CS 6170: Computational Topology, Spring 2019 Lecture 18

Topological Data Analysis for Data Scientists

Dr. Bei Wang

School of Computing
Scientific Computing and Imaging Institute (SCI)
University of Utah
www.sci.utah.edu/~beiwang
beiwang@sci.utah.edu

March 7, 2019

Persistence Image

Computing persistence image

Figure 1: Algorithm pipeline to transform data into a persistence image.

Adams et al. (2017)

Computing persistence image

• Given a normalized symmetric Gaussian with mean $u=(u_x,u_y)\in\mathbb{R}^2$ and variance σ^2 :

$$g_u(x,y) = \frac{1}{2\pi\sigma^2}e^{-[(x-u_x)^2+(y-u_y)^2]/2\sigma^2}$$

- Fix a nonnegative weighting function $f: \mathbb{R}^2 \to \mathbb{R}$ that is zero along the horizontal axis, continuous, and piecewise differentiable.
- For a persistence diagram B, the corresponding persistence surface $\rho_B:\mathbb{R}^2 \to \mathbb{R}$ is the function

$$\rho_B(z) = \sum_{u \in T(B)} f(u)\phi_u(z).$$

• Fix a grid in the plane with n boxes (pixels) and assign to each the integral of ρ_B over that region.

Adams et al. (2017)

Classification using persistence image

Figure 7: To illustrate the difficulty of our classification task, consider five instances of surfaces u(x,y,3) for r=1.75 or r=2, plotted on the same color axis. These surfaces are found by numerical integration of Equation (4), starting from random initial conditions. Can you group the images by eye?

Answer: (from left) r = 1.75, 2, 1.75, 2, 2.

Adams et al. (2017)

SVM and Kernel SVM

SVM

- SVM: Separating the training points with the maximal margin
- Margin: distance to the nearest training point of any class
- If margin increases, then generalization error decreases
- Perceptron does not optimize the separation distance.

 l_1 : not a good linear classifier; l_2 : small margin; l_3 : maximal margin.

SVM

- Training data: $(x_1, y_1), \dots, (x_n, y_n)$, where $x_i \in \mathbb{R}^d$, $y_i \in \{+1, -1\}$.
- ullet Goal: Find $maximum\ margin$ hyperplane that separates the training data points with +1 and -1 labels.
- Margin: distance between the hyperplane and the nearest point.
- Support vectors: points on the margin.
- Move a support vector moves the decision boundary.
- Move thee other points/vectors has no effect on the decision boundary.

SVM: margins

- ullet w: a normal vector defining the hyperplane (not necessarily normalized)
- b/||w||: offset of hyperplane from the origin along normal vector w.

SVM: hard margin

- Assume the training data is linearly separable
- Constraint: for each x_i
 - Either $wx_i b \ge 1$ if $y_i = 1$
 - Or $wx_i b \le -1$ if $y_i = -1$
- Each training data point must lie on the correct side of the margin
- Rewrite the constraint as

$$y_i(wx_i - b) \ge 1, \forall 1 \le i \le n$$

- Problem statement as an optimization: minimize ||w|| subject to the above constraint.
- Equivalently, maximize the margin 1/||w|| subject to the above constraint.
- w^*, b^* that solve the optimization problem determines our classifier: assign each test data point x a label of $\operatorname{sgn}(w^*x b^*)$.

SVM: soft margin

- Assume the training data is not linearly separable
- Define *Hinge loss* for a training point x_i :

$$c_i = \max(0, 1 - y_i(wx_i - b))$$

• Problem statement: minimize the following loss function

$$\frac{1}{n} \sum_{i=1}^{n} \max(0, 1 - y_i(wx_i - b)) + \lambda ||w||^2$$

- λ : parameter that determines the tradeoff between increasing the margin size and ensuring x_i lies on the correct side.
- If λ is sufficiently small, $\lambda ||w||^2$ is negligible, similar to the hard margin.

SVM: Primal

- $c_i = \max(0, 1 y_i(wx_i b))$
- c_i is the smallest nonnegative number satisfying $y_i(w \cdot x_i b) \ge 1 c_i$.
- Optimization problem:

minimize
$$\frac{1}{n}\sum_{i=1}^n c_i + \lambda ||w||^2$$
 subject to $y_i(w\cdot x_i-b)\geq 1-c_i$ and $c_i\geq 0$, for all i .

SVM: Dual

• Rewrite the optimization problem as a dual maximization problem:

$$\begin{aligned} & \text{maximize} & & f(c_1 \dots c_n) = \sum_{i=1}^n c_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n y_i c_i (\textbf{x}_i \cdot \textbf{x}_j) y_j c_j, \\ & \text{subject to} & & \sum_{i=1}^n c_i y_i = 0, \text{ and } 0 \leq c_i \leq \frac{1}{2n\lambda} \text{ for all } i. \end{aligned}$$

- ullet This is a quadratic function of the c_i subject to linear constraints, it is efficiently solvable by quadratic programming.
 - $w = \sum_{i=1}^{n} c_i y_i x_i$.
 - Let s_i be a support vector.
 - $y_i(w \cdot s_i b) = 1 \iff b = w \cdot s_i y_i$.

Quadratic Programming

- ullet The quadratic programming problem with n variables and m constraints can be formulated as follows:
 - c: a real-valued. n-dimensional vector
 - Q: an $n \times n$ -dimensional real symmetric matrix
 - A: an $m \times n$ -dimensional real matrix
 - **b**: an *m*-dimensional real vector.
- Find an n-dimensional vector \mathbf{x} , that will

$$\begin{aligned} & \text{minimize} & & \frac{1}{2}\mathbf{x}^{\mathrm{T}}Q\mathbf{x} + \mathbf{c}^{\mathrm{T}}\mathbf{x} \\ & \text{subject to} & & A\mathbf{x} \leq \mathbf{b} \end{aligned}$$

Quadratic Programming

• Commonly used methods: Conjugate gradient, etc.

https://en.wikipedia.org/wiki/Conjugate_gradient_method

From SVM to Kernel SVM

- A subset of the training data points x_1, \dots, x_n are support vectors, denoted as s_1, \dots, s_k .
- ullet SVM: w can be written as a linear combination of the support vectors:

$$w = \sum_{i=1}^{n} c_i y_i s_i.$$

ullet Kernel SVM: w is rewritten in the transformed space,

$$w = \sum_{i=1}^{n} c_i y_i \Phi(s_i).$$

• Kernel $K(x_i, x_j) = \langle \Phi(x_i), \Phi(x_j) \rangle = \Phi(x_i) \cdot \Phi(x_j)$

Kernel SVM: Dual

maximize
$$f(c_1 \dots c_n) = \sum_{i=1}^n c_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n y_i c_i K(x_i, x_j) y_j c_j,$$
 subject to $\sum_{i=1}^n c_i y_i = 0$, and $0 \le c_i \le \frac{1}{2n\lambda}$ for all i .

This is a quadratic function of the c_i subject to linear constraints, it is efficiently solvable by quadratic programming.

- $w = \sum_{i=1}^n c_i y_i \Phi(x_i)$.
- Let s_i be a support vector.
- $\bullet \ b = w \cdot \Phi(s_i) y_i.$

Deep Learning with Topological Features

Deep learning and TDA

Figure 1: Illustration of the proposed network *input layer* for topological signatures. Each signature, in the form of a persistence diagram $\mathcal{D} \in \mathbb{D}$ (*left*), is projected w.r.t. a collection of *structure elements*. The layer's learnable parameters $\boldsymbol{\theta}$ are the locations $\boldsymbol{\mu}_i$ and the scales $\boldsymbol{\sigma}_i$ of these elements; $\boldsymbol{\nu} \in \mathbb{R}^+$ is set a-priori and meant to discount the impact of points with low persistence (and, in many cases, of low discriminative power). The layer output \mathbf{y} is a concatenation of the projections. In this illustration, N = 2 and hence $\mathbf{y} = (y_1, y_2)^{\top}$.

Hofer et al. (2017)

Main idea: transform persistent diagram via an input layer to be used by a neuron network

Project topological signature

Definition 3. Let
$$\boldsymbol{\mu} = (\mu_0, \mu_1)^{\top} \in \mathbb{R} \times \mathbb{R}^+, \boldsymbol{\sigma} = (\sigma_0, \sigma_1) \in \mathbb{R}^+ \times \mathbb{R}^+$$
 and $\nu \in \mathbb{R}^+$. We define $s_{\boldsymbol{\mu}, \boldsymbol{\sigma}, \nu} : \mathbb{R} \times \mathbb{R}^+_0 \to \mathbb{R}$

as follows:

$$s_{\mu,\sigma,\nu}((x_0, x_1)) = \begin{cases} e^{-\sigma_0^2(x_0 - \mu_0)^2 - \sigma_1^2(x_1 - \mu_1)^2}, & x_1 \in [\nu, \infty) \\ e^{-\sigma_0^2(x_0 - \mu_0)^2 - \sigma_1^2(\ln(\frac{x_1}{\nu}) + \nu - \mu_1)^2}, & x_1 \in (0, \nu) \\ 0, & x_1 = 0 \end{cases}$$
(3)

A persistence diagram \mathcal{D} is then projected w.r.t. $s_{\mu,\sigma,\nu}$ via

$$S_{\mu,\sigma,\nu}: \mathbb{D} \to \mathbb{R}, \qquad \mathcal{D} \mapsto \sum_{\mathbf{x} \in \mathcal{D}} s_{\mu,\sigma,\nu}(\rho(\mathbf{x})) .$$
 (4)

Hofer et al. (2017)

w_1 -stable input layer

$$\mathbf{w}_p^q(\mathcal{D}, \mathcal{E}) = \inf_{\eta} \left(\sum_{\mathbf{x} \in \mathcal{D}} ||\mathbf{x} - \eta(\mathbf{x})||_q^p \right)^{\frac{1}{p}}$$

Lemma 1. Let

$$s: \mathbb{R}^2_{\star} \cup \mathbb{R}^2_{\Delta} \to \mathbb{R}^+_0$$

have the following properties:

- (i) s is Lipschitz continuous w.r.t. $\|\cdot\|_q$ and constant K_s
- (ii) $s(\mathbf{x}) = 0$, for $\mathbf{x} \in \mathbb{R}^2_{\Delta}$

Then, for two persistence diagrams $\mathcal{D}, \mathcal{E} \in \mathbb{D}$, it holds that

$$\left| \sum_{x \in \mathcal{D}} s(x) - \sum_{y \in \mathcal{E}} s(y) \right| \le K_s \cdot \mathbf{w}_1^q(\mathcal{D}, \mathcal{E}) . \tag{5}$$

Hofer et al. (2017)

Neural Networks in a Nutshell

Reading Materials

- Neural Network: a type of non-linear classification/regression model.
- The goal of this lecture:
 - Not a complete overview of neural networks or deep learning
 - But rather a high level view of the technique and its connection to TDA
- http://neuralnetworksanddeeplearning.com/
- http://deeplearning.stanford.edu/tutorial/
- http://www.deeplearningbook.org/
- More on class schedule page...

A Single Neuron

This "neuron" is a computational unit that takes as input x_1, x_2, x_3 (and a +1 intercept term), and outputs $h_{W,b}(x) = f(W^Tx) = f(\sum_{i=1}^3 W_i x_i + b)$, where $f: \Re \mapsto \Re$ is called the **activation function**. In these notes, we will choose $f(\cdot)$ to be the sigmoid function:

$$f(z) = \frac{1}{1 + \exp(-z)}.$$

http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/

A Neural Network

A neural network is put together by hooking together many of our simple "neurons," so that the output of a neuron can be the input of another. For example, here is a small neural network:

http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/

A Neural Network

http://neuralnetworksanddeeplearning.com/chap1.html

Forward propagation

Multiplying input with weights and add bias before applying activation function at each node.

$$\begin{split} a_1^{(2)} &= f(W_{11}^{(1)}x_1 + W_{12}^{(1)}x_2 + W_{13}^{(1)}x_3 + b_1^{(1)}) \\ a_2^{(2)} &= f(W_{21}^{(1)}x_1 + W_{22}^{(1)}x_2 + W_{23}^{(1)}x_3 + b_2^{(1)}) \\ a_3^{(2)} &= f(W_{31}^{(1)}x_1 + W_{32}^{(1)}x_2 + W_{33}^{(1)}x_3 + b_3^{(1)}) \\ h_{W,b}(x) &= a_1^{(3)} &= f(W_{11}^{(2)}a_1^{(2)} + W_{12}^{(2)}a_2^{(2)} + W_{13}^{(2)}a_3^{(2)} + b_1^{(2)}) \end{split}$$

$$z^{(2)} = W^{(1)}x + b^{(1)}$$

$$a^{(2)} = f(z^{(2)})$$

$$z^{(3)} = W^{(2)}a^{(2)} + b^{(2)}$$

$$a^{(l+1)} = W^{(l)}a^{(l)} + b^{(l)}$$

$$a^{(l+1)} = f(z^{(l+1)})$$

$$h_{W,b}(x) = a^{(3)} = f(z^{(3)})$$

http://ufldl.stanford.edu/tutorial/supervised/MultiLayerNeuralNetworks/

Visualizing the inner working of neural networks

Freedman's E8 Manifold

- Topological manifolds of dimensions 2 and 3 are always triangulable by an essentially unique triangulation (up to piecewise-linear equivalence).
- Some compact 4-manifolds have an infinite number of triangulations, all piecewise-linear inequivalent.
- For dimension greater than 4, there exist manifolds that do not have piecewise-linear triangulations.
- There exist compact manifolds of dimension 5 (and hence of every dimension greater than 5) that are not homeomorphic to a simplicial complex, i.e., that do not admit a triangulation.
- Freedman's E8 manifold (in 4-dimension): it is not triangulable as a simplicial complex.

References I

Adams, H., Emerson, T., Kirby, M., Neville, R., Peterson, C., Shipman, P., Chepushtanova, S., Hanson, E., Motta, F., and Ziegelmeier, L. (2017). Persistence images: A stable vector representation of persistent homology. *The Journal of Machine Learning Research*, 18(1):218–252.

Hofer, C., Kwitt, R., Niethammer, M., and Uhl, A. (2017). Deep learning with topological signatures. *Neural Information Processing Systems Conference (NIPS)*.