CS 6170: Computational Topology, Spring 2019 Lecture 09

Topological Data Analysis for Data Scientists

Dr. Bei Wang

School of Computing
Scientific Computing and Imaging Institute (SCI)
University of Utah
www.sci.utah.edu/~beiwang
beiwang@sci.utah.edu

Feb 5, 2019

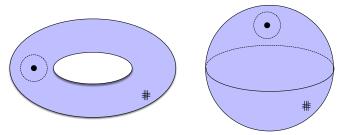
2-dimensional Manifold

2-differisional ivialifold

Book Chapter A.II

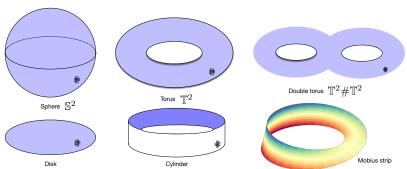
2-manifold without boundary

- A 2-manifold without boundary is a topological space \mathbb{M} whose points all lie in open disks.
- Intuitively, this means that M locally looks like a plane.
- We get a 2-manifold with boundary by removing open disks from a 2-manifolds without boundary.



Examples of 2-manifolds

- Top: 2-manifold without boundary
- Bottom: 2-manifold with boundary
- Möbius strip: non-orientable manifold; 2 sides locally, 1 side globally.
- Möbius strip: an ant will travel all surface area
- Möbius strip: its boundary is a single circle
- Quiz: what happens if you cut Mobius strip along its center line?



Orientability

- If all closed curves in a 2-manifold are orientation-preserving, then the 2-manifold is *orientable*.
- Creating compact 2-manifolds using *polygonal schema*.
- ullet M is compact if for every covering of M by open sets, called an open cover, we can find a finite number of the sets that cover M.
- A subset of Euclidean space is compact if it is closed and bounded (i.e., contained in a ball of finite radius).

Classification

Theorem (Classification theorem for compact 2-manifolds)

The two infinite families \mathbb{S}^2 , \mathbb{T}^2 , $\mathbb{T}^2\#\mathbb{T}^2$, \cdots , and \mathbb{P}^2 , $\mathbb{P}^2\#\mathbb{P}^2$, \cdots , exhaust the compact 2-manifolds without boundary.

(Edelsbrunner and Harer, 2010, Page 29)

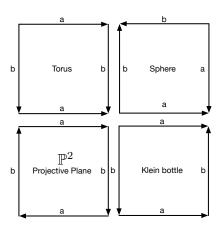
Classification

Any connected closed surface is homeomorphic to some member of one of these three families:

- The sphere
- The connected sum of g tori, for $g \ge 1$
- The connected sum of k real projective planes, for $k \ge 1$.

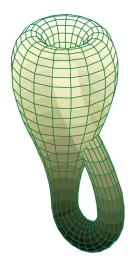
https://en.wikipedia.org/wiki/Surface_(topology)#Classification_of_closed_surfaces

Polygonal schema



- Projective plane: glue a disk to a Möbius strip
- Klein bottle: glue 2 Möbius strips together

Klein bottle: non-orientable surface



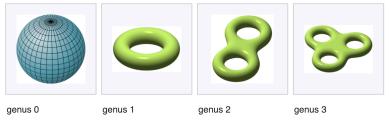
https://en.wikipedia.org/wiki/Klein_bottle Later: show up in data analysis of natural image patches Carlsson et al. (2008).

Betti numbers β_i of 2-manifolds

β_0	β_1	β_2
1	1	0
1	0	1
1	2	1
1	0	0
1	1	0
1	4	1
1	2g	1
	1 1 1 1	1 0 1 2 1 0 1 1

Genus

 The genus of a connected, orientable surface is an integer representing the maximum number of cuttings along non-intersecting closed simple curves without disconnecting the resulting manifold.



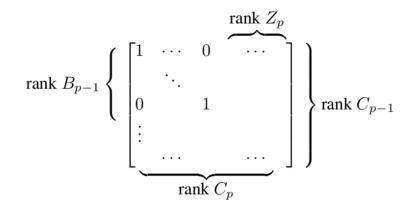
https://en.wikipedia.org/wiki/Genus_(mathematics), also for further reading

Computing Homology

Book Chapter B.IV.

Reduction of a boundary matrix

- Let ∂_p be the p-th boundary matrix
- ullet After reduction (row and column operation), ∂_p turns out to be a matrix N_p in Smith Normal Form
- https://en.wikipedia.org/wiki/Smith_normal_form
- $\beta_p = \operatorname{rank} Z_p \operatorname{rank} B_p$



Example: a triangulation of a circle

$$\partial_{1} = \frac{1}{2} \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

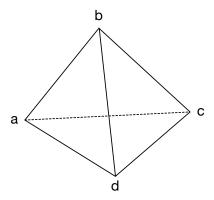
$$\Rightarrow \frac{1}{3(+2)} \begin{bmatrix} \boxed{1} & 0 & 1 \\ \boxed{1} & \boxed{1} & \boxed{1} \\ \boxed{1} & \boxed{1} & \boxed{1} \\ 0 & \boxed{1} & \boxed{1} \end{bmatrix}$$

$$\mathcal{N}_{1} = \frac{1}{2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

- $\partial_0 = N_0$ is a 1×3 matrix with all 0 entries.
- rank C_0 = rank Z_0 = 3; rank Z_1 = 1, rank B_0 = 2
- $\beta_0 = \text{rank } Z_0 \text{rank } B_0 = 3 2 = 1$
- $\beta_1 = \operatorname{rank} Z_1 \operatorname{rank} B_1 = 1 0 = 1$

Take home exercise

The following simplicial complex contains 4 vertices, 6 edges, 3 triangles. Compute its Betti numbers: $\beta_0 = 1$, $\beta_1 = 0$, $\beta_2 = 1$.



References I

Carlsson, G., Ishkhanov, T., De Silva, V., and Zomorodian, A. (2008). On the local behavior of spaces of natural images. *International journal of computer vision*, 76(1):1–12.

Edelsbrunner, H. and Harer, J. (2010). *Computational Topology: An Introduction*. American Mathematical Society, Providence, RI, USA.