
thinking like a 

computer scientist



Top down

Problem Solving



Announcement

� Today’s Bei office hour has to be cancelled (5-6 p.m.) If you would 
like to meet me this week, please send me an email. 

� The 2 students who volunteered during the Imitating Imitation 
game should contact TA Ross at cs1060 AT spam.im to get 2 extra 
credits. Please do this today. 



Techniques for problem solving in general

� CS is about solving problems
� What makes solving problems 

difficult?
� Limited resources and tools. 



“
The chef in a pancake restaurant making a stack of pancakes 
is a bit sloppy. The pancakes are all different sizes and 
stacked on the plate in random order. The waiter doesn't like 
this so he flips them into a more pleasing arrangement, with 
the largest on the bottom and the smallest on the top. 
Flipping is done by inserting a spatula under a pancake and 
flipping it and any that are above it, the other way up. He 
wonders, what is the maximum number of flips that are 
needed for a particular pile to be rearranged nicely, i.e. the 
worst case scenario. These are called "Pancake Numbers".



How do you solve problems?

For example spatula pancake sorting problem…
A problem in recreational mathematics and computer science...
� What is your strategy (algorithm)?
� How do you know your answer is correct?

� What was the first relationship we found between # of pancakes 
and # of flips needed?

� How did we redefine it?
� BOARD: pictures for 2, 3 pancakes

Credit: https://www.flickr.
com/photos/68711844@N07/15638298618



One strategy

� Flip the biggest pancake on top
� Then it goes to the bottom, ignore
� Repeat the above strategy for the remaining of the pancake
� Bill Gates wrote a paper on Pancake Sorting (his only research 

paper I believe)...



With 2 pancakes, how many flips do you 
need to get them in order in the worst 

case scenario?



The pancake # for 2 pancakes is 1



The pancake # for 3 pancakes is 3



The pancake # for 4 pancakes is 4



The pancake # for 5 pancakes is 5



The pancake # for 6 pancakes is 7



The pancake # for 7 pancakes is 8



The pancake # for 17 pancakes is 19



The pancake # for 20 pancakes is 

Unknown



Why is this a hard problem?
Need to look at all arrangements of 20 

pancakes: 20! = 
2,432,902,008,176,640,000 

roughly 2 billion billion



Polya’s HOW TO SOLVE IT

In 1945, George Polya wrote the book that is the classic description of 
the problem-solving process:
How to Solve it: A New Perspective of Mathematical Method

1. Understand the problem
2. Devise a plan
3. Carry out the plan
4. Look Back



1. Understand the problem

Why is this a separate step, isn’t it obvious?
This is the step for asking questions:
� What do I know about the problem? What don’t I know?
� What does the solution look like?
� What sort of special cases exist?
� How will I recognize when I have found the solution?
As needed, drew figures and introduction notation. 



2. Devise a Plan

Do not reinvent the wheel...
� If a solution already exist, use it
� Look for the familiar. Can you relate this to a similar problem?
� If a solution to a similar problem exists, start from there
Divide and conquer
� Break a large problem into smaller units that you can handle



3 & 4. Carry out and look back

Carry out the plan:
� Check / execute each step of your solution
� Ensure that result / output after each step is correct
Look back:
� Is the final result correct?
� If not, revisit each phase of the problem-solving process to find your 

mistake
� You may have to go back to the beginning (did you understand the 

problem)?



An extensive list of approaches

� Abstraction: solving the problem in a model before applying it to the real system
� Analogy: using a solution that solved an analogous problem
� Brainstorming: (especially among groups of people) suggesting a large number of solutions 

or ideas and combining and developing them until an optimum is found
� Divide and conquer: breaking down a large, complex problem into smaller, solvable 

problems
� Hypothesis testing: assuming a possible explanation to the problem and trying to prove (or, 

in some contexts, disprove) the assumption
� Lateral thinking: approaching solutions indirectly and creatively
� Means-ends analysis: choosing an action at each step to move closer to the goal
� Reduction: transforming the problem into another problem for which solutions exist
� Research: employing existing ideas or adapting existing solutions to similar problems
� Root cause analysis: eliminating the cause of the problem
� Trial-and-error: testing possible solutions until the right one is found 

 
 



Real world Examples



Making a peanut butter and jelly sandwich

� Understand the problem (ask questions)
� Devise a plan (look for the familiar, divide and conquer)
� Carry out the plan (check the result of each step)
� Look back



“

PageRank and google: Sergey Brin and Lawrence Page, 1998 

The web creates new challenges for information retrieval. The amount of information on the web is growing 
rapidly, as well as the number of new users inexperienced in the art of web research. People are likely to surf 
the web using its link graph, often starting with high quality human maintained indices such as Yahoo! or with 
search engines. Human maintained lists cover popular topics effectively but are subjective, expensive to 
build and maintain, slow to improve, and cannot cover all esoteric topics. Automated search engines that 
rely on keyword matching usually return too many low quality matches. To make matters worse, some 
advertisers attempt to gain people's attention by taking measures meant to mislead automated search 
engines. We have built a large-scale search engine which addresses many of the problems of existing 
systems. It makes especially heavy use of the additional structure present in hypertext to provide much 
higher quality search results. We chose our system name, Google, because it is a common spelling of googol, 
or 10100 and fits well with our goal of building very large-scale search engines.

- The Anatomy of a Large-Scale Hypertextual Web Search Engine 

http://www.yahoo.com/


Divide and Conquer



Divide and conquer

People are only good at holding a few 
things in their heads at once…
� Hide the details until needed
� Use abstraction
� Top-down design is a divide and 

conquer strategy



Top-down design

� Breakdown the problem into a set of subproblems, and more sub-
subproblems, until no further decomposition is necessary

� Combine subproblem solutions to form the overall solution
� An example: 

abstract

particular



Writing the solution as an indented list

� Plan a party
� Invite guests

� Make a list
� Send emails

� Prepare food



Turtle 

example

credit: https://pixabay.
com/static/uploads/photo/2013/07/12/16/53/turt
le-151431_960_720.png



I own a pet turtle named johnny...

� My turtle can follow very simple instructions, such as walk in straight 
line, and turn with some angle. 

� I put a paint box on the back of my turtle
� The problem: I would like my turtle to draw a square with edge 

length 100 steps on the ground by following my instructions 
� Devise a plan: what should my step by step instructions be for my 

turtle?



What are my instructions for the turtle?

1. Walk forward 100 steps
Turn right (90 degree)

2. Walk forward 100 steps
Turn right

3. Walk forward 100 steps
Turn right

4. Walk forward 100 steps
Turn right

Done!

1

2

3

4



Alternatively

Turtle, please repeat my 
instructions below 4 times: 

Walk forward 100 steps
Turn right (90 degree)

Done!



Python Turtle



Let’s change our language a little bit

import turtle
johnny = turtle.Turtle()
for i in range(0,4):
 johnny.forward(100)
 johnny.right(90)

http://www.skulpt.org/
http://interactivepython.
org/courselib/static/thinkc
spy/index.html

http://www.skulpt.org/#
http://www.skulpt.org/#
http://interactivepython.org/courselib/static/thinkcspy/index.html
http://interactivepython.org/courselib/static/thinkcspy/index.html
http://interactivepython.org/courselib/static/thinkcspy/index.html
http://interactivepython.org/courselib/static/thinkcspy/index.html


Guess what?

You just wrote your 

first computer 

program in Python!



We are going to 

learn some light 

coding in Python 

just like this...



Let’s change things a bit

import turtle
johnny = turtle.Turtle()
for i in range(0,6):
 johnny.forward(100)
 johnny.right(60)

http://www.skulpt.org/
http://interactivepython.
org/courselib/static/thinkc
spy/index.html

http://www.skulpt.org/#
http://www.skulpt.org/#
http://interactivepython.org/courselib/static/thinkcspy/index.html
http://interactivepython.org/courselib/static/thinkcspy/index.html
http://interactivepython.org/courselib/static/thinkcspy/index.html
http://interactivepython.org/courselib/static/thinkcspy/index.html


Let’s look at this Python program more carefully...

import turtle
johnny = turtle.Turtle() 
for i in range(0,6):
 johnny.forward(100)
 johnny.right(60)

a library of tools/personalities
johnny is now a turtle object 
Loop / repeat
 johnny performs some

pre-defined tasks (functions)
 



Coming up next: 

Do u speak binary?

Coding Basics



thanks!

Any questions?

You can find me at
beiwang@sci.utah.edu

http://www.sci.utah.edu/~beiwang/teaching/cs1060.html



Credits

Special thanks to all the people who made and released 
these awesome resources for free:
� Presentation template by SlidesCarnival
� Photographs by Unsplash

http://www.slidescarnival.com/
http://unsplash.com/

