
CAAM 453 · NUMERICAL ANALYSIS I

Lecture 19: Continuous Least Squares Approximation

3.3. Continuous least squares approximation.

We began §3.1 with the problem of approximating some f ∈ C[a, b] with a polynomial p ∈ Pn at
the discrete points x0, x1, . . . , xm for some m ≥ n. This example motivated our study of discrete
least squares problems (a subject with many other diverse applications), but the choice of the
m points is somewhat arbitrary. Suppose we simply wish for the approximating polynomial to
represent f throughout all of [a, b]. What value should m take? How should one pick the points
{xk}? Suppose we uniformly distribute these approximation points over [a, b]: set hm := (b−a)/m
and let xk = a + khm. The least squares error formula, when scaled by hm, takes the form of a
Riemann sum that, in the m→∞ limit, approximates an integral:

lim
m→∞

hm

m∑
k=0

(f(xk)− p(xk))2 =
∫ b

a
(f(x)− p(x))2 dx.

That is, in the limit of infinitely many uniformly spaced approximation points, we are actually
minimizing an integral, rather than a sum. In this lecture, we will see how to pose such problems
as a matrix problem of dimension (n + 1)-by-(n + 1), instead of a discrete least squares problem
with matrix of dimension ‘∞-by-(n+ 1)’.

3.3.1. Inner products for function spaces.

To facilitate the development of continuous least squares approximation theory, we introduce a
formal structure for C[a, b]. First, recognize that C[a, b] is a linear space: any linear combination
of continuous functions on [a, b] must itself be continuous on [a, b].

Definition. The inner product of the functions f, g ∈ C[a, b] is given by

〈f, g〉 =
∫ b

a
f(x)g(x) dx.

This inner product satisfies the following basic axioms:†

• 〈αf + g, h〉 = α〈f, h〉+ 〈g, h〉 for all f, g, h ∈ C[a, b] and all α ∈ R;

• 〈f, g〉 = 〈g, f〉 for all f, g ∈ C[a, b];

• 〈f, f〉 ≥ 0 for all f ∈ C[a, b].

Just as the vector 2-norm naturally follows from the vector inner product (‖x‖2 =
√

x∗x), so we
have

‖f‖L2 := 〈f, f〉1/2 =
(∫ b

a
f(x)2 dx

)1/2
.

Here the superscript ‘2’ in L2 refers to the fact that the integrand involves the square of the function
f ; the L stands for Lebesgue, coming from the fact that this inner product can be generalized from

†If we wanted to consider complex-valued functions f and g, the inner product would be generalized to 〈f, g〉 =R b

a
f(x)g(x) dx, giving 〈f, g〉 = 〈g, f〉.

13 October 2009 19-1 M. Embree, Rice University



CAAM 453 · NUMERICAL ANALYSIS I

C[a, b] to the set of all functions that are square-integrable in the sense of Lebesgue integration.
By restricting our attention to continuous functions, we dodge the measure-theoretic complexities.
(The Lebesgue theory gives a more robust definition of the integral than the conventional Riemann
approach; for details, consult MATH 425.)

3.3.2. Least squares minimization via calculus. Given some f ∈ C[a, b], the basic L2 approxi-
mation problem seeks the polynomial p ∈ Pn that minimizes the error f − p in the L2 norm. In
symbols:

min
p∈Pn

‖f − p‖L2 .

We shall denote the polynomial that attains this minimum by p∗.

We can solve this minimization problem using basic calculus. Consider this example for n = 1,
where we optimize the error over polynomials of the form p(x) = c0 + c1x. Note that ‖f −p‖L2 will
be minimized by the same polynomial as ‖f − p‖2L2 . Thus for any given p ∈ P1, the error function
is given by

E(c0, c1) := ‖f(x)− (c0 + c1x)‖2L2 =
∫ b

a
(f(x)− c0 − c1x)2 dx

=
∫ b

a

(
f(x)2 − 2f(x)(c0 + c1x) + (c20 + 2c0c1x+ c21x

2)
)

dx

=
∫ b

a
f(x)2 dx− 2c0

∫ b

a
f(x) dx− 2c1

∫ b

a
xf(x) dx

+ c20(b− a) + c0c1(b2 − a2) + 1
3c

2
1(b3 − a3).

To find the optimal polynomial, p∗, we need to optimize E over c0 and c1, i.e., we must find the
values of c0 and c1 for which

∂E

∂c0
=
∂E

∂c1
= 0.

First, compute

∂E

∂c0
= −2

∫ b

a
f(x) dx+ 2c0(b− a) + c1(b2 − a2)

∂E

∂c1
= −2

∫ b

a
xf(x) dx+ c0(b2 − a2) + 2

3c1(b3 − a3).

Setting these partial derivatives equal to zero yields

2c0(b− a) + c1(b2 − a2) = 2
∫ b

a
f(x) dx

c0(b2 − a2) + 2
3c1(b3 − a3) = 2

∫ b

a
xf(x) dx.

These equations, linear in the unknowns c0 and c1, can be written in the matrix form[
2(b− a) b2 − a2

b2 − a2 2
3(b3 − a3)

] [
c0
c1

]
=
[

2
∫ b
a f(x) dx

2
∫ b
a xf(x) dx

]
.

13 October 2009 19-2 M. Embree, Rice University



CAAM 453 · NUMERICAL ANALYSIS I

When b 6= a this system always has a unique solution. The resulting c0 and c1 are the coefficients
for the monomial-basis expansion of the least squares approximation p∗ ∈ P1 to f on [a, b].

Example: f(x) = ex. We apply this result to the function f(x) = ex for x ∈ [0, 1]. Since∫ 1

0
ex dx = e− 1,

∫ 1

0
xex dx = [ex(x− 1)]1x=0 = 1,

we must solve the system [
2 1
1 2

3

] [
c0
c1

]
=
[

2e− 2
2

]
.

The desired solution is
c0 = 4e− 10, c1 = 18− 6e.

Below we show a plot of this approximation (left), and the error f(x)− p∗(x).

0 0.2 0.4 0.6 0.8 1

1

1.5

2

2.5

3

x

f(x)
p(x)

0 0.2 0.4 0.6 0.8 1

−0.1

0

0.1

x

f(x
)−

p *(x
)

We can see from these pictures that the approximation looks decent to the eye, but the error is not
terribly small. (In fact, ‖f − p∗‖L2 = 0.06277 . . ..) We can decrease that error by increasing the
degree of the approximating polynomial. Just as we used a 2-by-2 linear system to find the best
linear approximation, a general (n + 1)-by-(n + 1) linear system can be constructed to yield the
L2-optimal degree-n approximation.

3.3.3. General polynomial bases.

Note that we performed the above minimization in the monomial basis: p(x) = c0 + c1x is a linear
combination of 1 and x. Our experience with interpolation suggests that different choices for the
basis may yield approximation algorithms with superior numerical properties. Thus, we develop
the form of the approximating polynomial in an arbitrary basis.

Suppose {φk}nk=0 is a basis for Pn. Then any p ∈ Pn can be written as

p(x) =
n∑

k=0

ckφk(x).

13 October 2009 19-3 M. Embree, Rice University



CAAM 453 · NUMERICAL ANALYSIS I

The error expression takes the form

E(c0, . . . , cn) := ‖f(x)− p(x)‖2L2 =
∫ b

a

(
f(x)−

n∑
k=0

ckφk(x)
)2

dx

= 〈f, f〉 − 2
n∑

k=0

ck〈f, φk〉+
n∑

k=0

n∑
`=0

ckc`〈φk, φ`〉.

As before, compute ∂E/∂cj for j = 0, . . . , n:

∂E

∂cj
= −2〈f, φj〉+

n∑
k=0

2ck〈φk, φj〉.

Setting ∂E/∂cj = 0 gives the n+ 1 equations

〈f, φj〉 =
n∑

k=0

ck〈φk, φj〉.

This is simply a system of linear algebraic equations, which can be written in the matrix form
〈φ0, φ0〉 〈φ0, φ1〉 · · · 〈φ0, φn〉

〈φ1, φ0〉 〈φ1, φ1〉
...

...
. . .

...
〈φn, φ0〉 〈φn, φ1〉 · · · 〈φn, φn〉



c0

c1
...
cn

 =


〈f, φ0〉

〈f, φ1〉
...

〈f, φn〉

 ,
which we shall denote as Hc = b.

Suppose we apply this method on the interval [a, b] = [0, 1] with the monomial basis, φk(x) = xk.
In that case,

〈φk, φj〉 = 〈xk, xj〉 =
∫ 1

0
xj+k dx =

1
j + k + 1

,

and the coefficient matrix has an elementary structure. In fact, this is a form of the notorious
Hilbert matrix.‡ It is exceptionally difficult to obtain accurate solutions with this matrix in floating
point arithmetic, reflecting the fact that the monomials are a poor basis for Pn on [0, 1]. Let
H denote the n + 1-dimensional Hilbert matrix, and suppose b is constructed so that the exact
solution to the system Hc = b is c = (1, 1, . . . , 1)T . Let ĉ denote computed solution to the system
in MATLAB. Ideally the forward error ‖c− ĉ‖2 will be nearly zero (if the rounding errors incurred
while constructing b and solving the system are small). Unfortunately, this is not the case – entirely
consistent with our analysis of the sensitivity of linear systems, studied in Section 1.4.2.

n κ(H) ‖c− ĉ‖2
5 1.495× 107 7.548× 10−11

10 1.603× 1014 0.01288
15 4.380× 1017 12.61
20 1.251× 1018 46.9

‡See M.-D. Choi, ‘Tricks or treats with the Hilbert matrix,’ American Math. Monthly 90 (1983) 301–312.

13 October 2009 19-4 M. Embree, Rice University



CAAM 453 · NUMERICAL ANALYSIS I

Clearly these errors are not acceptable!

The last few 2-norm condition numbers are in fact smaller than they ought to be, a consequence
of the fact that MATLAB is not computing the singular value decomposition of the Hilbert matrix
exactly. (MATLAB computes the condition number as the ratio of the maximum and minimum
singular values.) The standard algorithm for computing singular values obtains answers with small
absolute accuracy, but not small relative accuracy. Thus we expect that singular values smaller
than about 10−16‖H‖2 may not even be computed to the correct order of magnitude.

In the next lecture, we will see how better-conditioned bases for Pn yield matrices H for which we
can solve Hx = b much more accurately.

3.3.4. Connection to discrete least squares.

Why did the continuous least squares approximation problem studied above directly lead to a square
(n+ 1)× (n+ 1) linear system, while the discrete least squares problem introduced in Lecture 16
led to an (m+ 1)× (n+ 1) least squares problem?

In the discrete case, we seek to minimize ‖c−Af‖2, where (using the monomial basis)

A =



1 x0 x2
0 · · · xn

0

1 x1 x2
1 · · · xn

1

1 x2 x2
2 · · · xn

2

...
...

...
. . .

...
1 xm x2

m · · · xn
m


, c =



c0

c1

c2
...
cn


, f =



f(x0)
f(x1)
f(x2)

...
f(xm)


.

We have seen that this discrete problem can be solved via the normal equations

A∗Ac = A∗f .

Now compute

A∗f =



∑n
k=0 f(xk)∑n

k=0 xkf(xk)∑n
k=0 x

2
kf(xk)

...∑n
k=0 x

n
kf(xk)


∈ Cn+1.

Notice that if m + 1 approximation points are uniformly spaced over [a, b], xk = a + khm for
hm = (b− a)/m, we have

lim
m→∞

hmA∗f =



∫ b
a f(x) dx∫ b

a xf(x) dx∫ b
a x

2f(x) dx

...∫ b
a x

nf(x) dx


=



〈f, 1〉

〈f, x〉

〈f, x2〉
...

〈f, xn〉


,

13 October 2009 19-5 M. Embree, Rice University



CAAM 453 · NUMERICAL ANALYSIS I

which is precisely the right hand side vector b ∈ Cn+1 obtained for the continuous least squares
problem. Similarly, the (j + 1, k + 1) entry of the matrix A∗A ∈ C(n+1)×(n+1) for the discrete
problem can be formed as

(A∗A)j+1,k+1 =
n∑

`=0

xj
`x

k
` =

n∑
`=0

xj+k
` ,

and thus for uniform grids, we have in the limit that

lim
m→∞

hm(A∗A)j+1,k+1 =
∫ b

a
xj+k dx = 〈xj , xk〉.

Thus in aggregate we have
lim

m→∞
hmA∗A = H,

where H is the matrix that arose in the continuous least squares problem.

We arrive at the following beautiful conclusion: The normal equations A∗Ac = A∗f formed for
polynomial approximation by discrete least squares converges to exactly the same (n+ 1)× (n+ 1)
system Hc = b as we independently derived for polynomial approximation by continuous least
squares. In the latter case, calculus led us directly to the normal equation form of the solution.

13 October 2009 19-6 M. Embree, Rice University


