
University of Utah

School of Computing

CS 4960 Project #2 Spring 2016

Due Feb 16, 2016 at the start of class

Please contact the instructor Bei (beiwang@sci.utah.edu) or TA Vikram at (vikram.raj@utah.edu) for
questions regarding the project. Please contact Vikram for questions regarding Blender specifically.

The project submission should include all your source code, the output files of CGAL (according to
Blender format requirement described later), the input files to Blender (using the parser.c attached).

For bonus points, your project submission could include the visualization produced by Blender.

For all subsequent projects, Blender visualization of the output is required.

For this project, you get 15 points total, with additional 5 bonus points.

1 Computing and Visualizing 2D Convex Hull

Use CGAL 2D Convex Hull Library: http://doc.cgal.org/latest/Convex_hull_2/index.html to
complete the following tasks, you may use any convex hull algorithms.

(a) (5 points): Generate a set of 20 points sampled randomly from a 2D circle, compute its convex hull
and output the boundary of the convex hull (e.g. vertices and edges) into a file that could be converted
to be suitable input for Blender to visualize.
Hint: You may use CGAL Random points on circle 2.

(b) (5 points): repeat the above process, but this time introduce some small perturbation to the random
points generated above.

(c) (Bonus 2 points): include correct visualization of the convex hulls from (a) and (b) using Blender.

2 Computing and Visualizing 3D Convex Hull

Use CGAL 3D Convex Hull Library: http://doc.cgal.org/latest/Convex_hull_3/index.html to
complete the following task:

(a) (5 points): Generate a set of 300 random points chosen from a sphere of radius 100, compute its
convex hull and output the boundary of the convex hull (e.g. vertices, edges) into a file that could be
converted to be suitable input for Blender to visualize.
Hint: Check out the example via CGAL manual.

(b) (Bonus 1 point) if (a) includes correct visualization of the convex hulls using Blender.

(b) (Bonus 2 points) Repeat same process as (a), but this time using a complex 3D point set, for example,
points from http://pointclouds.org/. And include its Blender visualization result.

2

Windows(:(

1. Goto(https://www.blender.org/download/((
2. Download(the(msi(for(windows(and(install(it.(

(

Linux:(

1. Press(“Windows(key”(and(search(for(synaptic(package(manager.

(

(

2. Search(for(“Blender”(in(the(search(bar.

(
(

3. Click(on(the(checkbox(and(select((”mark(for(installation”.(
(

4. Click(on(“Apply”(button(for(the(installation(to(start.(
(

(

Blender(Usage(

How(to(open(a(mesh(file:(

File(J>(Import(J>((select(<fileformat>(J>(“browse(the(file”(

(

Delete(a(mesh:(

1. Right(click(on(a(mesh(to(select(it.(
2. Press(delete(button(on(keyboard(to(delete.(

(

(

(

(

Input(for(parser(

For(each(line(in(the(convex(hull,(write(the(corresponding(two(points(to(output(file(name(log.txt.(

Each(point(should(be(in(a(separate(line.((

In(each(line(x(y(and(z(of(the(point(should(be(separated(by(spaces.(

(

Example(:(

If(the(convex(hull(had(three(lines,(then(write(the(output(in(the(following(format(

(

L1Ax(L1Ay(L1Az(

L1Bx(L1By(L1Bz(

L2Ax(L2Ay(L2Az(

L2Bx(L2By(L2Bz(

L3Ax(L3Ay(L3Az(

L3Bx(L3By(L3Bz(

(

Where(L1Ax(mean(line(1,(first(point(x(–(coordinate.(

(L1Bz(mean(line1(second(point(z(–(coordinate.(

(

I(have(written(a(simple(c++(program(to(convert(the(above(log.txt(file(to(output.obj(file.(Find(the(
attached(parser.cpp(file.(

Use(blender(to(visualize(the(obj(file.((

Middle(mouse(J>(rotate(the(view(

Middle(mouse(+(hold(SHIFT(J>(pan(the(view(

Middle(mouse(+(hold(CTRL(J>(zoom(the(view.(

(

Load(your(actual(mesh(data(and(then(the(convex(hull((output.obj)(to(visualize(the(convex(hull(on(top(of(
the(mesh(file.(

(

Page 1 of 1

parser.cpp 2/3/16 1:04 AM

#include <iostream>
#include <fstream>

int main()
{
 std::ifstream infile("log.txt");
 std::ofstream outfile;
 outfile.open ("output.obj");

 std::string line;
 unsigned int noLines = 0;

 while (std::getline(infile, line))
 {
 outfile << "v " << line << std::endl;
 noLines++;
 }

 for (unsigned int i=1; i<=noLines; i=i+2)
 {
 outfile << "l " << i << " " << i+1 << std::endl;
 }

 outfile.close();
 infile.close();
 return 0;
}

