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Persistence Image




Computing persistence image
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Figure 1: Algorithm pipeline to transform data into a persistence image.

Adams et al. (2017)



Computing persistence image

e Given a normalized symmetric Gaussian with mean u = (ug, u,) € R?

and variance o2:

1

e (@—ua)?+(y—uy)?)/20°
2mo?

gu(l', y) =

o Fix a nonnegative weighting function f : R? — R that is zero along the
horizontal axis, continuous, and piecewise differentiable.

@ For a persistence diagram B, the corresponding persistence surface
pB : R?2 = R is the function

= > fwou(2).

ueT(B)

e Fix a grid in the plane with n boxes (pixels) and assign to each the

integral of pp over that region.
Adams et al. (2017)



Classification using persistence image

Figure 7: To illustrate the difficulty of our classification task, consider five instances of surfaces
u(z,y,3) for r = 1.75 or r = 2, plotted on the same color axis. These surfaces are found by
numerical integration of Equation (4), starting from random initial conditions. Can you group the
images by eye?
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Adams et al. (2017)



SVM and Kernel SVM




SVM

@ SVM: Separating the training points with the maximal margin
@ Margin: distance to the nearest training point of any class
o If margin increases, then generalization error decreases

@ Perceptron does not optimize the separation distance.

Iy 2

l1: not a good linear classifier; l3: small margin; [3: maximal margin.



SVM

Training data: (z1,y1)," -, (Tn, yn), where z; € RY, y; € {+1, —1}.

Goal: Find maximum margin hyperplane that separates the training data
points with +1 and —1 labels.

Margin: distance between the hyperplane and the nearest point.
Support vectors: points on the margin.

Move a support vector moves the decision boundary.

Move thee other points/vectors has no effect on the decision boundary.




SVM: margins

e w: a normal vector defining the hyperplane (not necessarily normalized)

@ b/||w||: offset of hyperplane from the origin along normal vector w.
A2/l

A

A




SVM: hard margin

Assume the training data is linearly separable
@ Constraint: for each x;

o Eitherwz; —b>1ify; =1

o Orwx; —b< —1ify, =—-1

e Each training data point must lie on the correct side of the margin

@ Rewrite the constraint as
yi(wr; —b) > 1,V1<i<n

@ Problem statement as an optimization: minimize ||w|| subject to the
above constraint.

e Equivalently, maximize the margin 1/||w|| subject to the above
constraint.

o w*, b* that solve the optimization problem determines our classifier:
assign each test data point x a label of sgn(w*z — b*).



SVM: soft margin

Assume the training data is not linearly separable

Define Hinge loss for a training point x;:

¢ = max(0,1 — y;(wx; — b))

Problem statement: minimize the following loss function

1 n
- Z max (0,1 — yi(wa; — b)) + A|wl]?
i=1

@ \: parameter that determines the tradeoff between increasing the margin
size and ensuring x; lies on the correct side.

o If X is sufficiently small, A||w]||? is negligible, similar to the hard margin.



SVM: Primal

e ¢; =max(0,1 — y;(wx; — b))
@ ¢; is the smallest nonnegative number satisfying y;(w - x; — b) > 1 — ¢;.

@ Optimization problem:

T 2
minimize — E ¢ + Al|wl]|
n
i=1

subject to y;(w-x; —b) > 1—¢; and ¢; > 0, for all 4.



SVM: Dual

@ Rewrite the optimization problem as a dual maximization problem:

maximize f(c Z Ci— 5 Z Z yici(wi - 25)y;c;,

lel

. 1 .
subject to ;ciyi =0,and 0 < ¢; < I for all 1.

@ This is a quadratic function of the ¢; subject to linear constraints, it is
efficiently solvable by quadratic programming.
o w=1" Ciyi;.
o Let s; be a support vector.
o yi(w-s,—b)=1 <<= b=w-s; —y.



Quadratic Programming

@ The quadratic programming problem with n variables and m constraints
can be formulated as follows:

e c: a real-valued, n-dimensional vector

o (: an n X n-dimensional real symmetric matrix
o A: an m X n-dimensional real matrix

o b: an m-dimensional real vector.

@ Find an n-dimensional vector x, that will

1
minimize §XTQX +cTx

subject to Ax <b



Quadratic Programming

o Commonly used methods: Conjugate gradient, etc.

https://en.wikipedia.org/wiki/Conjugate_gradient_method


https://en.wikipedia.org/wiki/Conjugate_gradient_method

From SVM to Kernel SVM

@ A subset of the training data points x1,--- , x, are support vectors,
denoted as sq,- - , Sk.

@ SVM: w can be written as a linear combination of the support vectors:

n

w = E CiYiSi-

=1

o Kernel SVM: w is rewritten in the transformed space,
n
w= Zciyi@(si).
i=1

o Kernel K (z;,x;) = (®(x;), ®(x5)) = ®(x;) - P(x;)



Kernel SVM: Dual

n
maximize f(c Zcz -5 ZziniK(ifi’«Tj)ijj’

’L].]l

. 1 .
subject to ;czyZ =0,and 0 < ¢ < I for all 7.

This is a quadratic function of the ¢; subject to linear constraints, it is
efficiently solvable by quadratic programming.

e w= E?:l Ciyiq)(mi)-

o Let s; be a support vector.

o b:wq)(st)—yz



Deep Learning with Topological Features
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Deep learning and TDA
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Figure 1: Illustration of the proposed network input layer for topological signatures. Each signature, in the
form of a persistence diagram D € I (left), is projected w.r.t. a collection of structure elements. The layer’s
learnable parameters 6 are the locations p; and the scales o; of these elements; v € R™ is set a-priori and
meant to discount the impact of points with low persistence (and, in many cases, of low discriminative power).
The layer output y is a concatenation of the projections. In this illustration, N = 2 and hence y = (y1, yg)T.

Hofer et al. (2017)
Main idea: transform persistent diagram via an input layer to be used by a
neuron network



Project topological signature

Definition 3. Let p1 = (19, 111) " € R x R, 0 = (00,01) € R* x R and v € R*. We define

Swow RXR 5 R

as follows:
e—ag(:Co—ﬂo)z—af(ﬂil—m)27 x| € [l/7 OO)
Su,a,u((xo’ xl)) = e*ﬁg(zo*/’tu)zﬂf?(lﬂ(i.})v”’*#l)z7 T € ([]’ 1/) 3)
0, xr = 0
A persistence diagram D is then projected w.r.t. 5, o, via
Spow:D—=R, D Z Spow(p(x)) - 4)
xeD

Hofer et al. (2017)



wi-stable input layer

wi(D, &) = inf ( >l = nx)l )

x€D

Lemma 1. Let
s:RZURL — Ry

have the following properties:
(i) s is Lipschitz continuous w.rt. || - || and constant K
(ii) s(x) =0, forx € R}

Then, for two persistence diagrams D, E € D, it holds that

Zs(x)_zs(y) SKSW({(D,S) . (5)

z€D ye€

Hofer et al. (2017)



Neural Networks in a Nutshell




Reading Materials

Neural Network: a type of non-linear classification/regression model.

The goal of this lecture:

o Not a complete overview of neural networks or deep learning
o But rather a high level view of the technique and its connection to TDA

http://neuralnetworksanddeeplearning.com/
http://deeplearning.stanford.edu/tutorial/
http://www.deeplearningbook.org/

More on class schedule page...


http://neuralnetworksanddeeplearning.com/
http://deeplearning.stanford.edu/tutorial/
http://www.deeplearningbook.org/

A Single Neuron

X1

X, /\
. \\ — hyp(X)

+1

This “neuron” is a computational unit that takes as input x1, x2, x3 (and a +1 intercept term), and outputs
hwp(x) = f(WTx) = f(z:?=1 Wix; + b), where f : R — R is called the activation function. In these
notes, we will choose f(-) to be the sigmoid function:

1

f@= 1 +exp(-z)

http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/


http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/

A Neural Network

A neural network is put together by hooking together many of our simple “neurons,” so that the output
of a neuron can be the input of another. For example, here is a small neural network:

hus(x)

Layer Ly

http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/


http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/

A Neural Network

input layer

http://neuralnetworksanddeeplearning.com/chapl.html


http://neuralnetworksanddeeplearning.com/chap1.html

Forward propagation

Multiplying input with weights and add bias before applying activation
function at each node.
a® = WDy + WDxy + Wxy + b0
a(22) =f(W2(;)x1 + Wz(;)xz + Wz(;)xg + b(zl))
a@ = WDy + WDxy + WDxs + b
hwp®) = a@ = fWPa? + W2aP + W2aP + b?)

—
hyp(X
) oyert, il 2@ = Wy 4 p®
a?® =f(Z(2)) 7D = whg0 4 p®
a1 ‘ 20 = w®a® 4 p® a®*V = f(z"*D)
Layer L, I.;yér L hWVb(X) - a(3) =f(Z(3))

http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/


http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/

Visualizing the inner working of neural networks
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http://playground.tensorflow.org/

Topological spaces that are not triangulable

)




Freedman’'s E8 Manifold

@ Topological manifolds of dimensions 2 and 3 are always triangulable by
an essentially unique triangulation (up to piecewise-linear equivalence).

@ Some compact 4-manifolds have an infinite number of triangulations, all
piecewise-linear inequivalent.

@ For dimension greater than 4, there exist manifolds that do not have
piecewise-linear triangulations.

@ There exist compact manifolds of dimension 5 (and hence of every
dimension greater than 5) that are not homeomorphic to a simplicial
complex, i.e., that do not admit a triangulation.

o Freedman’s E8 manifold (in 4-dimension): it is not triangulable as a

simplicial complex.
https://people.math.osu.edu/davis.12/talks/Milwaukee-13short.pdf
https://en.wikipedia.org/wiki/Triangulation_(topology)


https://people.math.osu.edu/davis.12/talks/Milwaukee-13short.pdf
https://en.wikipedia.org/wiki/Triangulation_(topology)
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