CS 6170: Computational Topology, Spring 2019 Lecture 09 Topological Data Analysis for Data Scientists Dr. Bei Wang School of Computing Scientific Computing and Imaging Institute (SCI) University of Utah www.sci.utah.edu/~beiwang beiwang@sci.utah.edu Feb 5, 2019 # 2-dimensional Manifold 2-differisional ivialifold Book Chapter A.II ## 2-manifold without boundary - A 2-manifold without boundary is a topological space \mathbb{M} whose points all lie in open disks. - Intuitively, this means that M locally looks like a plane. - We get a 2-manifold with boundary by removing open disks from a 2-manifolds without boundary. ## Examples of 2-manifolds - Top: 2-manifold without boundary - Bottom: 2-manifold with boundary - Möbius strip: non-orientable manifold; 2 sides locally, 1 side globally. - Möbius strip: an ant will travel all surface area - Möbius strip: its boundary is a single circle - Quiz: what happens if you cut Mobius strip along its center line? ## Orientability - If all closed curves in a 2-manifold are orientation-preserving, then the 2-manifold is *orientable*. - Creating compact 2-manifolds using *polygonal schema*. - ullet M is compact if for every covering of M by open sets, called an open cover, we can find a finite number of the sets that cover M. - A subset of Euclidean space is compact if it is closed and bounded (i.e., contained in a ball of finite radius). ## Classification ## Theorem (Classification theorem for compact 2-manifolds) The two infinite families \mathbb{S}^2 , \mathbb{T}^2 , $\mathbb{T}^2\#\mathbb{T}^2$, \cdots , and \mathbb{P}^2 , $\mathbb{P}^2\#\mathbb{P}^2$, \cdots , exhaust the compact 2-manifolds without boundary. (Edelsbrunner and Harer, 2010, Page 29) ## Classification Any connected closed surface is homeomorphic to some member of one of these three families: - The sphere - The connected sum of g tori, for $g \ge 1$ - The connected sum of k real projective planes, for $k \ge 1$. https://en.wikipedia.org/wiki/Surface_(topology)#Classification_of_closed_surfaces # Polygonal schema - Projective plane: glue a disk to a Möbius strip - Klein bottle: glue 2 Möbius strips together ## Klein bottle: non-orientable surface https://en.wikipedia.org/wiki/Klein_bottle Later: show up in data analysis of natural image patches Carlsson et al. (2008). # Betti numbers β_i of 2-manifolds | β_0 | β_1 | β_2 | |-----------|------------------|--------------------------| | 1 | 1 | 0 | | 1 | 0 | 1 | | 1 | 2 | 1 | | 1 | 0 | 0 | | 1 | 1 | 0 | | 1 | 4 | 1 | | 1 | 2g | 1 | | | 1
1
1
1 | 1 0
1 2
1 0
1 1 | #### Genus The genus of a connected, orientable surface is an integer representing the maximum number of cuttings along non-intersecting closed simple curves without disconnecting the resulting manifold. https://en.wikipedia.org/wiki/Genus_(mathematics), also for further reading # Computing Homology Book Chapter B.IV. ## Reduction of a boundary matrix - Let ∂_p be the p-th boundary matrix - ullet After reduction (row and column operation), ∂_p turns out to be a matrix N_p in Smith Normal Form - https://en.wikipedia.org/wiki/Smith_normal_form - $\beta_p = \operatorname{rank} Z_p \operatorname{rank} B_p$ ## Example: a triangulation of a circle $$\partial_{1} = \frac{1}{2} \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$ $$\Rightarrow \frac{1}{3(+2)} \begin{bmatrix} \boxed{1} & 0 & 1 \\ \boxed{1} & \boxed{1} & \boxed{1} \\ \boxed{1} & \boxed{1} & \boxed{1} \\ 0 & \boxed{1} & \boxed{1} \end{bmatrix}$$ $$\mathcal{N}_{1} = \frac{1}{2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$ - $\partial_0 = N_0$ is a 1×3 matrix with all 0 entries. - rank C_0 = rank Z_0 = 3; rank Z_1 = 1, rank B_0 = 2 - $\beta_0 = \text{rank } Z_0 \text{rank } B_0 = 3 2 = 1$ - $\beta_1 = \operatorname{rank} Z_1 \operatorname{rank} B_1 = 1 0 = 1$ ## Take home exercise The following simplicial complex contains 4 vertices, 6 edges, 3 triangles. Compute its Betti numbers: $\beta_0 = 1$, $\beta_1 = 0$, $\beta_2 = 1$. #### References I Carlsson, G., Ishkhanov, T., De Silva, V., and Zomorodian, A. (2008). On the local behavior of spaces of natural images. *International journal of computer vision*, 76(1):1–12. Edelsbrunner, H. and Harer, J. (2010). *Computational Topology: An Introduction*. American Mathematical Society, Providence, RI, USA.