CS 6170: Computational Topology, Spring 2019

Lecture 27
Topological Data Analysis for Data Scientists

Dr. Bei Wang

School of Computing
Scientific Computing and Imaging Institute (SCI)
University of Utah
www.sci.utah.edu/~beiwang
beiwang@sci.utah.edu

April 16, 2019


www.sci.utah.edu/~beiwang

Key development in TDA

1. Abstraction of the data: topological structures
2. Separate features from noise: persistent homology
Reeb Graph/Contour Tree/Merge Tree
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Morse-Smale Complex

van Kreveld et al. (1997); Carr et al. (2003); Edelsbrunner et al. (2003a,b)



Morse-Smale Complexes
(Edelsbrunner and Harer, 2010, VI.2)




Morse Complex

@ M: a smooth manifold embedded in R".

o f:M — R: a smooth function with gradient V f.

@ A point x € M is called critical if V f(x) = 0; otherwise it is regular.
°

At any regular point x, the gradient is well defined and integrating it in
both ascending and descending directions traces out an integral line,
which is a maximal path whose tangent vectors agree with the gradient.

@ Each integral line begins and ends at critical points.

o The ascending manifolds of a critical point p are defined as all the points
whose integral lines start at p.

@ The descending manifolds of a critical point p are defined as all the
points whose integral lines end at p.

@ The ascending (descending) manifolds decompose the domain into cells.

@ These cells form a complex called a Morse complex of f (—f).



Descending Manifolds

All the points whose integral lines end at a critical point x.




Ascending Manifolds

All the points whose integral lines start at a critical point y.




Morse-Smale Complex

@ The set of intersections of ascending and descending manifolds creates
the Morse-Smale complex of f.

@ A partition of the data into monotonic regions.

Descending Manifolds Ascending Manifolds Morse-Smale Complexes
(Unstable Manifolds) (Stable Manifolds)

Edelsbrunner et al. (2003a,b)



Persistence Simplification of Morse-Smale Complex




Morse-Smale Complex: approximation in HD
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Applications of Morse-Smale Complexes
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Terrain simplification

Figure 11: (Upper-left) Puget Sound data after topological noise removal. (Upper-right) Data at persistence of 1.2% of the maximum height.
(Lower-left) Data at persistence 20% of the maximum height. (Lower-right) View-dependent re_nement (purple: view frustum).

Bremer et al. (2003)



Morse-Smale Regression
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Figure 1.
(a) 11 ion of the Morse-Smale complex d position of a 2D function and (b)

piecewise linear model fit.

Gerber et al. (2012)



Morse-Smale Regression

Persistence 0.5 Persistence 0.23 Persistence 0.21 Persistence 0
Figure 3.

A hierarchy of regression models induced by the persistence simplification of the Morse-
Smale complex. Starting at the highest persistence, with a single minimum and maximum,
on the left, to multiple extrema, at zero persistence, on the right.

Gerber et al. (2012)



Visual exploration of HD scalar functions
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Gerber et al. (2010)



Nuclear Engineering: Sensitivity Analysis
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Figure 5: SA of the new nuclear fuel dataset: (a) topology map,
(b) persistence diagram, (c) linked scatter plot pI‘O]CCthﬂ (d) linear
coefficients, and (e) fitness view with stepwise R? scores.

Maljovec et al. (2016)



Topological simplification: hydrogen data set

Gyulassy (2007)
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