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Deep Learning with Topological Features
The devil is in the detail...
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Deep learning and TDA: pipeline
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Figure 1: Illustration of the proposed network input layer for topological signatures. Each signature, in the
form of a persistence diagram D € I (left), is projected w.r.t. a collection of structure elements. The layer’s
learnable parameters 6 are the locations p; and the scales o; of these elements; v € R™ is set a-priori and
meant to discount the impact of points with low persistence (and, in many cases, of low discriminative power).
The layer output y is a concatenation of the projections. In this illustration, N = 2 and hence y = (y1, yg)T.

Hofer et al. (2017)
Main idea: transform persistent diagram via an input layer to be used by a
neuron network



Computing topological signatures for images

Persistence diagram
b (0-dim. features)
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Figure 2: Height function filtration of a “clean” (left, green points) and a “noisy” (right, blue points) shape
along direction d = (0, — l)T. This example demonstrates the insensitivity of homology towards noise, as the
added noise only (1) slightly shifts the dominant points (upper left corner) and (2) produces additional points
close to the diagonal, which have little impact on the Wasserstein distance and the output of our layer.

Hofer et al. (2017)



Sublevel set filtration of height functions
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Hofer et al. (2017)

Filtration: sub level sets of a height function + essential classes (green)
Using multiple directions (32 directions)

Scaling! And f values are lifted to edges by taking the maximum.
Extended persistence! (See more on elevation function)



Network architecture

~~di—1 d; diy1 (Filtration directions)

(for 32 directions, we have 32 3-tuple of persistence diagrams as input)

Input layer

N=75

'

§Output: 3x75

https://papers.nips.cc/paper/6761-deep-learning-with-topological-signatures

@ 32 independent input branches, 1 for each direction

@ i-th branch gets PDs from directions d;,_1 , d; and d;11 .


https://papers.nips.cc/paper/6761-deep-learning-with-topological-signatures

Computing topological signatures for graphs/networks

s G=(V,E) e o fl((~,2])

Hofer et al. (2017)
Filtration by vertex degree: f([vg]) = deg(vo) (or normalize).
Lift f to K7 by taking the maximum.
Hint: the above pic needs correction!



Take home message of Hofer et al. 2017

@ Using topological signatures is below the state-of-the-art.

@ The proposed architecture is still better than other approaches that are
specifically tailored to the problem.

@ Most notably, TDA approach does not require any specific data
preprocessing, e.g., some sort of contour extraction.



Challenges in using persistence in learning

Data pre-processing

Choose filtrations and metrics

Choose ML models

o

o

@ Choose kernels or distance measures

o

@ Understand strengths and weaknesses of TDA methods in learning!



Persistence Landscapes
Bubenik (2015); Bubenik and Dlotko (2017)




Persistence landscapes
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Persistence landscapes: implementations

¢ Landscape: implementation of landscapes.

Parameters:
name description
num_landscapes = 5 Number of landscapes.
resolution = 100 Number of sample points of each landscape.
Is_range = [np.nan, Range of each landscape. If np.nan, it is set to min and max of x-axis in the
np.nan] diagrams.

https://github. con/MathieuCarriere/sklearn_tda

@ https://scikit-tda.org/libraries.html

@ https://github.com/scikit-tda/scikit-tda

@ https://github.com/MathieuCarriere/sklearn_tda


https://github.com/MathieuCarriere/sklearn_tda
https://scikit-tda.org/libraries.html
https://github.com/scikit-tda/scikit-tda
https://github.com/MathieuCarriere/sklearn_tda

Topological Regularizer for Classifiers
Chen et al. (2019)




Topological Regularizer

Figure 1: Comparison of classifiers with different regularizers. For ease of exposition, we only draw training data
(blue and orange markers) and the classification boundary (red). (a): our method achieves structural simplicity
without over-smoothing the classifier boundary. A standard classifier (e.g., kernel method using the same o)
could (b) overfit, or (c) overly smooth the classification boundary and reduce overall accuracy. (d): The output
of the STOA method based on geometrical simplicity (Bai et al., 2016) also smooths the classifier globally.

Chen et al. (2019)



Measure importance of decision boundaries

Chen et al. (2019)



Some technical details

Given a data set D = {(zpn,tn) | =1,...,N} and
a classifier f(z,w) parameterized by w, we define the
objective function to optimize as the weighted sum of
the per-data loss and our topological penalty.

L(f,D)= Y «f t) + ALT(f(-,w)), (3.1)

(z,t)eD

in which A is the weight of the topological penalty, L.
And 4(f(z,w),t) is the standard per-data loss, e.g.,
cross-entropy loss, quadratic loss or hinge loss.

Chen et al. (2019)
Hinge loss: £(y) = max(0,1 — ¢ - y), prediction y, intended output ¢t = +1



Some technical details

Lr(f)= Y. plc)>

ceC(Sy)

Definition 1 (Robustness). The robustness of c is
ple) = min ¢ dist(f, f), so that c is not a connected
component of the boundary of the perturbed function f .

The distance between f and its perturbed version f is via
the Lo, norm, i.e., dist(f, f) = maxgex |f(z) — f(2)].

Chen et al. (2019)



Classic Morse Theory (CMT) and Morse Functions
Edelsbrunner and Harer (2010): B.VI




(Classic) Morse theory studies the topological change of X, as a varies.
@ X: a compact, smooth d-manifold

o f:X — R: differentiable

o sublevel set: X, = f~1(—o00,q]

@ A point x € X is critical if the derivative at = equals zero

°

A(z): the Morse index of a non-degenerate critical point x is the number
of negative eigenvalues in the Hessian matrix

Next page: p1,p2,ps3,p4, index 0, 1, 1, and 2

f is a Morse function if all critical points are non-degenerate and its
values at the critical points are distinct



Example
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Goresky and MacPherson (1988)



Two fundamental results of CMT

Theorem (CMT-A)

Let f : X — R be a differentiable function on a compact smooth
manifold X.

Let a < b be real values such that f~'[a,b] is compact and
contains no critical points of f.

Then X, is diffeomorphic to Xp.

@ A diffeomorphism is an isomorphism of smooth manifolds.

@ It is an invertible function that maps one differentiable
manifold to another such that both the function and its
inverse are smooth.




Two fundamental results of CMT

Theorem (CMT-B)

Let f be a Morse function on X.

Consider two regular values a < b such that f~'[a,b] is compact
but contains one critical point u of f, with index X.

Then X, is homotopy equivalent (diffeomorphic) to the space
Xo Up A, that is, by attaching A along B.

The pair of spaces (A, B) = (D* x D, (0D*) x D) is the
Morse data, where d is the dimension of X and \ is the Morse

index of u, D* denotes the closed k-dimensional disk and dD* is
its boundary.




CMT Example
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Goresky and MacPherson (1988)



CMT Morse Data

(A, B) = (D* x D% (0D*) x D4=)

Critical point Morse data (4, B)

(D > =(D° x D?, 6D° x D?)

| >=(D‘ x D!, 0D x DY)
?

Pa < O ) =(D?x D°, 0D* x D°)
.,

Goresky and MacPherson (1988)
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