in half at each iteration, independent of the behavior
of f. Reduction of the initial bracket width by ten orders of magnitude would require roughly
log, 10'° ~ 33 iterations.

7.1.2. Regula Falsi.

A simple adjustment to bisection can often yield much quicker convergence. The name of the
resulting algorithm, regula falsi (literally ‘false rule’) hints at the technique. As with bisection,
begin with an interval [ag, bg] C R such that f(ag)f(by) < 0. The goal is to be more sophisticated
about the choice of the root estimate ¢ € (ag,by). Instead of simply choosing the middle point of
the bracket as in bisection, we approximate f with the line py € P; that interpolates (ag, f(ax))
and (b, f(bk)), so that pg(ar) = f(ax) and p(bx) = f(bx). This unique polynomial is given (in the
Newton form) by
f(bk) — f(ax)

by, — ay,

pr(z) = flar) + (z — ag).

29 November 2009 38-1 M. Embree, Rice University

CAAM 453 - NUMERICAL ANALYSIS |

Now estimate the zero of f in [ag, bi] by the zero of the linear model py:
o = akf (bk) — bef(ax)
f(br) — flax)
The algorithm then takes the following form:

For k=0,1,2,...

arf(br) — br.f(ax)
fox) — flax)

2. If f(ck) =0, exit; otherwise, repeat with [ag41,bk+1] == {

1. Compute f(ci) for ¢, =

[aka Ck]’ if f(ak)f(ck) <0;
[ck, bk], if f(cx) f(br) <O.
3. Stop when f(cy) is sufficiently small, or the maximum number of iterations is exceeded.

Note that Step 3 differs from the bisection method. In the former case, we are forcing the bracket
width by — ap to zero as we find our root. In the present case, there is nothing in the algorithm
to drive that width to zero: We will still always converge (in exact arithmetic) even though the
bracket length does not typically decrease to zero. Analysis of requla falsi is more complicated than
the trivial bisection analysis; we give a convergence proof only for a special case.

Theorem. Suppose f € C?[ag, by] for ag < by with f(ag) < 0 < f(bp) and f”(x) > 0 for all
x € [ag,bo]. Then requla falsi converges.

Proof. (See Stoer & Bulirsch, Introduction to Numerical Analysis, 2nd ed., §5.9.)

The condition that f”(x) > 0 for x € [ag, bp] means that f is convex on this interval, and hence
po(x) > f(x) for all x € [ag, bo]. (If po(x) < f(x) for some = € (ap, bp), then f has a local maximum
at T € (ao, bo), implying that f”(Z) < 0.) Since po(cp) = 0, it follows that f(co) < 0, and so the
new bracket will be [a1,b1] = [co, bo]. If f(co) = 0, we have converged; otherwise, since f”(z) > 0 on
[a1,b1] C [ap,bo] and f(a1) = f(co) <0 < f(bo) = f(b1), we can repeat this argument over again to
show that [ag, bo] = [¢1, 1], and in general, [agi1, bgi1] = [k, bg]. Since ¢ > ar = cx_1, we see that
the points ¢, are monotonically increasing, while we always have by, = b,_1 = -+ = b1 = by. Since
ek < by = -+ = by, the sequence {c;} = {ar_1} is bounded. A fundamental result in real analysis
tells us that bounded, monotone sequences must converge.! Thus, klim ar = o with f(a) <0, and
—00

we have

_ af(bo) = bof(a)

— flbo) = fla)
This can be rearranged to get (o — by) f(a) = 0. Since f(bg) = f(bo) > 0, we must have a # by, so
it must be that f(a) = 0. Thus, regula falsi converges in this setting. m

Conditioning. When |f/(z¢)| > 0, the desired root is easy to pick out. In cases where f'(xg) ~ 0,
the root will be ill-conditioned, and it will often be difficult to locate. This is the case, for example,
when z(is a multiple root of f. (You may find it strange that the more copies of a root you have,
the more difficult it can be to compute it!)

Deflation. What is one to do if multiple distinct roots are required? One approach is to choose a
new initial bracket that omits all known roots. Another technique, though numerically fragile, is

~

to work with f(z) := f(x)/(x — z9), where xq is the previously computed root.

PIf this result is unfamiliar, a few minutes of reflection should convince you that it is reasonable. (Imagine a ladder
with infinitely many rungs stretching from floor to ceiling in a room with finite height: eventually the rungs must get
closer and closer.) For a proof, see Rudin, Principles of Mathematical Analysis, Theorem 3.14.

29 November 2009 38-2 M. Embree, Rice University

CAAM 453 - NUMERICAL ANALYSIS |

MATLAB code. A bracketing algorithm for zero-finding available in the MATLAB routine fzero.m.
This is more sophisticated than the two algorithms described here, but the basic principle is the
same. Below are simple MATLAB codes that implement bisection and requla falsi.

function xstar = bisect(f,a,b)

% Compute a root of the function f using bisection.

%h £ a function name, e.g., bisect(’sin’,3,4), or bisect(’myfun’,0,1)
% a, b: a starting bracket: f(a)*xf(b) < 0.

fa = feval(f,a);

fb = feval(f,b); % evaluate f at the bracket endpoints
delta = (b-a); % width of initial bracket
k = 0; fc = inf; % initialize loop control variables
while (delta/(2°k)>1e-18) & abs(fc)>1e-18
c = (a+b)/2; fc = feval(f,c); % evaluate function at bracket midpoint
if faxfc < 0, b=c; fb = fc; % update new bracket
else a=c; fa=fc; end
k = k+1;
fprintf(’ %3d %20.14f %10.7e\n’, k, c, fc);
end

xstar = c;

function xstar = regulafalsi(f,a,b)

% Compute a root of the function f using regula falsi

% £ a function name, e.g., regulafalsi(’sin’,3,4), or regulafalsi(’myfun’,0,1)
% a, b: a starting bracket: f(a)*f(b) < 0.

fa = feval(f,a);

fb = feval(f,b); % evaluate f at the bracket endpoints
delta = (b-a); % width of initial bracket
k = 0; fc = inf; % initialize loop control variables

maxit = 1000;
while (abs(fc)>le-15) & (k < maxit)
c = (axfb - bxfa)/(fb-fa); % generate new root estimate
fc = feval(f,c); % evaluate function at new root estimate
if faxfc < 0, b=c; fb = fc; % update new bracket
else a=c; fa=fc; end
k = k+1;
fprintf(’ %3d %20.14f %10.7e\n’, k, c, fc);
end
xstar = c;

Accuracy. Here we have assumed that we calculate f(z) to perfect accuracy, an unrealistic ex-
pectation on a computer. If we attempt to compute x, to very high accuracy, we will eventually
experience errors due to inaccuracies in our function f(z). For example, f(z) may come from ap-
proximating the solution to a differential equation, were there is some approximation error we must
be concerned about; more generally, the accuracy of f will be limited by the computer’s floating
point arithmetic. One must also be cautious of subtracting one like quantity from another (as in
construction of ¢ in both algorithms), which can give rise to catastrophic cancellation.

Minimization. A closely related problem is finding a local minimum of f. Note that this can be
accomplished by computing and analyzing the zeros of f’.}

tFor details, see J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, 2nd ed., Springer-Verlag, 1993, §5.9,
or L. W. Johnson and R. D. Riess, Numerical Analysis, 2nd ed., Addison-Wesley, 1982, §4.2.

29 November 2009 38-3 M. Embree, Rice University

CAAM 453 - NUMERICAL ANALYSIS |

Below we show the convergence behavior of bisection and regula falsi when applied to solve the
nonlinear equation M = E —esin F for the unknown F, a famous problem from celestial mechanics
known as Kepler’s equation; see §7.4 in Lecture 40.

BISECTION REGULA FALSI
10° 10°
error
error bound true error
10° 10°
107% 107%
true error
|330 — Ck
107° ‘ ‘ ‘ ‘ 107° ‘ ‘ ‘ ‘ ‘ ‘
0 10 20 30 40 50 0 5 10 15 20 25 30 35
tteration iteration

Error in root computed for Kepler’s equation with M = 47 /3, e = 0.8 and initial bracket [0, 27].

Is regula falsi always superior to bisection? For any function for which we can construct a root
bracket, one can always rig that initial bracket so the root is exactly at its midpoint, %(ao + bo),
giving convergence of bisection in a single iteration. For most such functions, the first regula falsi
iterate is different, and not a root of our function. Can one construct less contrived examples?
Consider the function shown on the left below;¥ we see on the right that bisection outperforms
requla falsi. The plot on the right shows the convergence of bisection and regula falsi for this
example. Regula falsi begins much slower, then speeds up, but even this improved rate is slower
than the rate of 1/2 guaranteed for bisection.

2 ‘f ‘ 0

10
requla falsi
fx) 19 1 error /
1 107
0.5r

107%

0 < , bisection

-0.5 : : : 18 ‘ ‘ ‘ ‘
-10 -5 0 5 10 10 0 20 40 60 80 100
T iteration

$This function is f(x) = sign(tan™"(z)) * |2 tan " (z)/7|"/?° + 19/20, whose only root is at = ~ —0.6312881....

29 November 2009 38-4 M. Embree, Rice University

