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Let’s recall the 
scientific computing pipeline
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We have accomplished our goal 
and leant a great deal!



Our Supercomputing Miniseries

Mark Kim (SCI): Fixed-Rate Compressed Floating-Point Arrays

Sidharth Kumar (SoC): Parallel I/O Library 

Arnab Das and Vinu Joseph (SoC): Why we are not ready for Exascale Computing?  



Numerical Algorithms

Error
*different types of error (absolute, relative, discretization, convergence, 
roundoff)
Algorithm properties: accuracy, efficiency, robustness



Floating point system

Roundoff error accumulation
*FP system: can you tell me the range of numbers a FP system can 
provide?



Solving Nonlinear Equation in 1 variable: f(x) = 0 

Bisection
Fixed point iteration
*Newton’s method
*Secant
*Convergence of various methods
Function minimization



Linear algebra

Vector norm
Matrix norm
*Symmetric positive definite
Orthogonal matrices
*SVD



Linear Systems Ax = b: direct methods

Backward and forward substitution
*Gaussian elimination
*LU decomposition
Pivoting
*Cholesky decomposition
Error estimation 
Condition number



Linear least squares: min || b-Ax ||

Uniqueness and normal equation: (A^TA)x = A^Tb
Orthogonal transformation
*QR
Householder transformation
Gram-Schmidt orthogonalization



Linear Systems Ax = b: Iterative methods

*Splitting (stationary methods): A = M-N
Jacobi method
Gauss-Seidel method
Convergence of stationary methods
Gradient descent
*Conjugate gradient: explain how this works?



Eigenvalues and singular values: Ax = \lambda x; SVD

Power method for computing dominant eigenvalue and eigen vectors
*SVD
Best lower rank approximation
*Geometric intuition behind SVD
Least squares via SVD
QR for eigenvalues 



Nonlinear systems f(x) = 0 and optimization

Newton’s method
Unconstrained optimization
Taylor’s series
Gradient descent
Linear search
Quasi-Newton



Polynomial interpolation f(x) = \Sigma c phi(x)

*Piecewise linear
Piecewise constant
Monomial interpolation
*Lagrange interpolation
Divided difference (coefficients) f[x_i….x_j]
*Error
*Chebyshev interpolation
Interpolating derived values f’, f’’



Piecewise polynomial interpolation

Broken line
Piecewise Hermite interpolation
Cubic spline
Parametric curves



Best approximation

Continuous least squares approximation
Orthogonal basis function: Legendre polynomial
Weighted least squares
*Chebyshev polynomial: geometric intuition



Numerical differentiation

*Taylor series
2 point, 3 point, 5 point formula
Richardson extrapolation
Using Lagrange polynomial interpolation
Roundoff errors



Numerical integration

Quadrature rule: \sum a_j f(x_j)
*Basic rules (trapezoidal, Simpson, midpoint)
Error 
*Composite rules (similar to piecewise polynomial interpolation)
Gaussian quadrature



You should be proud of what we’ve 
accomplished together!



More on the final



Notes on final exam

Open book, open notes, close internet

Please bring your calculator (recommended); TA will have a calculator that 
you can borrow, if needed. 

20 T/F questions (2 points each)
5-10 questions that require derivation
10 T/F question for extra credits
1 extra derivation question for extra credits



Possible topics of interests (see * from topic review)

Errors
IEEE standard
Fixed point methods
GE
Least squares
SOR
CG
SD 
QR
Condition number

Polynomial interpolation
SVD
Linear systems of equations
Taylor series
Unconstrained optimization
LU
Chelosky decomposition
Normal equations
...



Example questions

1. In unconstrained optimization, a necessary condition for having a global 
min at point x is for x being a critical point (T/F)?

2. Give polynomial interpolation to some data using different interpolation 
schemes. 



Answer to the questions 

In unconstrained optimization, a necessary condition for having a global min 
at point x is for x being a critical point (T/F)?

False: Page 260. A necessary condition for having a local minimum at x is 
that x be a critical point and that the symmetric Hessian matrix being 
positive semidefinite. 



Example questions



Example questions



Revisit:
The Future of Scientific Computing

50 years from now
[Trefethen 2000]



1 
We’ll talk to computers more 
than type to them, and they’ll 
respond with pictures more 
often than numbers.
Computer Graphics, Visualization, HCI, 3D images

Speech and graphics everywhere



2
Numerical computing will be 
adaptive, iterative, exploratory, 
intelligent - computational 
power will be beyond your 
wildest dreams.  
Everything is embedded in an iterative loop, problems solved 
atop an encyclopedia of numerical methods

Fully intelligent, adaptive numerics



3
Determinism in numerical 
computing will be gone. 
It is not reasonable to ask for exactness in numerical 
computation...we may not ask for repeatability either. 

Loss of determinism



4
The importance of floating point 
arithmetic will be undiminished.
128 bit plus word lengths, most numerical problems can not be 
solved symbolically still, still need approximations. 

Floating point arithmetic: best 
general purpose approximation 



5
Linear systems of equations will 
be solved in time O(N^{2+e})
Complexity of matrix multiplication = complexity of “almost all” 
matrix problems: inverse, determinants, solve linear systems...
How fast can we multiply two n by n matrices? Standard O(N^3). 
Strassen’s algorithm O(N^2.81). Coppersmith and Winograd’s 
algorithm O(N^2.38)...Is O(N^2) achievable?

The quest for speed in 
matrix multiplication



6
Multipole methods and their 
descendants will be ubiquitous.
Speed up the calculation of long-ranged forces in the n-body 
problem. Large-scale numerical computations rely more on 
approximate algorithms...more robust and faster than exact 
ones. 

Multipole methods



7
The dream of seamless 
interoperability will have been 
achieved. 
No separation between numerical and symbolic calculations, 
work across different discretizations and grids, removing 
humans from the loop. 

seamless interoperability



8
The problem of massively 
parallel computing will have 
been blown open by ideas 
related to human brain. 
Understanding human brain and its implications for computing.

massive parallel computing



9
Our methods of programming 
will have been blown open by 
ideas related to genomes and 
natural selection.
Think digitally about the evolution of life in earth. 

New programming methods



What’s your prediction of the future of 
scientific computing?



1. Supercomputing taking over!
2. Nano computing
3. Personal computing
4. Crowdsourcing
5. Human-computer interaction
6. Big data
7. Visualization needs
8. Web computing
9. Blurry boundary between SC and machine 

learning
10. Security 
11. Your laptop and your other multimedia 

devices; internet of things



Take home message
1. Think Big: how SC could transform your research?

2. Keep your eyes open: identify the newest advancement in SC. 
3. Master the fundamentals: practice makes perfect.
4. Have some fun while learning!

TA Friday (12/8) review hour: 1:30 p.m - 2:30 pm



THANKS!



Extra Notes
So it goes.
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