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Motivation















Multivariate data and atmospheric science
Multivariate: data points with vector values

Domain applications: weather ensembles from atmospheric science
with large societal impacts, windstorms, smoke transport from
wildfires, winter season precipitation, and hurricane forecasting



Explore multivariate topological data analysis tools

Multivariate analysis and vis: Jacobi sets, Reeb spaces and mapper

Study relations among level sets and critical pts of multiple functions

[Bhatia, Wang, Norgard, Pascucci, Bremer (CGTA) 2015]
[Munch, Wang (FWCG) 2015]
[Munch, Wang (SoCG) 2016]



Reeb space

Generalization of Reeb graph

Compresses the contours of a multivariate mapping and obtains a
summary representation of their relationships

Fundamental to the study of multivariate scientific data



Multivariate analysis within in an end-to-end view



Multivariate analysis within in an end-to-end view



High-Level Question



Original Reeb graph construction



Original Reeb graph construction



Mapper

Image: Nicolau Levine Carlsson 2011



Mapper

Image: Nicolau, Levine, Carlsson, PNAS 2011



Joint Contour Net

Image: Duke, Carr, 2013



Intuition

Mapper is an approximation of the Reeb space.

Question

How do we formalize this?

Goal

Develop some theoretical understanding of the relationship
between the Reeb space and its discrete approximations to support
its use in practical data analysis.

Result

Prove the convergence between the Reeb space and mapper in
terms of an interleaving distance between their categorical
representations
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(Partially) address some open questions

[Carriére, Oudot, 2016]: is it possible to describe the mapper as a
particular constructible cosheaf? Yes, d = 1; hopefully d > 1.

[Dey, Mémoli, and Wang]: does the mapper construction converges
to the Reeb space in the limit? Yes, in the categorical
representations; hopefully geometrically on the space level.



Sheaves make baby cry.
During a talk given by: Amit Patel

Baby: Stanley Michael Phillips
Quote contributed to (possibly): Dmitriy Morozov

SIAM Conference on Applied Algebraic Geometry, August 2, 2013



Category Theory Basics



Category and opposite category

Data of a category: the objects and the arrows

A “generalization” of set theory: set and relationships between
elements of a set

Arrows: morphisms between the objects

Arrows can be composed associatively; identity arrow for each object

Intuitively, a big (probably infinite) directed multi-graph with extra
underlying structures: objects – nodes, each possible arrow between
the nodes – directed edge



Examples of categories

Top: the category of topological spaces with continuous functions
between them

Set: the category of sets with set maps

Open(Rd): the category of open sets in Rd with inclusion maps

Vect: the category of vector spaces with linear maps

R: the category of real numbers with inequalities connecting them

Cell(K): the category induced by any simplicial complex K, where
the objects are the simplices of K, and there is a arrow σ → τ if σ is
a face of τ



Poset category

A category P in which any pair of elements x, y ∈ P has at most one
arrow x→ y.

Open(Rd): exactly one arrow I → J between open sets if I ⊆ J
R: exactly one arrow a→ b between real numbers if a ≤ b
Intuitively, a poset category can be thought of as a directed graph
which is not a multigraph



Opposite category

The opposite category Cop of a given category C is formed by
interchanging the source and target of each arrow



Functor

A functor is a map between categories that maps objects to objects
and arrows to arrows

Functor F : C → D maps an object x in C to an object F (x) in D,
and maps an arrow f : x→ y of C to an arrow F [f ] : F (x)→ F (y)
of D in a way that respects the identity and composition laws

Intuitively, a functor is a map between graphs which sends nodes
(objects) to nodes and edges (arrows) to edges in a way that is
compatible with the structure of the graphs



Examples of functors

Hp : Top→ Vect, sends a topological space X to its p-th singular
homology group Hp(X), and sends any continuous map f : X→ Y to
the linear map between homology groups,
Hp[f ] := f∗ : Hp(X)→ Hp(Y)
π0 : Top→ Set, sends a topological space X to a set π0(X) where
each element represents a path connected component of X, and sends
a map f : X→ Y to a set map π0[f ] := f∗ : π0(X)→ π0(Y)



Natural Transformation

A natural transformation ϕ : F ⇒ G between functors F,G : C → D
is a family of arrows ϕ in D such that (a) for each object x of C, we
have ϕx : F (x)→ G(x), an arrow of D; and (b) for any arrow
f : x→ y in C, G[f ] ◦ ϕx = ϕy ◦ F [f ]
Any collection of functors F : C → D can be turned into a category,
with the functors themselves as objects and the natural
transformations as arrows, notated as DC
Our case: D = Set



Colimit

The cocone (N,ψ) of a functor F : C → D is an object N of D along
with a family of ψ of arrows ψx : F (x)→ N for every object x of C,
such that for every arrow f : x→ y in C, we have ψy ◦ F [f ] = ϕx

A cocone (N,ψ) factors through another cocone (L,ϕ) if there exists
an arrow u : L→ N such that u ◦ ϕx = ψx for every x in C
The colimit of F : C → D, denoted as colimF , is a cocone (L,ϕ) of
F such that for any other cocone (N,ψ) of F , there exists a unique
arrow u : L→ N such that (N,ψ) factors through (L,ϕ).



Topological Notions



Reeb space

Reeb Space R(X, f)
Given f : X→ Rd

x ∼ y iff x and y in same (path)
connected component of f−1(a)

Reeb space: quotient space
obtained by identifying equivalent
points with the quotient topology

R(X, f) := X/ ∼f

The Point

The Reeb space of a (nice enough)
(X, f) is a stratified space.
[Edelsbrunner, Harer, Patel 2008]

A Reeb space comes with a space
and a function

Image: [de Silva, Munch, Patel, 2015]



Data

Data (X, f)

A compact topological space X with a function f : X→ Rd

X: manifold



Data of a Reeb space

Data (X, f)

A compact topological space X with a function f : X→ Rd

X: Reeb graph / Reeb space



Mapper

Mapper M(U , f)
Given f : X→ Rd

Fix a good cover U = {Uα} of Rd

f∗(U): the cover of X obtained by
considering the path connected
components of {f−1(Uα)}
Mapper is the nerve of this cover

M(U , f) := Nrv(f∗(U))
[Singh, Mémoli, Carlsson 2007]
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A Road Map



Connecting categorical representations

Measures the amount the above diagram deviates from being
commutative.



Results Overview



Convergence result

Theorem

Given a multivariate function f : X→ Rd defined on a compact
topological space, the data is represented as an object (X, f) in
Rd-Top. Let U = {Uα}α∈A be a good cover of f(X) ⊆ Rd, K be
the nerve of the cover and res(U) be the resolution of the cover,
res(U) = sup{diam(Uα) | Uα ∈ U}. Then

dI(C(X, f),PKCK(X, f)) ≤ res(U).

Convergence between continuous Reeb Space and discrete
Mapper

Distance between their categorical reps. requires only the
knowledge of the cover

Interleaving distance is an extended pseudometric.



Geometric convergence (d = 1)

Corollary

Given a constructible R-space (X, f) with f : X→ R, let
U = {Uα}α∈A be a good cover of f(X) ⊆ R, and let K be the
nerve of the cover. Then

dI(R(X, f),MK(X, f)) ≤ res(U).

In particular, a sequence of mappers for increasingly refined covers
converges to the Reeb graph.

Interleaving distance is an extended metric when d = 1 [de
Silva, Munch, Patel, 2015].

d = 1: convergence geometrically (i.e. on the space level).



Categorical Notions



Data

Data is stored in the category Rd-Top

Object: Rd-space, a pair consisting of a topological space X with a
continuous map f : X→ Rd, (X, f)
Arrow: ν : (X, f)→ (Y, g), a function-preserving map, i.e., a
continuous map on the underlying spaces ν : X→ Y such that
g ◦ ν(x) = f(x) for all x ∈ X
Examples: PL functions on simplicial complexes or Morse functions
on manifolds are objects in Rd-Top



Function preserving maps

Definition

A function preserving map
between two Rd-spaces (X, f)
and (Y, g) is a continuous map
ν : X→ Y such that

X ν //

f   

Y

g~~
Rd

commutes.



Categorical Reeb graph [de Silva, Munch, Patel, 2015]

Represented by functor F = π0f
−1 : Open(R)→ Set

Category: SetOpen(R)

f�1f ⇡0f
�1

Image: [de Silva, Munch, Patel, 2015]



Categorical Reeb space

Represented by functor F = π0f
−1 : Open(Rd)→ Set

Category: SetOpen(Rd)

f�1f ⇡0f
�1



Constructing a Reeb space from the data

f�1f ⇡0f
�1

Represented by the functor C : Rd-Top→ SetOpen(Rd)

C maps:

Data (X, f) to π0f
−1

Function preserving map ν : (X, f)→ (Y, g) to natural
transformation C[ν] induced by the inclusion
νf−1(I) ⊆ g−1(I)



Almost Isomorphisms

Interleaving Distance

Perturb each Reeb graph/Reeb space by ε (Smoothing)

Determine if there is an almost isomorphism (ε-interleaving)



Interleaving between categorical Reeb spaces

Definition (Interleaving distance between Categorical Reeb spaces)

An ε-interleaving between functors F ,G : Open(Rd)→ Set is a
pair of natural transformations, ϕ : F ⇒ Sε(G) and
ψ : G ⇒ Sε(F) such that the diagrams below commute.



Interleaving between categorical Reeb spaces

Definition

Given two functors F ,G : Open(Rd)→ Set, the interleaving
distance is defined to be

dI(F ,G) = inf{ε ∈ R≥0 | F ,G are ε-interleaved}

Idea

The interleaving is a metric on Reeb spaces which takes into
account both the space and the function
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Categorical Mapper: data over nerve of cover

Given a finite open cover for im (f) ⊆ Rd, U = {Uα}α∈A, K = Nrv(U).
Uσ =

⋂
α∈σ Uα: open set in Rd associated to the simplex σ ∈ K

Key: for σ ≤ τ in K, “reversed arrow”: Uσ ⊇ Uτ .

Face relation σ ≤ τ induces a “backwards” mapping
π0f

−1(Uτ )→ π0f
−1(Uσ).

Cell(K)op: simplices of K as objects and a unique arrow τ → σ given
by the face relation σ ≤ τ .

Given a (X, f) in Rd-Top, functor CfK : Cell(K)op → Set maps every σ

to CfK(σ) := π0f
−1(Uσ).



Categorical Mapper

Represented by functor F : Cell(K)op → Set
Category: SetCell(K)op



Constructing mapper from the data

Represented by the functor CK : Rd-Top→ SetCell(K)op :

Maps (X, f) to CfK
Maps ν : (X, f)→ (Y, g) to a natural transformation,

CK [ν] : CfK → C
g
K .



Challenge

Mapper doesn’t have an obvious Rd function.

Mapper and Reeb are not represented in the same category.



Compare Reeb space and mapper

Functor PK : SetCell(K)op → SetOpen(Rd):

Push mapper rep. to Reeb space rep.

Prove convergence using interleaving distance between objects
in SetOpen(Rd)



Defining PK

Simplicial complex K is the nerve of a good cover U
An open set A ⊆ Rd

KA = {σ ∈ K |
⋂
α∈σ
Uσ ∩A 6= ∅}

PK : SetCell(K)op → SetOpen(Rd):

Maps functor F : Cell(K)op → Set to functor
PK(F ) : Open(Rd)→ Set

PK(F )(I) = colimσ∈KI F (σ) for every I in Open(Rd)

�

U�

A



Highlight

PK(F )(I) = colimσ∈KI F (σ) for every I in Open(Rd)
Colimit: “gluing”, push discrete entities to continuous entities

Lemma

Let F : Open(Rd)→ Set be a functor which maps an open set I,
to a set π0f

−1(
⋃
σ∈KI Uσ) with morphisms induced by π0 on the

inclusions. Then, the functor PKCK(X, f) is equivalent to F .



Convergence result revisited

Theorem

Given a multivariate function f : X→ Rd defined on a compact
topological space, the data is represented as an object (X, f) in
Rd-Top. Let U = {Uα}α∈A be a good cover of f(X) ⊆ Rd, K be
the nerve of the cover and res(U) be the resolution of the cover,
res(U) = sup{diam(Uα) | Uα ∈ U}. Then

dI(C(X, f),PKCK(X, f)) ≤ res(U).

If we have a sequence of covers Ui such that res(Ui)→ 0,
then the categorical representations of the mapper converge
to the Reeb space in the interleaving distance



Connecting categorical rep. with geometric rep. (d = 1)

Define a mapping that recovers the geometric rep. of mapper from
its categorical rep.

Convergence between mapper and Reeb graph geometrically (on the
space level).



Highlight

Constructing the (geometric) Reeb graph from well behaved data is
the same as creating its categorical representation, and then turning
it back into a geometric object.



Well behaved data

Requiring the data to be constructible R-spaces

[de Silva, Munch, Patel, 2015], [Patel, Curry, 2016]

R-Topc: full subcategory of R-Top, objects are constructible
R-spaces

Reeb: full subcategory of R-Topc, category of (geometric) Reeb
graphs

The construction of a (geometric) Reeb graph from well behaved
data (a constructible R-space) is captured by the functor
R : R-Topc → Reeb.



Well behaved data

Further restrict our objects of interest in SetOpen(R) to be well
behaved

A cosheaf is a functor F : Open(R)→ Set such that for any open
cover U of a set U , the unique map colimUα∈U F (Uα)→ F (U) is an
isomorphism.

A cosheaf is constructible if there is a finite set S ⊂ R such that if
A,B ∈ Open(R) with A ⊆ B and S ∩A = S ∩B, then
F (A)→ F (B) is an isomorphism. In addition, we require that if
A ∩ S = ∅ then F (A) = ∅.
The category of constructible cosheaves with natural transformations
is denoted Cshc.



Equivalence of categories [de Silva, Munch, Patel, 2015]

Reeb ≡ Cshc

C has an “inverse” functor D : Cshc → Reeb which can turn a
constructible cosheaf back into a geometric object

Commutativity of the upper right triangle: R = DC



Our geometric result

Turn the categorical mapper back into a geometric one

MK(X, f) := DPKCK(X, f) be the geometric rep.

R(X, f): geometric Reeb graph

Corollary

Given a constructible R-space (X, f) with f : X→ R, let
U = {Uα}α∈A be a good cover of f(X) ⊆ R, and let K be the
nerve of the cover. Then

dI(R(X, f),MK(X, f)) ≤ res(U).



Algorithm for geometric mapper

Glue a collection of disjoint edges along equivalent vertices defined by
the cover



Summary

[Carriére, Oudot, 2016]: is it possible to describe the mapper as a
particular constructible cosheaf? Yes, d = 1 with our geometric
results: we described the mapper as a constructible cosheaf when it is
passed to the continuous version.

Suspect that our geometric results may hold in the case d > 1.

Require proper notion of constructibility for Rd-spaces and cosheaves:
want an equivalence of categories, and a proof that the interleaving
distance is an extended metric, not just a pseudometric; and therefore
the mapper converges to the Reeb space on the space level.

Algorithm strategy for building the associated geometric mapper may
be generalized by considering k-dimensional cover elements and their
intersections.

First steps towards providing a theoretical justification for the use of
discrete objects (mapper and JCN) as approximations to the Reeb
space with guarantees.



On-going/future directions

Categorical interpretations of Jacobi sets and their distances

Categorical interpretations of multiscale mapper

Geometric graphs



Take home message

Category theory provides a simple, beautiful language that could
potentially give us cleaner interpretation of some commonly used
TDA constructs

Simple language for convergence proofs that connect discrete with
continuous entities (hard to prove otherwise)

New interpretations for studying topological structures, and for
multivariate data analysis



Thank you!

Liz Munch

Vin de Silva, Justin Curry, Amit Patel, Robert Ghrist...

All the TDA researchers who make category theory less scary
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