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6.1 Complexes

Simplicial complexes convey common patterns emerging from the intersection of sets within topological spaces In
the case of geometric spaces simplicial complexes may be used to represent the geometric structure of the underlying
space. In order to gain a general understanding of the entire simplicial complex it is useful to study a subset to the
simplicial complex which is common to all sets which compose the complex, denoted the nerve of the simplicial
complex..

Definition 6.1. Given F, a finite collection of sets, the nerve of F is a subset of sets X subset to F whose intersection
is non-empty. More formally:

Nerve(F) = {X ⊆ F| ∩X 6= ∅ }

First we considerd F to consist of convex sets. Recall a convex set is a set of points such that any line connecting two
points contained in the set will also be contained within the set. It is also usefull to note that the intersection of convex
sets remains convex.

Not needing to assume subsets of F are convex we know the nerve of F will remain an abstract simplicial complex.
In the case we are considering some geometric space with some covering C then the nerve of C often possess the
underlying geometry of the space. For example if we consider a covering as shown in figure 6.1 each set can be
associated to a vertex and intersections given by adjoining lines.

(a) 2-dimensional nerve of 8 set covers

(b) 2-dimensional nerve of covering with 3 rectangular sets

Figure 6.1: Nerve of 2-dimensional set covers
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Background needed before procceeding is a weaker notion of topological equivalence which still affords a notion of
equivalence between topological spaces, denoted homotopy type, where homotopy is given by definition 6.2.

Definition 6.2. The continuous map H : X× [0, 1]→ Y is the homotopy for the two continuous maps f, g : X→ Y
if for t = 0 then H(x, 0) = f(x) and for t = 1, H(x, 1) = g(x) ∀x ∈ X.

We can extend the notion of homotopy to allow a means of correlating two nested topological spaces. Two topological
spaces have homotopy equivalence if there exists two continuous functions between both spaces in both directions
whose composition affords an identity an identity map.

Definition 6.3. Given two continuous maps f : X → Y and g : Y → X over the topological spaces X and Y then
map f is called a homotopy equivalence if the mutual compositions of f and g are homotopic. More formally, f is a
homotopy equivalence if f ◦ g ' IY and g ◦ f ' IX.

Conceptually we may view the homoptopy between two topological spaces as a time series of functions, ft : X → Y
and defined by ft(x) = H(x, t), whose initial state is f0 = g and continuously transforms to f1 = g. Visually we can
see two functions γ1 and γ2 are homotopic, γ1 ' γ2, in R2 by the following series of transformations shown in figure
6.2 which enforces the conditions that for γ1, γ2 : [0, 1]→ R2 we have γ1[0] = γ2[0] and γ1[1] = γ2[1]

Figure 6.2: Deformation of two homotopic functions in R2

Homotopic equivalence then allows an equivilence relation between toplogical spaces X and Y, denoted X ' Y, which
catagorises homotopically equivalent spaces as belonging to the same homotopy type. To answer the well known joke
as to why topologists can’t tell the difference between their coffee and doughnuts, it is because both spaces, the mug
and torus, have homotopy equivalence since one can be deformed into the other as illustrated in figure 6.3.

Figure 6.3: Why coffee mugs are doughnuts

When again considering a finite collection of subsets within F, the nerve of F maintains an important attribute in that
it preserves homotopic equivalence.

Theorem 6.4. Nerve Theorem: Let F be a finite collection of closed convex sets in Euclidean space. The nerve of F
and the union of sets in F neccesarily have the same homotopy type.
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The nerve theorem tells us that if ∪F is triangulable, with all subsets closed and all non-empty common intersections
contractible, then we have Nerve(F) ' ∪F. Therefore if all sets belong to Rd then the subcollection of k ≥ d + 1
sets will not have all

(
k
d+1

)
combonations of d-simplicies in the nerve without having the entire k-simplex.

6.1.1 Ĉech Complex

An important special case when considering simplicial complexes beyond all convex sets are specifically sets which
are closed geometric balls. We denote such balls asBx(r) signifying the set of points in Rd centered at x and contained
by the closed cover with radius r.

Definition 6.5. The Ĉech complex of S with radius r is the nerve of the union of balls parameterised by r.

Ĉech(r) = {σ ⊆ S | ∩
x∈σ

Bx(r) 6= ∅}

Claim 6.6. Given r0 ≤ r1 then Ĉech(r0) v Ĉech(r1).

It is intuitive to see that claim 6.6 is a result of the fact that as you increase r0 there are more intersections between
Bx(r0) and Bx(r1) resulting in the inclusion of the Ĉech simplex Ĉech(r0) in Ĉech(r1).

To demonstrate the Ĉech complex and it’s accompanying nerve consider the nine points in figure 6.4. The Ĉech
complex then finds the pairwise intersections between disk centers which are connected by straight edges to form
the nerve of the collection of balls. The Ĉech complex then fills nine of the ten possible triangles as well as the two
tetrahedra.

Figure 6.4: Ĉech Complex of nine points in R2.

Instead of checking all subcollections for non-empty common intersections, we may just check pairs and add 2 and
higher-dimensional simplices whenever we can. The resulting approach leads us to the Vietoris-Rips complex. The
only difference between the Vietoris-Rips and the Ĉech complexes in figure 6.4 would be the tenth triangle which, as
we will see in the next section, would only be included in the Vietoris-Rips complex.

6.1.2 Vietoris-Rips Complexes

As opposed to considering all subcollections we may also focus only on intersections of sets, adding 2 and higher
dimensional simplicies whenever edges are contained within the complex. The result is the Vietoris-Rips complex of
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set S and r being all subsets of diameter at most 2r.

Definition 6.7. The Vietoris-Rips Complex of S, parameterised by r,consists of 2 and higher dimensional pairwise
connections of subsets of diameter at most 2r.

Vietoris-Rips(r) = {σ ⊆ S | diam(σ) ≤ 2r}

Since the Vietoris-Rips complex amounts to edges equivalent to those of the Ĉech complex it is easy to see the Ĉech
complex contains every simplex of the Vietoris-Rips complex. For this reason Ĉech(r) ⊆ Vietoris-Rips(r). The
containment of the Ĉech complex within the Vietoris-Rips complex can be reversed by increasing the radius defined
in the Ĉech complex by some multiplative constant.

Lemma 6.8. Given S, a finite set of points in R2 and r ≥ 0, then Ĉech(r) v Vietoris-Rips(r) v Ĉech(
√
2r)

Lemma 6.8 leads us to Theorem 6.9 which shows we are able to paramaterise the correlation between Ĉech and
Vietoris-Rips complexes through the dimensionality of the topological space under question and ball radius.

Theorem 6.9. Let X be a set of points in Rd, Cε(X) be the Ĉech complex of the cover of X by balls of radius ε/2,
and V Repsilon(X) the Vietoris-Rips cover of X , then there is a chain of inclusions satisfying

V Rε′(X) v Cε(X) v V Rε(X) where ε
ε′ ≥

√
2d
d+1

Recent works in which the use of Ĉech and Vietoris-Rips complexes have proven beneficial have been in the problem
of network coverage. Silvia and Ghrist show this in their analysis of maximizing coverage through signal strength,
equating to ball radius, and number of network nodes in order to minimize “dead” spaces as demonstrated in figure
6.5 [SilvaGhrist].

Figure 6.5: Use of Ĉech complex nerve (given in red) to study network coverage [SilvaGhrist].

Biographical Notes: The concept of nerve was introduced by Alexandrov [Alexandrov]. The nerve theorem by
Borsuk [Borsuk] and Leray [Leray]. Ĉech complexes originated from the theory of Ĉech homology. Vietoris-Rips
complex was introdices by Vietoris [Vietoris] as well as Rips [Rips].

6.1.3 Delaunay Complexes

The Delaunay complex deviates from complexes previously mentioned in that as apposed to convex ball covers we
may also use Voronoi cells as our convex cover.
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Definition 6.10. A Voronoi Cell of a point u in S ⊆ Rd is the set of points for which u is the closest.

V (X) = {x ∈ Rd | ||x− u|| ≤ ||x− v|| ∀v ∈ S}

If we are to consider R2, with only one point in S then V (u) = R2, i.e. the entire space. If we consider two points
u, v = R2 the Voronoi cells are the half plane separated by the perpendicular bisector of the line segment connecting
u and v. For three points first consider the vertex circumcenter to the three points. The Voronoi cell is then the space
contained within the bisecting lines from the circumcenter to each point.

Figure 6.6: Voronoi cells formed for 9 points

Generalized to higher dimensions the Voronoi cell Vu of point u is a polyhedron in Rd known to be convex as a result
of being the intersection of convex half spaces.

Definition 6.11. V (u) is the intersection of half spaces of points at least as close to u as to v for any v in S.

The nerve arising from the use of Voronoi cells allows for a geometric constuction which limits the dimension of the
resulting simplicies.

Definition 6.12. The Delaunay Complex, or Delaunay Triangulation, of a finite set S ⊆ Rd is isomorphic to the
nerve of the Voronoi diagram

Delaunay = {σ ⊆ S | ∩
u∈σ

Vu 6= ∅}

As shown in figure 6.7 we obtain the Delaunay triangulation from the convex hull formed from the nerve of the Vornoi
diagram which connects points by line segments to neighboring points whose Voronoi cells are adjacent.
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Figure 6.7: Delaunay covering imposed over Voronoi cells in R2. Image from [EdelHarer].

Biographical Notes: Voronoi diagrams originated by Georgy Voronoi [Voronoi1][Voronoi2]. Delaunay triangulations
are the result of Boris Delaunay [Delaunay]

6.1.4 Alpha Complexes

Combining the previously introduced notion of a ball covering over S, where Bu(r) is the ball of radius r centered at
u ∈ S with the Voronoi covering we are able to define Ru(r) as all points u ∈ S where the ball covering intersects
the Voronoi cell containing u, i.e. Ru(r) = V (u) ∩Bu(r).

Definition 6.13. Given the Voronoi cell V (u) covering u ∈ S and ball of radius r Bu(r) and defining Ru(r) =
V (u) ∩Bu(r) the α-Complex of radius r is the subcomplex of the Delaynay Complex, denoted

Alpha(r) = {σ ⊆ S | ∩
u∈σ

Ru(r) 6= ∅}

Since the α-complex uses the union of convex closed balls centered at each point of some finite set S ⊆ Rd intersected
with the corresponding, also convex, Voronoi cells of S we know the α-complex affords a convex covering. The α-
complex is then isomorphic to the union covering of balls Bu(r) decomposed by Vornoi cells.

Considering the α-complex in R2 as shown in 6.8 we see that straight line boundaries form between intersecting balls
as a result of the Voronoi decomposition and curved boundaries for non-intersecting cells due to the radius constraints
from the union of balls. A common natural example is the structure observed from a collection of soap bubbles [Saye].
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Figure 6.8: α-complex and associated nerve.
Image modified from [EdelHarer].

Biographical Notes: Alpha complexes were introduced first for points in R2 by Edelsbrunner, Kirkpatrick, and Seidel
[Edelsetal] and then extended to R3 in [Edels]
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