
CS 6170 Computational Topology: Topological Data Analysis University of Utah
Spring 2017 School of Computing

Lecture 11: Feb 14, 2017
Lecturer: Prof. Bei Wang <beiwang@sci.utah.edu> Scribe: Kevin Childers

11.1 Examples of persistent homology

Let K denote a simplicial complex. Two things we want to do with K are

1. compute the homology of K, and

2. compute the persistent homology of K.

For persistent homology, we need a filtration

∅ = K0 ⊆ K1 ⊆ · · · ⊆ Kn = K

of our complex K.

11.1.1 Example: Sensor networks

Lets suppose we have a sensor network with three sensors, which we label 1, 2, and 3. We begin sensing with radius
r = 0, and slowly increase r. At any point, we can form a Čech complex for the given r.

• When r = 0, the complex consists of the three vertices, and no higher simplexes.

• Say that at r = 1, we get our first overlap, between sensors 1 and 2. We now introduce a 1-simplex, which we
call 4, which connects 1 and 2.

11-1



Lecture 11: Feb 14, 2017 11-2

• Say that at r = 2.5, we get another overlap, between sensors 1 and 3. Then we introduce another 1-simplex,
which we call 5, which connects 1 and 3.

• Suppose that when r = 3 we pick up a triple overlap. In this case we need to introduce two new simplexes: a
new 1-simplex between 2 and 3, which we call 6, and a 2-simplex bounded by 4, 5, and 6, which we call 7. Let
K = {1, 2, 3, 4, 5, 6, 7}.



Lecture 11: Feb 14, 2017 11-3

We can use this process to order our simplexes, by order of their appearance. Since 1, 2, and 3 all appear simulta-
neously, we arbitrarily order them. To avoid confusion, we order them 1, 2, 3 (i.e., 1 appears first, then 2, then 3).
Similarly 6 and 7 appear simultaneously, but in this case we must order 6 ahead of 7, because 6 is a boundary of 7.
This illustrates the general principle that the boundary on a given simplex should appear before the simplex itself.

The ordering we have given to the simplexes in K now gives rise to a filtration

∅ = K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ K7 = K

where Ki = {1, 2, . . . , i}, the subset of the first i simplexes. The following table gives the Betti numbers at each step
in the filtration, along with summary of changes.

Subcomplex β0 β1 Summary
K0 0 0 Empty complex
K1 1 0 New component created
K2 2 0 New component created
K3 3 0 New component created
K4 2 0 Component of 2 dies
K5 1 0 Component of 3 dies
K6 1 1 Loop created
K7 1 0 Loop dies

Remark. When components are merged, we keep the older component and say that the younger component “dies.”

Let ti denote the “time” of Ki. A component was created at t1, which never died. It persists on the interval [t1,∞).
Components were also created at t2 and t3, but each died at t4 and t5 respectively. These components persisted on the
intervals [t2, t4] and [t3, t5] respectively. A loop was created at t6, and died at t7, so this loop persisted on the interval
[t6, t7].

We can record this information in a persistence diagram, by plotting birth time against death time. We include a
diagonal line to symbolize birth time = death time, and define the persistence of an element of homology to be

persistence = death time − birth time,

i.e. the vertical distance from the corresponding point to the diagonal.

If we say that ti = i, then the persistence diagrams for our example are



Lecture 11: Feb 14, 2017 11-4

We could instead use radius in place of time. In this case we have components on intervals [0,∞), [0, 1], and [0, 2.5],
and we have a loop on the interval [3, 3]. Note that the loop is created and killed at the same instance, which appears
graphically by this point lying on the diagonal.

11.1.2 Meaning of Persistence

Persistence is a measure of how long a certain homological feature lasts. Longer persistence means a greater likelihood
of a given feature being significant. For example, suppose the true shape of our space is a circle, and our data closely
resembles a circle, with some noise.

With very small radius, there will be a number of components, and possibly some loops appearing. But these features
should not persist very long.



Lecture 11: Feb 14, 2017 11-5

At a relatively small radius, we should arrive at a single component, and find a loop corresponding to the inside of the
circle.

This loop persists for a much longer time, until we test at a large enough radius to fill in the center of the circle entirely.



Lecture 11: Feb 14, 2017 11-6

We conclude that the components and loops appearing early are most likely not significant, but that the long persisting
loop is likely significant to the shape of our data.

11.2 An algorithm to compute persistent homology

Let K denote a simplicial complex, and f : K → R a monotonic function. Recall that a function is monotonic
if whenever σ ≤ τ (meaning σ is a face of τ ), f(σ) ≤ f(τ). A compatible ordering of K is an ordering K =
{σ1, . . . , σm} such that i < j if f(i) < f(j) or if σi ≤ σj .

Once K is ordered, we define the boundary matrix, denoted ∂ by

∂[i, j] =

{
1 if σi is a codimension 1 face of σj
0 otherwise.

The codimension of a face is just the dimension of the simplex minus the dimension of the face. So a codimension 1
face of a k-simplex is a face which is a (k − 1)-simplex.

The algorithm will make use of the following function.

low(j): row index of the lowest 1 in column j.

Recall that our definition of homology uses Z/2 coefficients, so we can write ∂ with all entries either 0 or 1. We say
that a matrix R is reduced if low(j) 6= low(j0) whenever j 6= j0.

The algorithm to reduce ∂ using column operations is as follows

R = boundary matrix
for j=1 to m

while there exists j0 < j with low(j0) = low(j)
add col j0 to col j

end while
end for

We will use a couple examples to illustrate the application of this reduction to persistent homology.

11.2.1 An example

Let’s return to our sensory network example and use the monotonic function which sends the simplex we called i to
the real number i, i.e. f(1) = 1, f(2) = 2, etc. Note that the numbering we have given the simplexes is a compatible
ordering. We create the matrix ∂ by recording the boundary pieces of each simplex j in the jth column. For example,
4 has boundary formed by 1 and 2, so in column 4 there is a 1 in the 1st and 2nd rows, and 0’s elsewhere. The 0’s have
been ommitted.

∂ =

1 2 3 4 5 6 7
1 1 1
2 1 1
3 1 1
4 1
5 1
6 1
7



Lecture 11: Feb 14, 2017 11-7

Let’s run the algorithm on this matrix.

• Nothing happens with columns 1, 2, and 3.

• Column 4 has lowest 1 in row 2, and because there are no 1’s to the left of this entry, we move on to column 5.

• The lowest 1 in column 5 is in row 3, and there are no 1’s to the left of this entry, so we move on to column 6.

• This is the first interesting column. The lowest 1 is in row 3. Since column 5 is the first column with a 1 in row
3, we add column 5 to column 6. Now the lowest 1 in column 6 is in row 2, but column 4 is the first column
with a 1 in row 2, so we add column 4 to column 6 as well. This results in column 6 consisting of all 0’s so we
move on to column 7.

• The lowest 1 in column 7 is in row 6. Since there are no 1’s to the left of this entry, we are finished.

The result is the matrix

R =

1 2 3 4 5 6 7
1 1 1

2 1
3 1
4 1
5 1

6 1
7

We can keep track of the column operations we performed in another matrix V , which for our example is given by

V =

1 2 3 4 5 6 7
1 1
2 1
3 1
4 1 1
5 1 1
6 1
7 1

The way to interpret this matrix is the following. The jth column of R is obtained by adding columns of ∂ corre-
sponding to nonzero entries in the jth column of V (e.g. column 6 of R is the sum of columns 4, 5, and 6 of ∂). The
algebraic relationship between R, ∂, and V is

R = ∂V.

Consider the boxed entries in R. These are the values which are the lowest 1’s in a column. They are in positions
(2, 4), (3, 5), and (6, 7). These pairs of numbers should look familiar. The first entry corresponds to a homological
feature being created, and the second entry records when that feature died. The first entry also tells us what dimension
of homology the feature belongs to. Since 2 and 3 are 0-simplexes, the 1’s in positions (2, 4) and (3, 5) correspond
to components, and are reflected in β0. Since 6 is a 1-simples, the 1 in position (6, 7) corresponds to a loop, which is
reflected in β1.

11.2.2 Another example

Let’s run our algorithm on another simplicial complex:



Lecture 11: Feb 14, 2017 11-8

The matrix ∂ is given by

∂ =

1 2 3 4 5 6 7 8 9 10
1 1 1
2 1 1 1
3 1 1
4 1 1 1
5 1
6
7 1
8 1
9
10

Let’s reduce to R.

• Nothing happens for the first 7 columns.

• We add column 7 to column 8, then column 5 to column 8.

• We add columns 7, 6, and 5 to column 9.

• Nothing happens to column 10.

The result is

R =

1 2 3 4 5 6 7 8 9 10
1 1 1

2 1 1

3 1
4 1
5 1
6
7 1

8 1
9
10

The 1’s in (2,5), (3,6), and (4,7) tell us that new components were created at stages 2, 3, and 4, and each persisted 3
steps. The 1 in (8,10) tells us that a loop was created at stage 8, which persisted for 2 steps.



Lecture 11: Feb 14, 2017 11-9

Now look back at our simplicial complex. What about the homology with infinite persistence? There was a loop
created at stage 9 which is unaccounted for, and we should also be able to track the component which was created at
stage 1. How does the matrix R encode this information? Look at the columns consisting of all 0’s. They are columns
1, 2, 3, 4, 8, and 9. The numbers 2, 3, 4, and 8 appeared as birth times of features which died. The remaining indexes
for 0-columns (1 and 9) correspond to features which did not die. Since 1 is a 0-simplex, a new component was created
at stage 1 which did not die. Since 9 is a 1-simplex, a new loop was created at stage 9 which did not die either.

More examples will be given next lecture.


