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Lecture 18: The SVD: Examples, Norms, Fundamental Subspaces, Compression

3.2.3. Example of the singular value decomposition.

The standard algorithm for computing the singular value decomposition differs a bit from the
algorithm described in the last lecture. We know from our experiences with the normal equations
for least squares problems that significant errors can be introduced when A∗A is constructed. For
practical SVD computations, one can sidestep this by using Householder transformations to create
unitary matrices U and V such that B := UAV∗ is bidiagonal, i.e., bjk = 0 unless j = k or j−1 = k
One then applies specialized eigenvalue algorithms for computing the SVD of a bidiagonal matrix;
see Trefethen & Bau (Lecture 31) for details.

While this approach has numerical advantages over the method used in our constructive proof of
the SVD, it is still instructive to follow through that construction for a simple matrix, say

A =

 0 1
1 0
1 1

 .
Step 1. First, form A∗A:

A∗A =
[

2 1
1 2

]
and compute its eigenvalues and (normalized) eigenvectors:

λ1 = 3, v1 =
1√
2

[
1
1

]
, λ2 = 1, v2 =

1√
2

[
1
−1

]
.

Step 2. Set

σ1 = ‖Av1‖2 =
√
λ1 =

√
3;

σ2 = ‖Av2‖2 =
√
λ2 = 1.

Step 3. Since σ1, σ2 6= 0, we can immediately form u1 and u2:

u1 =
1
σ1

Av1 =
1√
6

 1
1
2

 , u2 =
1
σ2

Av2 =
1√
2

−1
1
0

 .
The 1/σj scaling ensures that both u1 and u2 are unit vectors. We can verify that they are
orthogonal:

u∗1u2 =
1√
12

[1 1 2]
−1

1
0

 = 0.

Step 4. At this point, we have all the ingredients to build the reduced singular value decomposition:

A = ÛΣ̂V∗ =

 1/
√

6 −1/
√

2
1/
√

6 1/
√

2
2/
√

6 0

[√3 0
0 1

] [
1/
√

2 1/
√

2
1/
√

2 −1/
√

2

]
.
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The only additional information required to build the full SVD is the unit vector u3 that is orthog-
onal to u1 and u2. One can find such a vector by inspection:

u3 =
1√
3

 1
1
−1

 .
If you are naturally able to eyeball this orthogonal vector, there are any number of mechanical ways
to compute u3, e.g., by finding a vector u3 = [α, β, γ]T that satisfies the orthogonality conditions
u∗1u3 = u∗2u3 = 0 and normalization u∗3u3 = 1, or using the Gram–Schmidt process. A related
method is just to read u3 off as the third column of the Q factor in the full QR decomposition of
[u1 u2]. (Why is this so? Recall that the first n columns of the Q factor form a basis for the range
of the factored matrix; the remaining m− n columns are unit vectors that must be orthogonal to
those previous columns, since Q is unitary.) For example:

>> u1 = [1;1;2]/sqrt(6); u2 = [-1;1;0]/sqrt(2);

>> [Q,R] = qr([u1 u2])

Q =

-0.4082 0.7071 -0.5774

-0.4082 -0.7071 -0.5774

-0.8165 -0.0000 0.5774

R =

-1.0000 0

0 -1.0000

0 0

Note that the third vector in the Q matrix is simply −u3. (We could just as well replace u3 by −u3

without changing the SVD. Why?)

In conclusion, a full SVD of A is:

A = UΣV∗ =

 1/
√

6 −1/
√

2 1/
√

3
1/
√

6 1/
√

2 1/
√

3
2/
√

6 0 −1/
√

3

√3 0
0 1
0 0

[ 1/
√

2 1/
√

2
1/
√

2 −1/
√

2

]
.

3.2.4. Singular values and the matrix 2-norm.

In Lecture 2 we defined the induced matrix 2-norm

‖A‖2 = max
‖x‖2=1

‖Ax‖2,

but did not provide a simple formula for this norm in terms of the entries of A, as we did for the
induced matrix 1- and ∞-norms. With the SVD at hand, we can now derive such a formula.

Recall that the vector 2-norm (and hence the matrix 2-norm) is invariant to premultiplication by
a unitary matrix, as proved in Lecture 2. Let A = UΣV∗ be a singular value decomposition of A.
Thus

‖A‖2 = ‖UΣV∗‖2 = ‖ΣV∗‖2.

The matrix 2-norm is also immune to a unitary matrix on the right:

‖ΣV∗‖2 = max
‖x‖2=1

‖ΣV∗x‖2 = max
‖y‖2=1

‖Σy‖2 = ‖Σ‖2,
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where we have set y = V∗x and noted that ‖y‖2 = ‖V∗x‖2 = ‖x‖2 since V∗ is a unitary matrix.
Let p = min{m,n}. Then

‖Σy‖22 =
p∑

j=1

σ2
j y

2
j ,

which is maximized over ‖y‖2 = 1 by y = [1, 0, . . . , 0]T , giving

‖A‖2 = ‖Σ‖2 = σ1.

Thus the matrix 2-norm is simply the first singular value. The 2-norm is often the ‘natural’ norm
to use in applications, but if the matrix A is large, its computation is costly (O(mn2) floating point
operations). For quick estimates that only require O(mn) operations and are accurate to a factor
of
√
m or

√
n, use the matrix 1- or ∞-norms.

The SVD has many other important uses. For example, if A ∈ Cn×n is invertible, we have
A−1 = VΣ−1U∗, and so ‖A−1‖2 = 1/σn. This illustrates that a square matrix is singular if and
only if σn = 0. We shall explore this in more depth later when we use the SVD to construct
low-rank approximations to A.

Like the 2-norm, the Frobenius norm,

‖A‖F =
( m∑

j=1

n∑
k=1

|ajk|2
)1/2

is unitarily invariant. What are ‖A‖F and ‖A−1‖F in terms of the singular values of A?

3.2.5. The SVD and the four fundamental subspaces.

For simplicity, assume m ≥ n. Then A = UΣV∗ can be written as the linear combination of
m-by-n outer product matrices:

A = UΣV∗ =

[σ1u1 σ2u2 · · · σnun]


v∗1
v∗2
...

v∗n

 =
n∑

j=1

σjujv
∗
j .

Hence for any x ∈ Cn,

Ax = [
n∑

j=1

σjujv
∗
j ]x =

n∑
j=1

(σjv
∗
jx)uj ,

since v∗jx is just a scalar. We see that Ax is a linear combination of the left singular vectors {uj},
and have nearly uncovered a basis for Ran(A). The only catch is that uj will not contribute to
the above linear combination if σj = 0. If all the singular values are nonzero, set r = n; otherwise,
define r such that σr 6= 0 but σr+1 = 0. Then we have

Ax =
r∑

j=1

(σjv
∗
jx)uj ,

and so

Ran(A) =
{ r∑

j=1

γjuj : γ1, . . . , γr ∈ C
}
.
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Since the vectors u1, . . . ,ur are orthogonal by construction, they are linearly independent, and thus
give a basis for Ran(A):

Ran(A) = span{u1, . . . ,ur}.

Moreover, r is the dimension of Ran(A), i.e., rank(A) = r.

Immediately we have a basis for Ker(A∗), too: The Fundamental Theorem of Linear Algebra
guarantees that Ran(A)⊕Ker(A∗) = Cm and Ran(A) ⊥ Ker(A∗). Together these facts, with the
orthogonality of the left singular vectors, gives

Ker(A∗) = span{ur+1, . . . ,um}.

Applying the same arguments to A∗ yields bases for the two remaining fundamental subspaces:

Ran(A∗) = span{v1, . . . ,vr}, Ker(A) = span{vr+1, . . . ,vn},

where Ran(A∗) ⊕ Ker(A) = Cn and Ran(A∗) ⊥ Ker(A). Hence, the SVD is a beautiful tool for
revealing the fundamental subspaces.

3.2.6. Low-rank matrix approximation.

One of the key applications of the singular value decomposition is the construction of low-rank
approximations to a matrix. Recall that the SVD of A can be written as

A =
r∑

j=1

σjujv
∗
j ,

where r = rank(A). We can approximate A by taking only a partial sum here:

Ak =
k∑

j=1

σjujv
∗
j

for k ≤ r. The linear independence of {u1, . . . ,uk} guarantees that rank(Ak) = k. But how well
does this partial sum approximate A? This question is answered by the following result, due vari-
ously to Schmidt, Mirsky, Eckart, and Young, that has wide-ranging consequences in applications.

Theorem. For all 1 ≤ k < rank(A),

min
rank(X)=k

‖A−X‖ = σk+1,

with the minimum attained by

Ak =
k∑

j=1

σjujv
∗
j .

Proof. [See, e.g., J. W. Demmel, Applied Numerical Linear Algebra, §3.2.3] Let X ∈ Cm×n be any
rank-k matrix. The Fundamental Theorem of Linear Algebra guarantees that Cn = Ran(X∗) ⊕
Ker(X). Since rank(X∗) = rank(X) = k, we conclude that dim(Ker(X)) = n− k.

From the singular value decomposition

A =
r∑

j=1

σjujv
∗
j ,
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extract the vectors {v1, . . . ,vk+1}, which form a basis for a k+1 dimensional subspace of Cn. Since
Ker(X) ⊆ Cn has dimension n− k, it must be that the intersection

Ker(X) ∩ span{v1, . . . ,vk+1}

is nontrivial, i.e., is at least one-dimensional.† Let z be some unit vector in that intersection:

z ∈ Ker(X) ∩ span{v1, . . . ,vk+1}, ‖z‖2 = 1.

Expand z = γ1v1 + · · ·+ γk+1vk+1, so that ‖z‖2 = 1 implies

1 = z∗z =
( k+1∑

j=1

γjvj

)∗( k+1∑
j=1

γjvj

)
=

k+1∑
j=1

|γj |2.

Since z ∈ Ker(X), we have

‖A−X‖2 ≥ ‖(A−X)z‖2 = ‖Az‖2 =
∥∥∥∥ k+1∑

j=1

σjujv
∗
jz
∥∥∥∥

2

=
∥∥∥∥ k+1∑

j=1

σjγjuj

∥∥∥∥
2

.

Since σk+1 ≤ σk ≤ · · · ≤ σ1 and the uj vectors are orthogonal,∥∥∥∥ k+1∑
j=1

σjγjuj

∥∥∥∥
2

≥ σk+1

∥∥∥∥ k+1∑
j=1

γjuj

∥∥∥∥
2

.

But notice that ∥∥∥∥ k+1∑
j=1

γjuj

∥∥∥∥2

2

=
( k+1∑

j=1

γjuj

)∗( k+1∑
j=1

γjuj

)
=

k+1∑
j=1

|γj |2 = 1,

where the last equality was derived above from the fact that ‖z‖2 = 1. In conclusion,

‖A−X‖2 ≥ σk+1

∥∥∥∥ k+1∑
j=1

γjuj

∥∥∥∥
2

= σk+1

for any rank-k matrix X.

All that remains is to show that this bound is attained by Ak, the kth partial sum of the singular
value decomposition. We have

A−Ak =
r∑

j=1

σjujvj −
k∑

j=1

σjujvj =
r∑

j=k+1

σjujvj .

But this last expression is essentially a singular value decomposition for A−X, with largest singular
value σk+1. Hence ‖A−Ak‖2 = σk+1 as claimed, and we see that Ak is a best rank-k approximation
to A in the two-norm.

Notice that we do not claim that the best rank-k approximation given in the theorem is unique.
Can you think of how you might find other rank-k matrices Âk such that ‖A−Âk‖2 = ‖A−Ak‖2?

†Otherwise, Ker(X)⊕ span{v1, . . . ,vk+1} would be an n + 1 dimensional subspace of Cn: impossible!
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Application: image compression. As an illustration of the utility of low-rank matrix approxima-
tions, consider the compression of digital images. On a computer, an image is simply a matrix
denoting pixel colors. For example, a grayscale image can be represented as a matrix whose entries
are integers between 0 and 255 (for 256 shades of gray), denoting the shade of each pixel. Typically,
such matrices can be well-approximated by low-rank matrices. Instead of storing the mn entries of
the matrix A, one need only store the k(m+ n) + k numbers that make up the various σj , uj , and
vj values in the sum

Ak =
k∑

j=1

σjujv
∗
j .

When k � min(m,n), this can make for a significant improvement (though modern image com-
pression protocols use more sophisticated approaches).

0 100 200 300 400 500
10

0

10
1

10
2

10
3

10
4

10
5

singular values of the "gatlin" image matrix

k

σ k

Next we show the singular values for one im-
age matrix, a photograph of many of the patri-
archs of modern matrix computations taken at the
1964 Gatlinburg Conference on Numerical Algebra:
from left to right, we have Jim Wilkinson, Wal-
lace Givens, George Forsythe, Alston Householder,
Peter Henrici, and Fritz Bauer. The matrix is of
dimension 480-by-640, reflecting the fact that the
picture is wider than it is tall. Though the singu-
lar values are large, σ480 > 1, there is a relative
difference of four orders of magnitude between the
smallest and largest singular value. If all the sin-
gular values were roughly the same, we would not
expect accurate low-rank approximations.)

true image (rank 480)
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best rank−100 approximation best rank−25 approximation

best rank−10 approximation best rank−1 approximation

Below is a sample of that MATLAB code that generated these images, so you can experiment with
this example further if you like. For further examples and more theory, see J. W. Demmel, Applied
Numerical Linear Algebra, §3.2.3.
load gatlin % load the "gatlin" image data, built-in to MATLAB

[U,S,V] = svd(X); % "gatlin" stores the image as the variable "X"

figure(1),clf % plot the singular values

semilogy(diag(S),’b.’,’markersize’,20)

set(gca,’fontsize’,16)

title(’singular values of the "gatlin" image matrix’)

xlabel(’k’), ylabel(’\sigma_k’)

figure(2),clf % plot the original image

image(X), colormap(map) % image: MATLAB command to display a matrix as image

axis equal, axis off

title(’true image (rank 480)’,’fontsize’,16)

figure(3),clf % plot the optimal rank-k approximation

k = 100;

Xk = U(:,1:k)*S(1:k,1:k)*V(:,1:k)’;

image(Xk), colormap(map)

axis equal, axis off

title(sprintf(’best rank-%d approximation’,k),’fontsize’,16)
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