
Supercomputing and Scientific Visualization

Aaron Knoll
Research Scientist, SCI Institute, University of Utah

CS 1060, Explorations in Computer Science
4-21-16

Roadmap

• Computing: the third pillar of the scientific method

• Visualization

• Supercomputing (and large-scale visualization)

• A fun example: volume rendering!

“The	purpose	of	compu.ng	is	insight	not	numbers.”	
--	R.	W.	Hamming	(1961)

Pillars of the scientific method

Theory Experiment

Science

Pillars of the scientific method

Theory Experiment

Science

Computation

Question: 
How do we test the efficiency of an

airplane body?

Experiment

A wind tunnel model of a Cessna 182 showing a wingtip vortex.  
Tested in the RPI (Rensselaer Polytechnic Institute) Subsonic Wind Tunnel.  

By Ben FrantzDale (2007).

Streaklines in Experimental Flow Vis

Theory

http://www3.nd.edu/~fthomas/Kundu_Fluid_Mechanics.pdf

http://www3.nd.edu/~fthomas/Kundu_Fluid_Mechanics.pdf

Fluid Mechanics in One Slide
• Navier-Stokes equations: a set of PDE’s modeling the behavior of fluids.  

Example for compressible fluids:  
 
 
 
 
 
 
where u is the fluid velocity, p is the fluid pressure, ρ is the fluid density, and μ is the viscoscity.

• Conservation of mass, momentum, energy (relate to 2nd law of thermodynamics).

• Viscosity is the measure of the fluid’s resistance to deformation, from shear or tensile stress. 
(A stress tensor with 9 degrees of freedom!)

• Flow can be steady (time derivative) or unsteady (or transient, i.e. high time derivative)

• Also laminar (flows in predictable, parallel layers) or turbulent (eddies, vortices, random chaos).

• Reynolds number indicates the turbulence of flow = inertial forces / viscous forces.

https://en.wikipedia.org/wiki/Fluid_dynamics
https://en.wikipedia.org/wiki/Navier–Stokes_equations

Continuity equation

https://www.comsol.com/multiphysics/navier-stokes-equations

@⇢

@t
= 0 Laminar flow

https://en.wikipedia.org/wiki/Chaos_theory

Turbulent flow

https://en.wikipedia.org/wiki/Fluid_dynamics
https://en.wikipedia.org/wiki/Navier%E2%80%93Stokes_equations
https://www.comsol.com/multiphysics/navier-stokes-equations
https://en.wikipedia.org/wiki/Chaos_theory

Computation

Representing numbers
Continuous

Discrete (integer)
0 infinity-infinity

Discrete (floating point)

https://en.wikipedia.org/wiki/IEEE_floating_point

From calculus to grids
• Lagrangian vs Eulerian

• Finite element method (FEM)

• Finite difference method (FDM)

• Finite volume method (FVM)

• Direct numerical simulation (DNS)

• Adaptive Mesh Refinement (AMR)

• Highly Recommended:  
CS3200 : Introduction to Scientific Computing 
 http://www.eng.utah.edu/~cs3200/

tet mesh

AMR

particles

regular grid

http://www.eng.utah.edu/~cs3200/

Solving a big matrix

Highly recommended: Math 2270: Linear Algebra

http://swf.tubechop.com/tubechop.swf?vurl=2ZHPZP6njHU&start=64.27&end=109.43&cid=7907316" type="application/x-shockwave-flash" allowfullscreen="true" width="425" height=“344”

Richtmyer-Meshkov Instability

2048x2048x1920 voxel Navier Stokes CFD simulation  
Lawrence Livermore National Laboratory, circa 2003

A simulation of the Hyper-X scramjet vehicle in operation at Mach-7. http://www.airports-worldwide.com/articles/article0523.php

http://www.cesc.zju.edu.cn/learningcenter.htmFAST, http://www.openchannelfoundation.org

Computational Fluid Dynamics

http://en.wikipedia.org/wiki/Hyper-X
http://www.airports-worldwide.com/articles/article0607.php
http://www.airports-worldwide.com/articles/article0523.php
http://www.cesc.zju.edu.cn/learningcenter.htm
http://www.openchannelfoundation.org

Other computing applications

Biology
Materials Science

Epidemiology Cosmology

Why is computing better?

Why is computing better?
• Pause, rewind, zoom in as much as you want

• Interrogate data anywhere

• Quantify everything!

• Simulate things you can’t observe

• Change space scales: Angstroms to Megaparsecs

• Change time scales: femtoseconds to billions of years

• Validate, or test, a theory. C-O - Pt7 Density Functional Theory computation 
Julius Jellinek, Argonne National Laboratory

Why is experiment better?

Why is experiment better?
• It’s real

• No code to write or debug!

• Bad theory? No problem!

• Real-time in situ visualization!

• Unlimited resolution

1 Planck length = 10-20 the length of 1 photon!

The size of the Planck length can be visualized as follows: if a particle or dot about 0.1 mm in size (which is approximately the smallest the
unaided human eye can see) were magnified in size to be as large as the observable universe, then inside that universe-sized "dot", the
Planck length would be roughly the size of an actual 0.1 mm dot. In other words, a 0.1 mm dot is halfway between the Planck length and
the size of the observable universe on a logarithmic scale.

where is the speed of light in a vacuum, G is the gravitational constant, and ħ is the reduced Planck constant.

https://en.wikipedia.org/wiki/Planck_length

https://en.wikipedia.org/wiki/Observable_universe
https://en.wikipedia.org/wiki/Logarithmic_scale
https://en.wikipedia.org/wiki/Speed_of_light
https://en.wikipedia.org/wiki/Gravitational_constant
https://en.wikipedia.org/wiki/Reduced_Planck_constant
https://en.wikipedia.org/wiki/Planck_length

Theory, Computation and
Experiment work best together.

Theory Experiment

Science

Computation

explore

validatevalidate

explore

Visualization

Computation is really two pillars

Theory Experiment

Science

Computation Visualization

… we need to see and understand what we’re computing!

https://en.wikipedia.org/wiki/Visualization

“The	purpose	of	compu.ng	is	insight	not	numbers.”	
--	R.	W.	Hamming	(1961)

Illustration

Karst groundwater simulation visualized in OSPRay.  
Visualization: Carson Brownlee (TACC), Data: Michael Sukop (Florida International University)

Rendering of a CO-Pt7 DFT
computation in nanovol/vl3.  

Data courtesy Aslihan Sumer and Julius
Jellinek (Argonne National Laboratory)

Vis helps communicate science.

Analysis
Online Submission ID: 229

Interstitial and Interlayer Ion Diffusion Geometry Extraction in
Graphitic Nanosphere Battery Materials

Category: Application

Fig. 1. A carbon nanosphere anode material is simulated with an annealing process using classical molecular dyanmics (left). To
understand the efficacy of this material in battery design, we seek to understand the adsorption of lithium. In graphitic carbon, lithium
motion is governed by the arrangement of carbon rings: while 6-member rings block lithium diffusion through layers of graphene,
higher valence rings permit it. Our approach turns to topological analysis of the distance function, constructing explicit triangulations
to represent carbon rings, classifying them as blocking or non-blocking (middle left). We use our representation to quantify both
the portions of the nanosphere that are accessible from the exterior (middle right), as well as studying the effects of defects on the
diffusion distance needed to saturate the nanosphere (right).

Abstract— Large-scale molecular dynamics (MD) simulations are commonly used for simulating the synthesis and ion diffusion of
battery materials. A good battery anode material is determined by its capacity to store ion or other diffusers. However, modeling
of ion diffusion dynamics and transport properties at large length and long time scales would be impossible with current MD codes.
To analyze the fundamental properties of these materials, therefore, we turn to geometric and topological analysis of their structure.
In this paper, we apply a novel technique inspired by discrete Morse theory to the Delaunay triangulation of the simulated geometry
of a thermally annealed carbon nanosphere. We utilize our computed structures to drive further geometric analysis to extract the
interstitial diffusion structure as a single mesh. Our results provide a new approach to analyze the geometry of the simulated carbon
nanosphere, and new insights into the role of carbon defect size and distribution in determining the charge capacity and charge
dynamics of these carbon based battery materials.

Index Terms—materials science, morse-smale, topology, Delaunay, computational geometry

1 INTRODUCTION

Materials science studies a wide range of phenomena at various scales,
using different computational codes for different purposes. Molecu-
lar dynamics (MD) are the main computational technique to simulate
chemical-physical systems in large spatio-temporal scale at the atom-
istic level. General computational studies must trade between compu-
tational cost and physical accuracy. At small spatio-temporal scales
in Ångströms and femtoseconds, first-principles ab initio molecular
dynamics (AIMD) codes, e.g., employing density functional theory,
(DFT) can accurately simulate electronic structure and bonding en-
ergetics. For larger systems on the order of millions of atoms over
nanoseconds, material scientists employ classical MD codes with ap-
proximate atomic potential or force-field. As the underlying structure
and assumptions of simulations change, so too must techniques for
visualizing and analyzing them.

Carbon nanospheres are promising anode materials for a new gen-
eration of lithium ion-based battery technologies. These novel struc-
tures can be synthesized through autogenic pressure reactions by the
recycling of wasted plastic materials [47]. To optimize the design and
synthesis of these novel carbon materials, one has to understand their
basic structural properties and lithium storage capability at the funda-
mental atomistic level. To model this computationally, we have the
choice of precise small-scale models (hundreds of atoms over fem-
toseconds using DFT) and less accurate large-scale models (thouands
or millions of atoms over nanoseconds, using MD). DFT simulations

produce electronic structure properties: the electronic wavefunction
of the system, or all-electron density can be used in scalar-field analy-
sis. In real world application, experimentally synthesized nanospheres
would be on the order of 100 nm to 1 µm, consisting of hundreds of
thousands to billions of carbon atoms. Classical MD must be used
for phenomena at this scale, however the simulations produced with
time-dependent atomic motion in trajectories produce neither the cor-
rect electronic structure properties nor a scalar field that is required for
topological analysis.

Moreover, with both AIMD and classical MD methods we can sim-
ulate thermal annealing of various-sized nanospheres, but we can-
not accurately model the complex diffusion dynamics of lithium ions
within these structures. While the physical properties of such systems
(e.g. sp2/sp3 ratio of carbon bonds of the carbon structure) are gener-
ally understood, the long time scale of the ion diffusion and transport
process (charging the battery) occurs over the course of microseconds
or longer, which would be too costly and inaccurate to compute with
current MD techniques. However, the basic diffusion characteristics
of nanospheres can be understood via topological and geometric anal-
ysis of the local atomic structures. For DFT data, it is possible to
use Morse-Smale decomposition of the wavefunction to determine the
paths that diffusing ions may take [25]. This analysis sheds light on
the interstitial and interlayer structure of the nanosphere, and provides
metrics for assessing theoretical performance of the battery anode.

Topological analysis would be desirable for larger data from clas-
sical dynamics as well. However, we are faced with two challenges:

1

atom geometry (LAMMPS) classified blocking and  
 non-blocking defect sites

Li-accessible 
regions of nanosphere

Li diffusion distance  
for saturation

Data: carbon nanosphere battery anode materials, Kah Chun Lau and Larry Curtiss  
(Argonne National Laboratory)

Theory: Morse-Smale analysis on a large-memory workstation finds ion diffusion pathways

New finding: most ion
movement occurs through
large faults in the structure.

A. Gyulassy, A. Knoll, KC Lau, B. Wang, P.T. Bremer, V. Pascucci, M.E.Papka, L. Curtiss. “Interstitial and Interlayer Ion Diffusion
Geometry Extraction in Graphitic Nanosphere Battery Materials”. IEEE Visualization 2015

Vis helps analyze computational results in-depth.

Validation

Parameter-space exploration of plutonium fission in nuclear DFT, Nicolas Schunck (LLNL) and Hai Ah Nam (ORNL)

White: computation succeeds (in theory)
Black: computation is known to diverge or fail.  

Red: human inspection shows other failure cases.

quadrupole moment Q20[b]

hexadecapole
moment Q40[b]

Vis lets us debug our computational code.

Abstraction

Vis shows us what is important in data.

Florence Nightengale Coxcombs: most deaths the Crimean War were due to poor sanitation in field hospitals!

The “branches” of visualization
(at the IEEE Visweek conference)

• Scientific Visualization

• Information Visualization

• Visual Analytics

http://ieeevis.org

Scientific visualization
• Data have spatial context (usually from simulation or scan)

• Map spatial quantities to colors or geometry,  
f(space, time) -> rgba

• 2D or 3D graphics for visualization.

Volume rendering
Flow visualization

Tensor field visualization Molecular visualizationMap and GIS visualization

Information visualization
• Spatial position is secondary or non-existent.

• Illustrate relationships between abstract attributes.

• Plots, charts, graphs, diagrams.

Graph and network visualization

Scatterplots

Parallel coordinates Treemaps

Charts

Visual Analytics
• More about interactive user interfaces for data analysis.

• Uses techniques from both scientific visualization and information visualization, as well as statistics, perception,
cognition.

• D3+Javascript, R, Matlab, information systems environments

• “Putting it all together”

Genomics (Meyer et al. “Mizbee”)
Management Information Systems (SAS)

Security visualization (Centrifuge)

So what is visualization?

• Visualization is how we choose to see, and
therefore understand, otherwise abstract data.

Supercomputing

More is better
• High performance computing (HPC)

• Distributed data-parallel computation 
“Message Passing Interface”, MPI

• More computers

• More users

• More code

• Harder code

• Larger problems

• Tackle both the largest scientific problems, 
and lots of smaller ones too!

Tianhe-2: up to 31 million cores!

Infiniband interconnect: up to 30,000 computers via MPI

“Supercomputers are time machines”
- Buddy Bland, Oak Ridge National Laboratory

"Titan has a peak performance of more than 27 petaflops – or 27 thousand trillion calculations per second (see
video, below). It can do more work in an hour than your personal computer can do in 20 years. “The simulations
on the machine today are trying to predict what’s going to happen in the future,” Bland says. “So with a more
powerful computer we can look farther into the future to predict what’s going to happen.”

https://blogs.nvidia.com/blog/2012/11/14/why-the-worlds-fastest-computer-is-a-scientific-time-machine/

http://www.youtube.com/watch?feature=player_embedded&v=V3ysx_tzlc4

http://www.top500.org

http://www.top500.org

HPC

compute

fileserver

visualization

movie, display
wall, VNC,

batch rendering

HPC

compute

fileserver

visualization

movie, display
wall, VNC,

batch rendering

(this is really slow)

Texas Advanced Computing
Center (TACC)

Maverick (vis cluster)
132 nodes

2x 10-core Xeon E5-2680 2.8 GHz
256 GB RAM

NVIDIA Tesla K40 GPU, 12 GB RAM
Mellanox FDR InfiniBand

Stampede (9.6 PF peak supercomputer)
6400 Dell Poweredge nodes

2x 8-core Xeon E5-2650 2.7 GHz
32 GB RAM

Intel Xeon Phi SE10P, 8 GB RAM 
 

128 GPU nodes: NVIDIA Tesla K20 GPU
4 Largemem nodes: 1 TB RAM, NVIDIA K20

Stampede LUSTRE fileserver
14 PB global, parallel filesystem 

72 Dell R610 data servers
16 Dell R710 meta-data servers

Stallion (328 Megapixel tiled display)
20 nodes, 80 screens, dual 6-core Intel

2667 W, NVIDIA Quadro K5000

Argonne Leadership
Computing Facility (ALCF)

Cooley (vis cluster)
126 nodes

2x 6-core Xeon E5-2620 2.4 GHz
384 GB RAM

NVIDIA Tesla K80 GPU, 24 GB RAM

Mira (10 PF peak supercomputer)
49,152 IBM BlueGene/Q nodes

16 1.6 GHz PowerPC A2 Cores, 16 GB RAM
5D torus interconnect

Mira filesystem
24 PB IBM GPFS (global parallel

filesystem) 

parallel batch rendering software
ParaView, VisIt, vl3, nanovol

HPC + visualization

• One of the challenges of scientific visualization is to
solve the largest-scale scientific problems coming
out of supercomputing.

Data parallel visualization

vis node

vis node

vis node

vis node

image 
(composited)

distributed
fileserver, 

  
or

computational
code (in situ)

Data Visualization

local
subset

local
subset

local
subset

local
subset

ParaView
• http://www.paraview.org

• Built on top of the Visualization Toolkit (VTK) http://www.vtk.org

• full data model for 2D, 3D, unstructured mesh data

• Data-parallel reading, filtering, and compositing (rendering)

• great for unstructured and 2.5D (i.e. climate, weather) data

Image courtesy Joe Insley, ANL

Image courtesy LANL

http://www.paraview.org
http://www.vtk.org

Two ways to visualize 30 billion particles!

S. Rizzi, M. Hereld, J. Insley, M. Papka, V. Vishwanath. “Large-Scale Parallel Vis. of Particle-Based Simulations using Point Sprites and LOD”.  
EGPGV 2015

30 billion particles: ~20 MRays/s 3 billion particles: ~200 MRays/sec

I Wald, A Knoll, G Johnson, W Usher, M E Papka, V Pascucci. “CPU Ray Tracing Large Particle Data with Balanced P-k-d Trees”, IEEE Vis 2015 
30 billion particle (450 GB) subset of a PM3D simulation, ray traced with ambient occlusion  

6 FPS (72-core 2.5 GHz Xeon E7-8890 v3).  

1. One huge 72-core CPU, 3 TB of shared memory, ray tracing

2. 128-GPU cluster, 1 TB distributed memory, rasterization

In situ visualization

Running on 32 Xeon Phi’s on Stampede, streaming 1 gigapixel live at ~2 fps to the Stallion display wall.

Knoll	et	al.,	“Ray	Tracing	and	Volume	Rendering	Large	Molecular	Data	on	Mul.-Core	and	Manycore	Architectures.”	 
Ultravis	Workshop	at	ACM	Supercompu.ng,	2013.	

50 simulation+visualization ensembles on the Cherry Creek Phi cluster at SC13
You can do this on GPU’s too! 

Or, purely in-core on compute CPUs.

A visualization algorithm:
volume rendering

Two ways of doing 3D
computer graphics

• Computer graphics is the process of converting a 3D scene (model) into a 2D image (frame buffer), via a
camera model.

• Principally, there are two ways of doing this:

• Rasterization 
- “project the scene, sort and shade textured fragments, and shade”  
- The camera transforms the primitives.  
- 4x4 matrix multiplication, Z-buffer algorithm, scan conversion (“projected space”)  
- Cost: O(N) — “really fast for small data, really slow for large data” 
- Everything has to be a a triangle  
- APIs: OpenGL / WebGL / three.js, DirectX, Vulcan

• Ray tracing 
- Ray casting: “generate rays, search the scene for what the ray hits, and shade”  
- Ray tracing: “keep bouncing rays off objects to get reflections, refractions, other effects”  
- Camera defines the ray; primitives remain in native 3D coordinates (“world space”).  
- Cost: O(P log N) — “slow for small data, fast for large data.” 
- Can support non-triangle data — spheres, cylinders, volume data  
- APIs: Intel Embree & OSPRay, NVIDIA OptiX & IndeX, write your own!

• Volume rendering can be implemented either via ray tracing (sampling along the ray)  
or rasterization (with textured triangle proxy geometry)

CS530 - Introduction to Scientific VisualizationCS 530 - Introduction to Scientific Visualization - 08/27/2014

Rasterization
• Putting shaded polygons on screen

• Transform geometric primitives into pixels

• Lowest level: scan conversion
• Bresenham, midpoint algorithms

Recommended: CS5600, Intro to Computer Graphics

Rasterization route

Data Filter Render

0" 4" 8" 0"

4" 14" 9" 0"

6" 11" 1" 0"

2" 1" 0" 0"

Rasterization route

Direct route

Data Filter + Render

0" 4" 8" 0"

4" 14" 9" 0"

6" 11" 1" 0"

2" 1" 0" 0"

Volume data
• Usually, a uniform 3D grid of voxels —

• voxels are 3D equivalent of 2D pixels.

• Some “color map”, or “transfer function”,  
to give each voxel a color

© Weiskopf/Machiraju/Möller 16

Volume Visualization

• Representation of scalar
3D data set

• Analogy: pixel (picture element)
• Voxel (volume element), with two interpretations:

– Values between grid points are resampled by
interpolation

• Collection of voxels
• Uniform grid

� ⇥ R3 � R

You can sampleVolume() anywhere and it will give you a value.  
i.e. pretend it is “continuous.”

Computer graphics

The basic algorithm

The basic algorithm

Given:
float2 pixel.xy, float3 volumeBoxMin, float3 volumeBoxMax 

1. generate ray origin, direction from pixel
 
2a. find tStart, tEnd where ray intersects volume box

2b. accumulate the color along the samples (step 2b)

3. set the pixel value as that color

The basic algorithm

Given:
float2 pixel, float3 volumeBoxMin, float3 volumeBoxMax, Volume volume 

1. generate ray origin, direction from pixel
 
2a. find tStart, tEnd where ray intersects volume box

2b. accumulate the color along the samples (step 2b)

3. set the pixel value as that color

The basic algorithm

Given:
float2 pixel, float3 volumeBoxMin, float3 volumeBoxMax, Volume volume 

1. generate ray origin, direction from pixel
 
2a. find tStart, tEnd where ray intersects volume box

2b. accumulate the color along the samples (step 2b)

3. set the pixel value as that color

The basic algorithm

Given:
float2 pixel, float3 volumeBoxMin, float3 volumeBoxMax, Volume volume 

1. generate ray origin, direction from pixel
 
2a. find tStart, tEnd where ray intersects volume box

2b. accumulate the color along the samples (step 2b)

3. set the pixel value as that color

The basic algorithm

Given:
float2 pixel, float3 volumeBoxMin, float3 volumeBoxMax, Volume volume 

1. generate ray origin, direction from pixel
 
2a. find tStart, tEnd where ray intersects volume box

2b. accumulate the color along the samples (step 2b)

3. set the pixel value as that color

Generate a ray

• Camera setup (per frame, on the CPU): 
float3 u,v,w;  
w = normalize(lookAt - origin); //a bit of graphics math to give you a ray 
u = cross(up, w);  
v = cross(w,u);  
u = normalize(u); 
v = normalize(v); 
 
float tanThetaOver2 = tanf(fovy * .5 * PI / 180); 
float aspect = width / height; 
 
float3 frameBuffer_u = u * tanThetaOver2; 
float3 frameBuffer_v = v * tanThetaOver2 / aspect;

• Ray generation (per pixel, e.g. in a fragment shader on the GPU, or task per pixel): 
float3 rayOrigin; //this is just the position of the eye  
float3 rayDirection = w + (frameBuffer_u * pixelPos.x) + (frameBuffer_v * pixelPos.y);

w
u

v
origin

frameBuffer

Ray-box intersection
Given:
float2 pixel.xy, float3 volumeBoxMin, float3 volumeBoxMax 

1. generate ray origin, direction from pixel
 
2a. find tStart, tEnd where ray intersects volume box

 float3 dt0 = volumeBoxMin-rayOrigin / rayDirection;
 float3 dt1 = (volumeBoxMax - origin) / rayDirection;

 float3 tmin = min(dt0, dt1);
 float3 tmax = max(dt0, dt1);

 float tStart = max(tmin.x, max(tmin.y, tmin.z)));
 float tEnd = min(tmax.x, min(tmax.y, tmax.z));

2b. accumulate the color along the samples (step 2b)

3. set the pixel value as that color

Computer graphics

Sample along the ray and
accumulate color

The basic algorithm
Given:
float2 pixel, float3 volumeBoxMin, float3 volumeBoxMax  

1. generate ray origin, direction from pixel
 
2a. find tStart, tEnd where ray intersects volume box

2b. accumulate the color along the samples (step 2b)

 // r g b a
Color accumColor = (0, 0, 0, 0); //red, green, blue, alpha (transparency)

for(t = tStart, t <= tEnd, t += deltaT)
 Point p = origin + t * direction;

 Sample s = sampleVolume(p);
 Color c = colorMap (s);

 float alpha_1msa = c.a * (1 - color.a);
 accumColor.rgb += c.rgb * alpha_1msa; //blend
 accumColor.a += alpha_1msa;

 shade(accumColor); //if you want to add lighting effects

3. set the pixel value as that color

The basic algorithm

Given:
float2 pixel.xy, float3 volumeBoxMin, float3 volumeBoxMax 

1. generate ray origin, direction from pixel
 
2a. find tStart, tEnd where ray intersects volume box

2b. accumulate the color along the samples (step 2b)

3. set the pixel value as that color

pixel.color = accumColor;

The basic algorithm

Given:
float2 pixel, float3 volumeBoxMin, float3 volumeBoxMax, Volume volume 

1. generate ray origin, direction from pixel
 
2a. find tStart, tEnd where ray intersects volume box

2b. accumulate the color along the samples (step 2b)

3. set the pixel value as that color

Demo — as time permits!

Thanks!

Recommended classes if you like this:
CS5630: Data Visualization 

CS5600: Intro to Computer Graphics

