Scientific Computing: An Introductory Survey Chapter 1 - Scientific Computing

Prof. Michael T. Heath

Department of Computer Science University of Illinois at Urbana-Champaign

Copyright (c) 2002. Reproduction permitted for noncommercial, educational use only.

Outline

(1) Scientific Computing
(2) Approximations
(3) Computer Arithmetic

Scientific Computing

- What is scientific computing?
- Design and analysis of algorithms for numerically solving mathematical problems in science and engineering
- Traditionally called numerical analysis
- Distinguishing features of scientific computing
- Deals with continuous quantities
- Considers effects of approximations
- Why scientific computing?
- Simulation of natural phenomena
- Virtual prototyping of engineering designs

Well-Posed Problems

- Problem is well-posed if solution
- exists
- is unique
- depends continuously on problem data

Otherwise, problem is ill-posed

- Even if problem is well posed, solution may still be sensitive to input data
- Computational algorithm should not make sensitivity worse

General Strategy

- Replace difficult problem by easier one having same or closely related solution
- infinite \rightarrow finite
- differential \rightarrow algebraic
- nonlinear \rightarrow linear
- complicated \rightarrow simple
- Solution obtained may only approximate that of original problem

Sources of Approximation

- Before computation
- modeling
- empirical measurements
- previous computations
- During computation
- truncation or discretization
- rounding
- Accuracy of final result reflects all these
- Uncertainty in input may be amplified by problem
- Perturbations during computation may be amplified by algorithm

Example: Approximations

- Computing surface area of Earth using formula $A=4 \pi r^{2}$ involves several approximations
- Earth is modeled as sphere, idealizing its true shape
- Value for radius is based on empirical measurements and previous computations
- Value for π requires truncating infinite process
- Values for input data and results of arithmetic operations are rounded in computer

Absolute Error and Relative Error

- Absolute error: approximate value - true value
- Relative error: $\frac{\text { absolute error }}{\text { true value }}$
- Equivalently, approx value $=($ true value $) \times(1+$ rel error $)$
- True value usually unknown, so we estimate or bound error rather than compute it exactly
- Relative error often taken relative to approximate value, rather than (unknown) true value

Data Error and Computational Error

- Typical problem: compute value of function $f: \mathbb{R} \rightarrow \mathbb{R}$ for given argument
- $x=$ true value of input
- $f(x)=$ desired result
- $\hat{x}=$ approximate (inexact) input
- $\hat{f}=$ approximate function actually computed
- Total error: $\hat{f}(\hat{x})-f(x)=$

$$
\hat{f}(\hat{x})-f(\hat{x})+f(\hat{x})-f(x)
$$

computational error + propagated data error

- Algorithm has no effect on propagated data error

Truncation Error and Rounding Error

- Truncation error: difference between true result (for actual input) and result produced by given algorithm using exact arithmetic
- Due to approximations such as truncating infinite series or terminating iterative sequence before convergence
- Rounding error: difference between result produced by given algorithm using exact arithmetic and result produced by same algorithm using limited precision arithmetic
- Due to inexact representation of real numbers and arithmetic operations upon them
- Computational error is sum of truncation error and rounding error, but one of these usually dominates
< interactive example >

Example: Finite Difference Approximation

- Error in finite difference approximation

$$
f^{\prime}(x) \approx \frac{f(x+h)-f(x)}{h}
$$

exhibits tradeoff between rounding error and truncation error

- Truncation error bounded by $M h / 2$, where M bounds $\left|f^{\prime \prime}(t)\right|$ for t near x
- Rounding error bounded by $2 \epsilon / h$, where error in function values bounded by ϵ
- Total error minimized when $h \approx 2 \sqrt{\epsilon / M}$
- Error increases for smaller h because of rounding error and increases for larger h because of truncation error

Example: Finite Difference Approximation

Forward and Backward Error

- Suppose we want to compute $y=f(x)$, where $f: \mathbb{R} \rightarrow \mathbb{R}$, but obtain approximate value \hat{y}
- Forward error: $\Delta y=\hat{y}-y$
- Backward error: $\Delta x=\hat{x}-x$, where $f(\hat{x})=\hat{y}$

Example: Forward and Backward Error

- As approximation to $y=\sqrt{2}, \hat{y}=1.4$ has absolute forward error

$$
|\Delta y|=|\hat{y}-y|=|1.4-1.41421 \ldots| \approx 0.0142
$$

or relative forward error of about 1 percent

- Since $\sqrt{1.96}=1.4$, absolute backward error is

$$
|\Delta x|=|\hat{x}-x|=|1.96-2|=0.04
$$

or relative backward error of 2 percent

Backward Error Analysis

- Idea: approximate solution is exact solution to modified problem
- How much must original problem change to give result actually obtained?
- How much data error in input would explain all error in computed result?
- Approximate solution is good if it is exact solution to nearby problem
- Backward error is often easier to estimate than forward error

Example: Backward Error Analysis

- Approximating cosine function $f(x)=\cos (x)$ by truncating Taylor series after two terms gives

$$
\hat{y}=\hat{f}(x)=1-x^{2} / 2
$$

- Forward error is given by

$$
\Delta y=\hat{y}-y=\hat{f}(x)-f(x)=1-x^{2} / 2-\cos (x)
$$

- To determine backward error, need value \hat{x} such that $f(\hat{x})=\hat{f}(x)$
- For cosine function, $\hat{x}=\arccos (\hat{f}(x))=\arccos (\hat{y})$

Example, continued

- For $x=1$,

$$
\begin{aligned}
& y=f(1)=\cos (1) \approx 0.5403 \\
& \hat{y}=\hat{f}(1)=1-1^{2} / 2=0.5 \\
& \hat{x}=\arccos (\hat{y})=\arccos (0.5) \approx 1.0472
\end{aligned}
$$

- Forward error: $\Delta y=\hat{y}-y \approx 0.5-0.5403=-0.0403$
- Backward error: $\Delta x=\hat{x}-x \approx 1.0472-1=0.0472$

Sensitivity and Conditioning

- Problem is insensitive, or well-conditioned, if relative change in input causes similar relative change in solution
- Problem is sensitive, or ill-conditioned, if relative change in solution can be much larger than that in input data
- Condition number:

$$
\begin{gathered}
\text { cond }=\frac{\mid \text { relative change in solution } \mid}{\mid \text { relative change in input data } \mid} \\
\quad=\frac{|[f(\hat{x})-f(x)] / f(x)|}{|(\hat{x}-x) / x|}=\frac{|\Delta y / y|}{|\Delta x / x|}
\end{gathered}
$$

- Problem is sensitive, or ill-conditioned, if cond $\gg 1$

Condition Number

- Condition number is amplification factor relating relative forward error to relative backward error

$$
\left|\begin{array}{c}
\text { relative } \\
\text { forward error }
\end{array}\right|=\text { cond } \times\left|\begin{array}{c}
\text { relative } \\
\text { backward error }
\end{array}\right|
$$

- Condition number usually is not known exactly and may vary with input, so rough estimate or upper bound is used for cond, yielding

$$
\left|\begin{array}{c}
\text { relative } \\
\text { forward error }
\end{array}\right| \lesssim \text { cond } \times\left|\begin{array}{c}
\text { relative } \\
\text { backward error }
\end{array}\right|
$$

Example: Evaluating Function

- Evaluating function f for approximate input $\hat{x}=x+\Delta x$ instead of true input x gives
Absolute forward error: $f(x+\Delta x)-f(x) \approx f^{\prime}(x) \Delta x$
Relative forward error: $\frac{f(x+\Delta x)-f(x)}{f(x)} \approx \frac{f^{\prime}(x) \Delta x}{f(x)}$
Condition number: cond $\approx\left|\frac{f^{\prime}(x) \Delta x / f(x)}{\Delta x / x}\right|=\left|\frac{x f^{\prime}(x)}{f(x)}\right|$
- Relative error in function value can be much larger or smaller than that in input, depending on particular f and x

Example: Sensitivity

- Tangent function is sensitive for arguments near $\pi / 2$
- $\tan (1.57079) \approx 1.58058 \times 10^{5}$
- $\tan (1.57078) \approx 6.12490 \times 10^{4}$
- Relative change in output is quarter million times greater than relative change in input
- For $x=1.57079$, cond $\approx 2.48275 \times 10^{5}$

Stability

- Algorithm is stable if result produced is relatively insensitive to perturbations during computation
- Stability of algorithms is analogous to conditioning of problems
- From point of view of backward error analysis, algorithm is stable if result produced is exact solution to nearby problem
- For stable algorithm, effect of computational error is no worse than effect of small data error in input

Accuracy

- Accuracy: closeness of computed solution to true solution of problem
- Stability alone does not guarantee accurate results
- Accuracy depends on conditioning of problem as well as stability of algorithm
- Inaccuracy can result from applying stable algorithm to ill-conditioned problem or unstable algorithm to well-conditioned problem
- Applying stable algorithm to well-conditioned problem yields accurate solution

Floating-Point Numbers

- Floating-point number system is characterized by four integers

$$
\begin{array}{ll}
\beta & \text { base or radix } \\
p & \text { precision } \\
{[L, U]} & \text { exponent range }
\end{array}
$$

- Number x is represented as

$$
x= \pm\left(d_{0}+\frac{d_{1}}{\beta}+\frac{d_{2}}{\beta^{2}}+\cdots+\frac{d_{p-1}}{\beta^{p-1}}\right) \beta^{E}
$$

where $0 \leq d_{i} \leq \beta-1, i=0, \ldots, p-1$, and $L \leq E \leq U$

Floating-Point Numbers, continued

- Portions of floating-poing number designated as follows
- exponent: E
- mantissa: $d_{0} d_{1} \cdots d_{p-1}$
- fraction: $d_{1} d_{2} \cdots d_{p-1}$
- Sign, exponent, and mantissa are stored in separate fixed-width fields of each floating-point word

Typical Floating-Point Systems

Parameters for typical floating-point systems

system	β	p	L	U
IEEE SP	2	24	-126	127
IEEE DP	2	53	-1022	1023
Cray	2	48	-16383	16384
HP calculator	10	12	-499	499
IBM mainframe	16	6	-64	63

- Most modern computers use binary $(\beta=2)$ arithmetic
- IEEE floating-point systems are now almost universal in digital computers

Normalization

- Floating-point system is normalized if leading digit d_{0} is always nonzero unless number represented is zero
- In normalized systems, mantissa m of nonzero floating-point number always satisfies $1 \leq m<\beta$
- Reasons for normalization
- representation of each number unique
- no digits wasted on leading zeros
- leading bit need not be stored (in binary system)

Properties of Floating-Point Systems

- Floating-point number system is finite and discrete
- Total number of normalized floating-point numbers is

$$
2(\beta-1) \beta^{p-1}(U-L+1)+1
$$

- Smallest positive normalized number: $\mathrm{UFL}=\beta^{L}$
- Largest floating-point number: $\mathrm{OFL}=\beta^{U+1}\left(1-\beta^{-p}\right)$
- Floating-point numbers equally spaced only between successive powers of β
- Not all real numbers exactly representable; those that are are called machine numbers

Example: Floating-Point System

- Tick marks indicate all 25 numbers in floating-point system having $\beta=2, p=3, L=-1$, and $U=1$
- $\mathrm{OFL}=(1.11)_{2} \times 2^{1}=(3.5)_{10}$
- $\mathrm{UFL}=(1.00)_{2} \times 2^{-1}=(0.5)_{10}$
- At sufficiently high magnification, all normalized floating-point systems look grainy and unequally spaced
< interactive example >

Rounding Rules

- If real number x is not exactly representable, then it is approximated by "nearby" floating-point number $\mathrm{fl}(x)$
- This process is called rounding, and error introduced is called rounding error
- Two commonly used rounding rules
- chop: truncate base- β expansion of x after $(p-1)$ st digit; also called round toward zero
- round to nearest: $\mathrm{fl}(x)$ is nearest floating-point number to x, using floating-point number whose last stored digit is even in case of tie; also called round to even
- Round to nearest is most accurate, and is default rounding rule in IEEE systems < interactive example >

Machine Precision

- Accuracy of floating-point system characterized by unit roundoff (or machine precision or machine epsilon) denoted by $\epsilon_{\text {mach }}$
- With rounding by chopping, $\epsilon_{\text {mach }}=\beta^{1-p}$
- With rounding to nearest, $\epsilon_{\text {mach }}=\frac{1}{2} \beta^{1-p}$
- Alternative definition is smallest number ϵ such that $\mathrm{fl}(1+\epsilon)>1$
- Maximum relative error in representing real number x within range of floating-point system is given by

$$
\left|\frac{\mathrm{f}(x)-x}{x}\right| \leq \epsilon_{\mathrm{mach}}
$$

Machine Precision, continued

- For toy system illustrated earlier
- $\epsilon_{\text {mach }}=(0.01)_{2}=(0.25)_{10}$ with rounding by chopping
- $\epsilon_{\text {mach }}=(0.001)_{2}=(0.125)_{10}$ with rounding to nearest
- For IEEE floating-point systems
- $\epsilon_{\text {mach }}=2^{-24} \approx 10^{-7}$ in single precision
- $\epsilon_{\text {mach }}=2^{-53} \approx 10^{-16}$ in double precision
- So IEEE single and double precision systems have about 7 and 16 decimal digits of precision, respectively

Machine Precision, continued

- Though both are "small," unit roundoff $\epsilon_{\text {mach }}$ should not be confused with underflow level UFL
- Unit roundoff $\epsilon_{\text {mach }}$ is determined by number of digits in mantissa of floating-point system, whereas underflow level UFL is determined by number of digits in exponent field
- In all practical floating-point systems,

$$
0<\mathrm{UFL}<\epsilon_{\mathrm{mach}}<\mathrm{OFL}
$$

Subnormals and Gradual Underflow

- Normalization causes gap around zero in floating-point system
- If leading digits are allowed to be zero, but only when exponent is at its minimum value, then gap is "filled in" by additional subnormal or denormalized floating-point numbers

- Subnormals extend range of magnitudes representable, but have less precision than normalized numbers, and unit roundoff is no smaller
- Augmented system exhibits gradual underflow

Exceptional Values

- IEEE floating-point standard provides special values to indicate two exceptional situations
- Inf, which stands for "infinity," results from dividing a finite number by zero, such as $1 / 0$
- NaN, which stands for "not a number," results from undefined or indeterminate operations such as $0 / 0,0 * \operatorname{Inf}$, or Inf/Inf
- Inf and NaN are implemented in IEEE arithmetic through special reserved values of exponent field

Floating-Point Arithmetic

- Addition or subtraction: Shifting of mantissa to make exponents match may cause loss of some digits of smaller number, possibly all of them
- Multiplication: Product of two p-digit mantissas contains up to $2 p$ digits, so result may not be representable
- Division: Quotient of two p-digit mantissas may contain more than p digits, such as nonterminating binary expansion of $1 / 10$
- Result of floating-point arithmetic operation may differ from result of corresponding real arithmetic operation on same operands

Example: Floating-Point Arithmetic

- Assume $\beta=10, p=6$
- Let $x=1.92403 \times 10^{2}, y=6.35782 \times 10^{-1}$
- Floating-point addition gives $x+y=1.93039 \times 10^{2}$, assuming rounding to nearest
- Last two digits of y do not affect result, and with even smaller exponent, y could have had no effect on result
- Floating-point multiplication gives $x * y=1.22326 \times 10^{2}$, which discards half of digits of true product

Floating-Point Arithmetic, continued

- Real result may also fail to be representable because its exponent is beyond available range
- Overflow is usually more serious than underflow because there is no good approximation to arbitrarily large magnitudes in floating-point system, whereas zero is often reasonable approximation for arbitrarily small magnitudes
- On many computer systems overflow is fatal, but an underflow may be silently set to zero

Example: Summing Series

- Infinite series

$$
\sum_{n=1}^{\infty} \frac{1}{n}
$$

has finite sum in floating-point arithmetic even though real series is divergent

- Possible explanations
- Partial sum eventually overflows
- $1 / n$ eventually underflows
- Partial sum ceases to change once $1 / n$ becomes negligible relative to partial sum

$$
\frac{1}{n}<\epsilon_{\operatorname{mach}} \sum_{k=1}^{n-1} \frac{1}{k}
$$

< interactive example >

Floating-Point Arithmetic, continued

- Ideally, x flop $y=\mathrm{fl}(x$ op $y)$, i.e., floating-point arithmetic operations produce correctly rounded results
- Computers satisfying IEEE floating-point standard achieve this ideal as long as x op y is within range of floating-point system
- But some familiar laws of real arithmetic are not necessarily valid in floating-point system
- Floating-point addition and multiplication are commutative but not associative
- Example: if ϵ is positive floating-point number slightly smaller than $\epsilon_{\text {mach }}$, then $(1+\epsilon)+\epsilon=1$, but $1+(\epsilon+\epsilon)>1$

Cancellation

- Subtraction between two p-digit numbers having same sign and similar magnitudes yields result with fewer than p digits, so it is usually exactly representable
- Reason is that leading digits of two numbers cancel (i.e., their difference is zero)
- For example,

$$
1.92403 \times 10^{2}-1.92275 \times 10^{2}=1.28000 \times 10^{-1}
$$

which is correct, and exactly representable, but has only three significant digits

Cancellation, continued

- Despite exactness of result, cancellation often implies serious loss of information
- Operands are often uncertain due to rounding or other previous errors, so relative uncertainty in difference may be large
- Example: if ϵ is positive floating-point number slightly smaller than $\epsilon_{\text {mach }}$, then $(1+\epsilon)-(1-\epsilon)=1-1=0$ in floating-point arithmetic, which is correct for actual operands of final subtraction, but true result of overall computation, 2ϵ, has been completely lost
- Subtraction itself is not at fault: it merely signals loss of information that had already occurred

Cancellation, continued

- Digits lost to cancellation are most significant, leading digits, whereas digits lost in rounding are least significant, trailing digits
- Because of this effect, it is generally bad idea to compute any small quantity as difference of large quantities, since rounding error is likely to dominate result
- For example, summing alternating series, such as

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

for $x<0$, may give disastrous results due to catastrophic cancellation

Example: Cancellation

Total energy of helium atom is sum of kinetic and potential energies, which are computed separately and have opposite signs, so suffer cancellation

Year	Kinetic	Potential	Total
1971	13.0	-14.0	-1.0
1977	12.76	-14.02	-1.26
1980	12.22	-14.35	-2.13
1985	12.28	-14.65	-2.37
1988	12.40	-14.84	-2.44

Although computed values for kinetic and potential energies changed by only 6% or less, resulting estimate for total energy changed by 144%

Example: Quadratic Formula

- Two solutions of quadratic equation $a x^{2}+b x+c=0$ are given by

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

- Naive use of formula can suffer overflow, or underflow, or severe cancellation
- Rescaling coefficients avoids overflow or harmful underflow
- Cancellation between - b and square root can be avoided by computing one root using alternative formula

$$
x=\frac{2 c}{-b \mp \sqrt{b^{2}-4 a c}}
$$

- Cancellation inside square root cannot be easily avoided without using higher precision

Example: Standard Deviation

- Mean and standard deviation of sequence $x_{i}, i=1, \ldots, n$, are given by

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad \text { and } \quad \sigma=\left[\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right]^{\frac{1}{2}}
$$

- Mathematically equivalent formula

$$
\sigma=\left[\frac{1}{n-1}\left(\sum_{i=1}^{n} x_{i}^{2}-n \bar{x}^{2}\right)\right]^{\frac{1}{2}}
$$

avoids making two passes through data

- Single cancellation at end of one-pass formula is more damaging numerically than all cancellations in two-pass formula combined

