CS 6170: Computational Topology, Spring 2019

Lecture 17
Topological Data Analysis for Data Scientists

Dr. Bei Wang

School of Computing
Scientific Computing and Imaging Institute (SCI)
University of Utah
www.sci.utah.edu/~beiwvang
beiwang®@sci.utah.edu

March 5, 2019


www.sci.utah.edu/~beiwang

Stability of Persistence Diagrams: Continued

Edelsbrunner and Harer (2010), C.VIII




Tame functions

o A triangulation of a topological space X is a simplicial complex K
together with a homeomorphism between X and | K|, the support of K.

Let X be triangulable (i.e., if it has a triangulation) and f: X — R
continuous.

Define sublevel set

Xa = f_l(—oo,a],
fora € R and for a < b

Fob Hp(Xa) = Hp(Xp).

The p-th persistent homology group is defined to be

a,b __ a,b
Hy” =im f;7.

The p-th persistent Betti number is

ab __ 1,5
B, = rank H;/.



Tame functions

@ A a group isomorphism is a function between two groups that sets up a
one-to-one correspondence between the elements of the groups that
respects the given group operations/relations among the elements.

o Greek: iso means “equal”’, and morphosis means “to shape”.

@ a € R is a homological critical value if there is no € > 0 for which
a—e,ate€ - . .
D is an isomorphism for each p.

o f is tame if it has only finitely many homological critical values and all
homology groups of all sub level sets have finite rank.



Bottleneck Stability for Tame Functions

Theorem (Stability Theorem for Filtrations)

Let X be a triangulable topological space, f,g: X — R two tame
functions. For each dimension p, the bottleneck distance between
the diagrams X = Dgm,,(f) and Y = Dgm, (g) is bounded from
above by the Lo, distance between the functions (Edelsbrunner
and Harer, 2010, Page 183), that is,

death
L)
]

birth
(Edelsbrunner and Harer, 2010, Page 183)



Degree-q Wasserstein distance

Given two persistence diagrams X and Y

The degree-q Wasserstein distance is

WY) = [ it an— 2]

Think about assignment problem

Hungarian algorithm: find a perfect matching (in a bipartite graph) with
a minimum total cost

Software: https://bitbucket.org/grey_narn/hera
Kerber et al. (2016)


https://bitbucket.org/grey_narn/hera

Stability with Wasserstein distance

@ A function f: X — R is Lipschitz if there is a constant C
such that

[f (@) = f(y)] < cllz =yl
for all points =,y € X.
@ mesh: max distance between two points in 0 € K
@ N(r): minimum number of simplices whose mesh < r.
@ A triangulation of X grows polynomially if there are constants

¢ and j such that N(r) < <.

rl



Stability Theorem for Lipschitz Functions

Theorem (Stability Theorem for Lipschitz Functions)

Let f,g: X — R be two tame Lipschitz functions on a metric
space whose triangulations grow polynomially with constant j.
Then there are constants C and k > j no smaller than 1 such that
the degree-q Wasserstein distance between X = Dgm,,(f) and

Y = Dgm,(g) is

Wo(X,Y) < C-|If = gll™*

for every q > k.




The Assignment Problem

Given a weighted bipartite graph G with n + n vertices (n vertices on
each side), find a perfect matching with minimal cost.

@ A common cost function is the minimum of the sum of the ¢-th power of
weights of the matching edges for some ¢ < 1.

The solution: g-Wasserstein distance

Kerber et al. (2016): https://bitbucket.org/grey_narn/hera

Bottleneck distance computation: Hopcroft + Karp using k-d tree
Wasserstein distance computation: Bertsekas using weighted k-d tree


https://bitbucket.org/grey_narn/hera

Kernels for barcodes




Inner Product

@ Let H be a vector space over R
@ A function (-,-)g : H x H — R is an inner product on H if

o Linear: (anf1 +azf2,9)n = ar{(f1,9)u + a2(f2,9)n.
o Symmetric: (f,g)g = {(g,h)m.
o (f.f)u = 0iff f=0.

@ Norm induced by the inner product

Al = AS e



Hilbert space

@ Hilbert space: an inner product space that contains a Cauchy sequence.
o Wait a minute...

o A Hilbert space is an abstract vector space with the structure of an inner
product that allows lengths and angles to be measured.

@ A generalizes the notion of Euclidean space.



Kernel

o Given a set X, a function K : X x X — R is a kernel if there exists a
Hilbert space H called a feature space such that

K({L’, y) = <<I)($)? (I)(y»H

for all x,y € X.
o Alternatively, K is a kernel if it is symmetric and positive definite.

@ A symmetric function K : X x X — R is positive definite if Vn > 1,
Yay, -+ ,a, € R", V2, - 2, € X™,

n o n
ZZaiajK(xi,xj) Z 0.
=1 j=1

@ Kernels are positive definite

o Let H be a Hilbert space, X is a nonempty set and ® : X — H, then
K(z,y) = (®(z), P(y)) g is positive definite.



TDA Kernels and Vectorizations

@ https://github.com/MathieuCarriere/sklearn_tda
o Kernels:

o Persistence scale space kernel, Reininghaus et al. (2015)
o Persistence weighted Gaussian kernel

o Sliced Wasserstein kernel
o Persistence Fisher kernel

@ Vectorizations:

Persistence Image, Adams et al. (2017)
o Persistence landscape

o Betti Curve

o Silhouette


https://github.com/MathieuCarriere/sklearn_tda

TDA Kernels in applications

Surface
meshes

Images

Ly

Task(s): shape classification/retrieval
(Surface meshes filtered by heat-kernel signature)

Task(s): texture recognition
(image data as weighted cubical cell complex)

persistent
homology

Persistence diagrams

Dy

D,

Duj

7/@01) kD, DN)J i

K= : : — > .

k(Dw,D1) -+ k(Dw,Dn) Gauss’ian processes
Kernel construction
(our contribution)

Reininghaus et al. (2015)



Persistence scale space kernel

o Let F,G be two persistence diagram (of a fixed dimension p)

@ The persistence scale space kernel is
1 llp—ql|? |lp—al|®
Ko(F,G)=— > (e— e — e w0 >
8o
peF,qeG
@ p is p mirrored at the diagonal.

b= (a7b)




Persistence scale space kernel

D : set of persistence diagrams

Parameter: o

Lo(2): set of Lo functions (square integrable) on Q C R?
Feature map: @, : D — Ly(2)

Ko (F,G) = (Po(F), q’ﬂ(G»LQ(Q)

Stability of the persistence scale space kernel:

1
oV 8w

H(I)U(F) - (I)U(G)HLQ(Q) < WI(F7 G)

o Wi(F,G): degree-1 Wasserstein distance.
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