
Lecture 1
A (Hopefully) Fun Introduction

to Scientific Computing

CS 6210 Fall 2016
Bei Wang

About this class
Technical content followed by

 fun investigations

Stay engaged in the classroom

Learn Matlab

Share your SC-related research questions/projects

Start your HW early

Read the textbook carefully

Things can get technical

Think Big: How would SC algorithms and technical
transform my research? What is the future of SC?

HW typesetting preferred: PDF

Discussion helps us learn from each other

http://www.youtube.com/watch?v=kYUrqdUyEpI

http://www.youtube.com/watch?v=9bZkp7q19f0

What is Scientific Computing?
And why do we care about it?

The development and study of numerical algorithms for solving
mathematical problems in science and engineering.
Roughly viewed as mathematical model + numerical analysis
It is literally rocket science and beyond...

Scientific computing is a discipline concerned with...

From Flickr: wind.com.my

2,147,483,647
Why is this number important?

2,147,483,647 and integer overflow

1. June 4, 1996. European Space Agency (ESA). Crewless Ariane 5 rocket
explosion after 39 seconds of launching, resulted in a loss of $370m.
(Correction: Ariane 5 was a signed 16-bit integer overflow)

2. YouTube: We never thought a video would be watched in numbers
greater than a 32-bit integer (=2,147,483,647 views), but that was
before we met PSY. (This was a joke!)

Integer Overflow:
Maximum positive value for a 32-bit signed binary integer in computing.
Now, the counters in YouTube are capable of reaching how many views?

From Flickr: wind.com.my

9,223,373,036,854,775,808
roughly 9 quintillion (US)

The number of views YouTube counter could reach

From Flickr: wind.com.my From Flickr: CampusGrotto

observed
phenomenon

mathematical
model

discretization
 solution algorithm

efficiency
accuracy
robustness

implementation
programming
environment
data structure
computing
architecture

Scientific
Computing

Some Brief History
[Trefethen 2000]

Newton’s method
Gaussian elimination

Gauss quadrature
least squares fitting

Richardson extrapolation
...

Before 1940 1940 - 1970 1970 -1998

floating point arithmetic
Fortran

finite differences
finite elements

simplex algorithm
Monte Carlo

Fast Fourier Transform
...

quasi Newton iterations
adaptivity

Matlab
multigrid

sparse and iterative linear algebra
spectral methods

interior point methods
...

advancement in linear algebra
multipole methods

breakthroughs in preconditioners,
spectral methods

& time stepping for PDS
...

After 1998 2048

From Flickr: wind.com.my

The “Best” of the Computer Age
Top 10 algorithms of the century in SC

[Cipra 2000]

1946

Monte Carlo method
Metropolis algorithm:
repeated random
sampling to obtain
numerical results of
problems with many
degrees of freedom.
e.g. optimization,
numerical integration.
Manhattan Project!

Simplex method for
linear programming.
A problem mistakenly
solved as a homework
solution!
In terms of
widespread use: one
of the most
successful algorithm
of all time!

Krylov subspace
iteration methods
Find a few
eigenvalues of large
sparse matrices or
solve linear equations
by avoiding matrix
multiplications.

1947 1950

1951

Decompositional
approach to matrix
computation.
For efficient SW
packages. Facilitates
the analysis of
rounding errors.

Fortran: single most
important event in
the history of
computer
programming!
It “produces code of
such efficiency that
its output would
startle the
programmers who
studied it. “

QR algorithm for
computing
eigenvalues.
Transform the
once-formidable
eigenvalue problems
into routine.

1957 1959-1961

1962

Quicksort.
The posterchild of
computational
complexity.

Fast Fourier
transform.
Revolutionized signal
processing.

Integer relation
detection algorithm.
Given a bunch of real
numbers, x1, x2,...xn,
are there not all zero
integers a1,a2,...an s.t.
a1x1+a2x2+...anxn=0?
Quantum field theory!

1965 1977

1987

Fast multipole
algorithm gives
accurate calculation
of pair-pair
interactions in O(n).

The Future of Scientific Computing
50 years from now

[Trefethen 2000]

1
We’ll talk to computers more
than type to them, and they’ll
respond with pictures more
often than numbers.
Computer Graphics, Visualization, HCI, 3D images

Speech and graphics everywhere

2
Numerical computing will be
adaptive, iterative, exploratory,
intelligent - computational
power will be beyond your
wildest dreams.
Everything is embedded in an iterative loop, problems solved
atop an encyclopedia of numerical methods

Fully intelligent, adaptive numerics

3
Determinism in numerical
computing will be gone.
It is not reasonable to ask for exactness in numerical
computation...we may not ask for repeatability either.

Loss of determinism

4
The importance of floating point
arithmetic will be undiminished.
128 bit plus word lengths, most numerical problems can not be
solved symbolically still, still need approximations.

Floating point arithmetic: best
general purpose approximation

5
Linear systems of equations will
be solved in time O(N^{2+e})
Complexity of matrix multiplication = complexity of “almost all”
matrix problems: inverse, determinants, solve linear systems...
How fast can we multiply two n by n matrices? Standard O(N^3).
Strassen’s algorithm O(N^2.81). Coppersmith and Winograd’s
algorithm O(N^2.38)...Is O(N^2) achievable?

The quest for speed in
matrix multiplication

6
Multipole methods and their
descendants will be ubiquitous.
Speed up the calculation of long-ranged forces in the n-body
problem. Large-scale numerical computations rely more on
approximate algorithms...more robust and faster than exact
ones.

Multipole methods

7
The dream of seamless
interoperability will have been
achieved.
No separation between numerical and symbolic calculations,
work across different discretizations and grids, removing
humans from the loop.

seamless interoperability

8
The problem of massively
parallel computing will have
been blown open by ideas
related to human brain.
Understanding human brain and its implications for computing.

massive parallel computing

9
Our methods of programming
will have been blown open by
ideas related to genomes and
natural selection.
Think digitally about the evolution of life in earth.

New programming methods

For your procrastination reading list

1. Wikipedia:
https://en.wikipedia.org/wiki/Timeline_of_scientific_computing

2. [Trfethen 2000] Lyoyd N. Trefethen: Predictions for Scientific
Computing Fifty Years From Now.
https://people.maths.ox.ac.uk/trefethen/future.pdf

3. [Cipra 2000] Barry A. Cipra: The Best of the 20th Century: Editors
Name Top 10 Algorithms https://www.siam.org/pdf/news/637.pdf

https://en.wikipedia.org/wiki/Timeline_of_scientific_computing
https://en.wikipedia.org/wiki/Timeline_of_scientific_computing
https://people.maths.ox.ac.uk/trefethen/future.pdf
https://people.maths.ox.ac.uk/trefethen/future.pdf
https://www.siam.org/pdf/news/637.pdf

Take home message
1. Think Big: how SC could transform your research?

2. Keep your eyes open: identify the newest advancement in SC. We
will revisit the prediction by the end of the semester.

3. Master the fundamentals: practice makes perfect.
4. Have some fun while learning!

THANKS!
Any questions?
You can email us at

1. Instructor: beiwang@sci.utah.edu
2. TA: sourabh@sci.utah.edu

mailto:beiwang@sci.utah.edu
mailto:sourabh@sci.utah.edu

Extra Notes
So it goes.

Credits

Special thanks to all the people who made and released
these awesome resources for free:
✘ Presentation template by SlidesCarnival
✘ Photographs by Unsplash

http://www.slidescarnival.com/
http://unsplash.com/

