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Lecture 20: Orthogonal Polynomials for Continuous Least Squares Problems

In the last lecture we saw how to reduce continuous least squares problems to systems of linear
algebraic equations. In particular, we could expand polynomials in any basis {φk}nk=0 for Pn,

p =
n∑

k=0

ckφk,

and then solve the system
〈φ0, φ0〉 〈φ0, φ1〉 · · · 〈φ0, φn〉

〈φ1, φ0〉 〈φ1, φ1〉
...

...
. . .

...
〈φn, φ0〉 〈φn, φ1〉 · · · 〈φn, φn〉



c0

c1
...
cn

 =


〈f, φ0〉

〈f, φ1〉
...

〈f, φn〉

 .
The monomial basis φk(x) = xk can give poor numerical approximations even for fairly small values
of n due to the fragility of the Hilbert matrix. Here we show how to construct a basis for Pn that
proves to be more robust.

3.3.5. Orthogonal polynomials.

We say two vectors are orthogonal if their inner product is zero. The same idea leads to the notion
of orthogonality of functions in C[a, b]. It will prove useful for us to generalize the notion of inner
product introduced in §3.3.1. For any function w ∈ C[a, b] with w(x) > 0 (actually, we can allow
w(x) = 0 only on a set of measure zero), we define

〈f, g〉 =
∫ b

a
f(x)g(x)w(x) dx.

One can confirm that this definition is consistent with the axioms required of an inner product that
were enumerated in the last lecture. This inner product thus motivates the following definition.

Definition. Two functions f and g are orthogonal if 〈f, g〉 = 0.

Definition. A set of functions {φk}nk=0 is a system of orthogonal polynomials provided:
• φk is a polynomial of exact degree k (with φ0 6= 0);
• 〈φj , φk〉 = 0 when j 6= k.

Be sure not to overlook the first property, that φk has exact degree k; it ensures the following result.

Proposition. The system of orthogonal polynomials {φk}`k=0 is a basis for P`, for all ` = 0, . . . , n.

This leads immediately to our first key theorem, one we will use repeatedly.

Theorem. Let {φj}nj=0 be a system of orthogonal polynomials. Then 〈p, φn〉 = 0 for any p ∈ Pn−1.

Proof. Our previous proposition implies that {φk}n−1
k=0 is a basis for Pn−1. Thus for any p ∈ Pn−1,

p =
n−1∑
k=0

ckφk
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for some constants {ck}n−1
k=0 . The linearity of the inner product and orthogonality of {φk}nk=0 imply

that

〈p, φn〉 =
〈 n−1∑

k=0

ckφk, φn

〉
=

n−1∑
k=0

ck〈φk, φn〉 =
n−1∑
k=0

0 = 0.

We need a mechanism for constructing orthogonal polynomials. The Gram–Schmidt process used to
orthogonalize vectors in Cn can easily be generalized to the present setting. Suppose that we have
some (n+1)-dimensional subspace S with the basis p0, p1, . . . , pn. Then the classical Gram–Schmidt
algorithm takes the following form.

Gram–Schmidt orthogonalization. Given a basis {p0, . . . , pn} for some subspace S, the following
algorithm will construct an orthogonal basis {φ0, . . . , φn} for S:

φ0 := p0

for k = 1, . . . , n

φk := pk −
k−1∑
j=0

〈pk, φj〉
〈φj , φj〉

φj

end.

This is a convenient process, but like the vector Gram–Schmidt process, it requires a nontrivial
amount of computation. As k gets larger, the work required in the sum at step k grows: the work
grows with every step. (Recall that when dealing with functions on C[a, b], each inner product
evaluation requires the computation of an integral, potentially a expensive operation.)

To construct a set of orthogonal polynomials, we take some a basis {pk}nk=0 for Pn, and perform
Gram–Schmidt orthogonalization. If pk has exact degree k for k = 0, . . . , n, then φk will have exact
degree k as well, as required for a system of orthogonal polynomials. The simplest basis for Pn

is the monomial basis, {xk}nk=0. One could perform Gram–Schmidt orthogonalization directly on
this basis to obtain orthogonal polynomials, but there is a slicker alternative for which most of the
terms in the sum for φk turn out to be zero.

Suppose one has a set of orthogonal polynomials, {φk}nk=0, and seeks the next orthogonal polyno-
mial, φn+1. Since φn has exact degree n, the polynomial xφn(x) has exact degree n + 1. Thus,
we could apply Gram–Schmidt orthogonalization on {φ0(x), φ1(x), . . . , φn(x), xφn(x)}, which forms
a basis for Pn+1. This will allow us to make an essential simplification to the customary Gram–
Schmidt recurrence

φn+1(x) = xφn(x)−
n∑

j=0

〈xφn(x), φj(x)〉
〈φj , φj〉

φj(x).

First notice that

〈xφn(x), φk(x)〉 =
∫ b

a

(
xφn(x)

)
φk(x)w(x) dx

=
∫ b

a
φn(x)

(
xφk(x)

)
w(x) dx

= 〈φn(x), xφk(x)〉.

Since xφk(x) ∈ Pk+1,
〈xφn(x), φk(x)〉 = 〈φn(x), xφk(x)〉 = 0
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for all j < n− 1. This eliminates the bulk of the terms from Gram–Schmidt sum:

n∑
k=0

〈xφn(x), φk(x)〉
〈φk, φk〉

φk =
n∑

k=n−1

〈xφn(x), φk(x)〉
〈φk, φk〉

φk.

Thus we can compute orthogonal polynomials efficiently, even if the necessary polynomial degree
is large.† This fact has vital implications in numerical linear algebra: indeed, it is a reason that
the iterative conjugate gradient method for solving Ax = b often executes with blazing speed, but
that is a story for another class.

Theorem (Three-Term Recurrence for Orthogonal Polynomials). Given a weight function w(x)
(w(x) ≥ 0 for all x ∈ (a, b), and w(x) = 0 only on a set of measure zero), a real interval [a, b], and
an associated real inner product

〈f, g〉 =
∫ b

a
w(x)f(x)g(x) dx,

then a system of (monic) orthogonal polynomials {φk}nk=0 can be generated as follows:

φ0(x) = 1,

φ1(x) = x− 〈x, 1〉
〈1, 1〉

,

φk(x) = xφk−1(x)− 〈xφk−1(x), φk−1(x)〉
〈φk−1(x), φk−1(x)〉

φk−1(x)− 〈xφk−1(x), φk−2(x)〉
〈φk−2(x), φk−2(x)〉

φk−2(x) for k ≥ 2.

Our definition of orthogonal polynomials made no stipulation about normalization. It is often
convenient to work with monic polynomials, i.e., φk(x) = xk + · · ·, as constructed by the three-term
recurrence above. Some applications make other normalizations more convenient, e.g., 〈φk, φk〉 = 1
or φ(0) = 1. It is a simple exercise to adapt the three term recurrence to generate such alternative
normalizations.

Legendre polynomials. On the interval [a, b] = [−1, 1] with weight w(x) = 1 for all x, the orthogonal
polynomials are known as Legendre polynomials:

φ0(x) = 1

φ1(x) = x

φ2(x) = x2 − 1
3

φ3(x) = x3 − 3
5x

φ4(x) = x4 − 6
7x

2 + 3
35

φ5(x) = x5 − 10
9 x

3 + 5
21x

φ6(x) = x6 − 15
11x

4 + 5
11x

2 − 5
231 .

†The Gram–Schmidt process will not reduce to a short recurrence in all settings. We used the key fact 〈xφn, φk〉 =
〈φn, xφk〉, which does not hold in general inner product spaces, but works perfectly well in our present setting because
our polynomials are real valued on [a, b]. The short recurrence does not hold, for example, if you compute orthogonal
polynomials over a general complex domain, instead of the real interval [a, b].
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Below we show a plot of φ0, φ1, . . . , φ5. Note how distinct these polynomials are from one another,
somewhat reminiscent of the Lagrange basis functions for polynomial interpolation.
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Orthogonal polynomials play a key role in a prominent technique for computing integrals known
as Gaussian quadrature. In that context, we will see other families of orthogonal polynomials: the
Chebyshev, Laguerre, and Hermite polynomials.

3.3.6. Continuous least squares with orthogonal polynomials.

Definition. A system of orthogonal polynomials {ψk}nk=0 is orthonormal provided that 〈ψk, ψk〉 = 1
for all k = 0, . . . , 1.

Given a any set of orthogonal polynomials {φk}nk=0, we obtain orthonormal polynomials by setting

ψk :=
φk

〈φk, φk〉1/2
,

giving

〈ψk, ψk〉 =
〈φk, φk〉
〈φk, φk〉

= 1.

We seek an expression for the least squares approximation to f as a linear combination of orthonor-
mal polynomials. That is, determine the coefficients {ck}nk=0 in the expansion

p(x) =
n∑

k=0

ckψk(x)

to minimize ‖f−p‖L2 . The optimal choice of coefficients follows immediately from the linear system
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derived in the last lecture,
〈ψ0, ψ0〉 〈ψ0, ψ1〉 · · · 〈ψ0, ψn〉

〈ψ1, ψ0〉 〈ψ1, ψ1〉
...

...
. . .

...
〈ψn, ψ0〉 〈ψn, ψ1〉 · · · 〈ψn, ψn〉



c0

c1
...
cn

 =


〈f, ψ0〉

〈f, ψ1〉
...

〈f, ψn〉

 .
Since {ψk}nk=0 is a system of orthonormal polynomials, this matrix equation reduces to

1 0 · · · 0
0 1

...
...

. . .
...

0 0 · · · 1



c0
c1
...
cn

 =


〈f, ψ0〉
〈f, ψ1〉

...
〈f, ψn〉

 ,
with the trivial solution ck = 〈f, ψk〉. As this linear system clearly has a unique solution, the
optimal polynomial must be unique.

Theorem. The unique optimal L2 approximation to f ∈ C[a, b] on [a, b] is given by

p∗ =
n∑

k=0

〈f, ψk〉ψk,

where {ψk}nk=0 forms a system of orthonormal polynomials on [a, b].

From this expression for the optimal polynomial immediately follows a fundamental property of all
least squares approximations.

Theorem (Orthogonality of the optimal L2 error). Let p∗ ∈ Pn be the optimal L2 approximation
to f ∈ C[a, b]. Then f − p∗ is orthogonal to all q ∈ Pn, i.e., 〈f − p∗, q〉 = 0.

Proof. Given any q ∈ Pn, express this polynomial in the basis of orthonormal polynomials,

q =
n∑

k=0

γkψk.

We have just shown that p∗ takes the form

p∗ =
n∑

k=0

〈f, ψk〉ψk.

Since {ψk}nk=0 forms a basis for Pn, it suffices to show that f − p∗ is orthogonal to each ψk. In
particular, for k = 0, . . . , n, we have

〈f − p∗, ψk〉 = 〈f −
∑n

j=0〈f, ψj〉ψj , ψk〉

= 〈f, ψk〉 −
∑n

j=0〈f, ψj〉〈ψj , ψk〉

= 〈f, ψk〉 − 〈f, ψk〉〈ψk, ψk〉

= 〈f, ψk〉 − 〈f, ψk〉

= 0.
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Since f − p∗ is orthogonal to all members of a basis for Pn, it is orthogonal to any member of Pn:

〈f − p∗, q〉 =
n∑

k=0

γk〈f − p∗, ψk〉 =
n∑

k=0

0 = 0.

Example: f(x) = ex. We repeat our previous example: approximating f(x) = ex on [0, 1] with
a linear polynomial. First, we need to construct orthonormal polynomials for this interval. It is
easy to see that ψ0(x) = 1, and a straightforward computation gives ψ1(x) =

√
3(1− 2x). We then

compute

〈ex, ψ0(x)〉 =
∫ 1

0
ex dx = e− 1

〈ex, ψ1(x)〉 =
√

3
∫ 1

0
ex(1− 2x) dx =

√
3(e− 3),

giving a formula for p∗:

p∗ = (e− 1)ψ0 +
√

3(e− 3)ψ1

= (e− 1)1 +
√

3(e− 3)[
√

3(1− 2x)]

= 4e− 10 + x(18− 6e).

This is exactly the polynomial we obtained using basic calculus techniques.

Note that with this procedure, one can easily to increase the degree of the approximating polyno-
mial. To increase the degree by one, simply add

〈f, ψn+1〉ψn+1

to the old approximation. True, this requires computation of an integral, but the general method
we discussed in the last lecture would also require a new integral evaluation to include in the
right hand side of the (n+ 2)-by-(n+ 2) linear system, which then must be solved to get the new
approximation.‡ Indeed, an advantage to the new method is that we express the optimal polynomial
in a ‘good’ basis—the basis of orthonormal polynomials—rather than the monic polynomial basis.

% Code to demonstrate computation of continuous least squares approximation.
% Uses MATLAB’s built-in codes to compute inner products.

% Use the weight function w(x) = 1 on the interval [-1,1].
% Construct the orthogonal polynomials for this weight, interval.
% These are the Legendre polynomials; one can look up their coefficients
% in mathematical tables. We input them in MATLAB’s standard format
% for polynomials. (We have normalized the standard Legendre polynomials.)

Leg = [[ 0 0 0 0 0 0 1]*sqrt(1/2); % psi_0(x)
[ 0 0 0 0 0 1 0]*sqrt(3/2); % psi_1(x)
[ 0 0 0 0 3/2 0 -1/2]*sqrt(5/2); % psi_2(x)

‡It is true, however, that both these methods for finding the least squares polynomial will generally be more
expensive then simply finding a polynomial interpolant.
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[ 0 0 0 5/2 0 -3/2 0]*sqrt(7/2); % psi_3(x)
[ 0 0 35/8 0 -15/4 0 3/8]*sqrt(9/2); % psi_4(x)
[ 0 63/8 0 -35/4 0 15/8 0]*sqrt(11/2); % psi_5(x)
[231/16 0 -315/16 0 105/16 0 -5/16]*sqrt(13/2)];% psi_6(x)

% All the necessary integrals have integrands that are the product of our
% target function f(x) = exp(x)*sin(5*x) and some polynomial.
% The following inline function defines this general form of integrand.
f = inline(’sin(pi*x) + 3*exp(-(50*(x-.5)).^2)’);
integrand = inline(’feval(f,x).*polyval(p,x)’,’x’,’f’,’p’);

% We also include a function to evaluate the 2-norm of the error
errintegrand = inline(’(feval(f,x)-polyval(p,x)).*polyval(q,x)’,’x’,’f’,’p’,’q’);

% compute the expansion coefficients for the optimal polynomial approximation
x = linspace(-1.1,1.1,1000)’;
figure(1),clf
plot(x,f(x),’b-’,’linewidth’,3), hold on
axis([-1.1 1.1 -2 5])
set(gca,’fontsize’,20)
drawnow
px = zeros(1,size(Leg,1));

clear pxplt
for j=1:size(Leg,1)

input(’press return to continue’)
c(j) = quad(integrand,-1,1,1e-10,[],f,Leg(j,:));
px = px + c(j)*Leg(j,:);
fprintf(’ c_%d = %10.7f \n’, j-1, c(j))
if exist(’pxplt’,’var’), set(pxplt,’linewidth’,1); end
pxplt = plot(x,polyval(px,x),’r-’,’linewidth’,3);
quad(errintegrand,-1,1,1e-10,[],f,px,[1])
title(sprintf(’Degree %d Least-Squares Approximation’,j),’fontsize’,20)

end

Appendix.

We derived the formula

p∗ =
n∑

k=0

〈f, ψk〉ψk

based on a simple calculus result from the previous lecture. Here is an alternative derivative-free
exposition that mirrors the construction of the discrete least squares solution in §3.1.

For a general p ∈ Pn, write

p =
n∑

k=0

ckψk.

Using the linearity of the inner product, and the fact that {ψk}nk=0 is a system of orthonormal
polynomials, we have

‖f − p‖2L2 = 〈f − p, f − p〉 = 〈f, f〉 − 2〈f, p〉+ 〈p, p〉
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= ‖f‖2L2 − 2〈f,
∑n

k=0 ckψk〉+ 〈
∑n

k=0 ckψk,
∑n

j=0 cjψj〉

= ‖f‖2L2 − 2
∑n

k=0 ck〈f, ψk〉+
∑n

k=0

∑n
j=0 ckcj〈ψk, ψj〉

= ‖f‖2L2 − 2
∑n

k=0 ck〈f, ψk〉+
∑n

k=0 c
2
k〈ψk, ψk〉

= ‖f‖2L2 − 2
∑n

k=0 ck〈f, ψk〉+
∑n

k=0 c
2
k.

Despite these manipulations, it is still not clear how we should choose the cj to give the least
squares approximation. Toward this end, note that

(ck − 〈f, ψk〉)2 = c2k − 2ck〈f, ψk〉+ 〈f, ψk〉2.

Rearranging this expression and summing over k, we have

−2
∑n

k=0 ck〈f, ψk〉+
∑n

k=0 c
2
k =

∑n
k=0

[
(ck − 〈f, ψk〉)2 − 〈f, ψk〉2

]
.

Substituting this formula into our expression for the error, we obtain

‖f − p‖2L2 = ‖f‖2L2 +
n∑

k=0

(ck − 〈f, ψk〉)2 −
n∑

k=0

〈f, ψk〉2.

The first term in this key expression, ‖f‖2L2 , is independent of our choice of the ck, as is the last
term, −

∑n
k=0〈f, ψk〉2. Thus, to minimize ‖f‖2L2 , minimize the middle term

n∑
k=0

(ck − 〈f, ψk〉)2.

As this term is nonnegative, our best hope is to find coefficients ck that zero out this expression.
That is easy:

ck = 〈f, ψk〉.

Moreover, this is the only choice for the ck that will zero the middle term. Hence, we have
constructed the optimal polynomial p∗ and shown it to be unique.
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