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Discrete Stratified Morse Theory

Algorithms and A User’s Guide
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Abstract Inspired by the works of Forman on discrete Morse theory, which
is a combinatorial adaptation to cell complexes of classical Morse theory on
manifolds, we introduce a discrete analogue of the stratified Morse theory of
Goresky and MacPherson. We describe the basics of this theory and prove
fundamental theorems relating the topology of a general simplicial complex with
the critical simplices of a discrete stratified Morse function on the complex. We
also provide an algorithm that constructs a discrete stratified Morse function
out of an arbitrary function defined on a finite simplicial complex; this is
different from simply constructing a discrete Morse function on such a complex.
We then give simple examples to convey the utility of our theory. Finally,
we relate our theory with the classical stratified Morse theory in terms of
triangulated Whitney stratified spaces.

Keywords Discrete Morse theory · Stratified Morse theory · Topological data
analysis

1 Introduction

It is difficult to overstate the utility of classical Morse theory in the study of
manifolds. A Morse function f : M→ R determines an enormous amount of
information about the manifold M: a handlebody decomposition, a realization
of M as a CW-complex whose cells are determined by the critical points of f ,
a chain complex for computing the integral homology of M, and much more.
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With this as motivation, Forman developed discrete Morse theory on general
cell complexes [13]. This is a combinatorial theory in which function values are
assigned not to points in a space but rather to entire cells. Such functions are
not arbitrary; the defining conditions require that function values generically
increase with the dimensions of the cells in the complex. Given a cell complex
with set of cells K, a discrete Morse function f : K → R yields information
about the cell complex similar to what happens in the smooth case.

While the category of manifolds is rather expansive, it is not sufficient
to describe all situations of interest. Sometimes one is forced to deal with
singularities, most notably in the study of algebraic varieties. One approach
to this is to expand the class of functions one allows, and this led to the
development of stratified Morse theory by Goresky and MacPherson [18]. The
main objects of study in this theory are Whitney stratified spaces, which
decompose into pieces that are smooth manifolds. Such spaces are triangulable.

The goal of this paper is to generalize stratified Morse theory to finite
simplicial complexes, much as Forman did in the classical smooth case. Given
that stratified spaces admit simplicial structures, and any simplicial complex
admits interesting discrete Morse functions, this could be the end of the story.
However, we present examples in this paper illustrating that the class of discrete
stratified Morse functions defined here is much larger than that of discrete
Morse functions. Moreover, there exist discrete stratified Morse functions that
are nontrivial and interesting from a data analysis point of view.

Contributions. Throughout the paper, we hope to convey via simple examples
the usability of our theory. It is important to note that our discrete stratified
Morse theory is not a simple reinterpretation of discrete Morse theory; it
considers a larger class of functions defined on any finite simplicial complex
and has potentially many implications for data analysis. Our contributions are:

1. We describe the basics of a discrete stratified Morse theory and prove
fundamental theorems that relate the topology of a finite simplicial complex
with the critical simplices of a discrete stratified Morse function defined on
the complex.

2. We provide an algorithm that constructs a discrete stratified Morse function
on any finite simplicial complex equipped with a real-valued function.

3. We prove that given a stratified set S equipped with a triangulation T
and a stratified Morse function f : S → R, there is an integer r such that
the r-th barycentric subdivision of T supports a discrete stratified Morse
function whose critical cells correspond to the critical points of f .

4. We demonstrate how to build a discrete stratified Morse function from
a function defined on the vertices of a simplicial complex, based on a
modification of the algorithm by King et al. [25].

An extended abstract of the present paper previously appeared as a con-
ference paper [27], which gave preliminary results surrounding contributions
1 and 2 above. The current paper contains the following extensions that en-
compass improvements of and changes to the conference version as well as
new results. In particular, we change the definition of a stratified simplicial



Discrete Stratified Morse Theory 3

complex (Definition 3.1) to be well-aligned with its continuous counterpart
(e.g. Whitney stratification) that considers the condition of the frontier. Given
this new definition, Theorem 3.3 and Corollary 3.1 discuss the change of homo-
topy type surrounding critical cells. We give new results that relate discrete
Morse and discrete stratified Morse functions (Theorems 3.1 and 3.2). We
further characterize the coarseness property of our algorithm in constructing
stratified Morse functions from any real-valued function on a simplicial complex
(Proposition 3.1). Finally, we discuss the applications of our theory to classical
stratified Morse theory in discretizing a stratified Morse function (Theorem 5.3)
and provide an algorithm to generate discrete stratified Morse functions from
point data (Theorem 6.1).

A simple example. We begin with an example from Forman [15], where we
demonstrate how a discrete stratified Morse function can be constructed from
a function that is not a discrete Morse function. As illustrated in Figure 1, the
function on the left is a discrete Morse function where the green arrows can be
viewed as its discrete gradient vector field; function f in the middle is not a
discrete Morse function, as the vertex f−1(5) and the edge f−1(0) both violate
the defining conditions of a discrete Morse function. However, we can equip
f with a stratification s by treating such violators as their own independent
strata and taking care of boundary conditions, therefore converting f into a
discrete stratified Morse function.
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Fig. 1 The function on the left is a discrete Morse function. The function f in the middle
is not a discrete Morse function; however, it can be converted into a discrete stratified Morse
function on the right when it is equipped with an appropriate stratification s.

2 Preliminaries on Discrete Morse Theory

We review the most relevant definitions and results on discrete Morse theory
and refer the reader to Appendix A for a review of classical Morse theory.
Discrete Morse theory is a combinatorial version of Morse theory [13,15]. It can
be defined for any CW complex but in this paper we will restrict our attention
to finite simplicial complexes.

Discrete Morse functions. Let K be any finite simplicial complex, where K
need not be a triangulated manifold nor have any other special property [14].
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When we write K we mean the set of simplices of K; by |K| we mean the
underlying topological space. Let α(p) ∈ K denote a simplex of dimension p.
Let α < β denote that simplex α is a face of simplex β. If f : K → R is a
function define U(α) = {β(p+1) > α | f(β) ≤ f(α)} and L(α) = {γ(p−1) < α |
f(γ) ≥ f(α)}. In other words, U(α) contains the immediate cofaces of α with
lower (or equal) function values, while L(α) contains the immediate faces of α
with higher (or equal) function values. Let |U(α)| and |L(α)| be their sizes.

Definition 2.1 A function f : K → R is a discrete Morse function if for every
α(p) ∈ K, (i) |U(α)| ≤ 1 and (ii) |L(α)| ≤ 1.

Forman showed that conditions (i) and (ii) are exclusive – if one of the sets
U(α) or L(α) is nonempty then the other one must be empty ([13], Lemma
2.5). Therefore each simplex α ∈ K can be paired with at most one exception
simplex: either a face γ with larger function value, or a coface β with smaller
function value. Formally, this means that if K is a simplicial complex with a
discrete Morse function f , then for any simplex α, either (i) |U(α)| = 0 or (ii)
|L(α)| = 0 ([15], Lemma 2.4).

Definition 2.2 A simplex α(p) is critical if (i) |U(α)| = 0 and (ii) |L(α)| = 0.
A critical value of f is its value at a critical simplex.

Definition 2.3 A simplex α(p) is noncritical if either of the following condi-
tions holds: (i) |U(α)| = 1; (ii) |L(α)| = 1; as noted above these conditions can
not both be true ([13], Lemma 2.5).

Given c ∈ R, we have the sublevel complex Kc = ∪f(α)≤c ∪β≤α β. That is,
Kc contains all simplices α of K such that f(α) ≤ c along with all of their
faces.

Results. We have the following two combinatorial versions of the main results
of classical Morse theory.

Theorem 2.1 (DMT Theorem A, [14]) Suppose the interval (a, b] contains
no critical value of f . Then Kb is homotopy equivalent to Ka. In fact, Kb

simplicially collapses onto Ka.

A key component in the proof of Theorem 2.1 is the following fact [13]: for
a simplicial complex equipped with an arbitrary discrete Morse function, when
passing from one sublevel complex to the next, the noncritical simplices are
added in pairs, each of which consists of a simplex and a free face.

The next theorem explains how the topology of the sublevel complexes
changes as one passes a critical value of a discrete Morse function. In what
follows, ė(p) denotes the boundary of a p-simplex e(p).

Theorem 2.2 (DMT Theorem B, [14]) Suppose σ(p) is a critical simplex
with f(σ) ∈ (a, b], and there are no other critical simplices with values in (a, b].
Then Kb is homotopy equivalent to the space obtained by attaching a p-cell e(p)

along its entire boundary in Ka; that is, Kb = Ka ∪ė(p) e(p).
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The associated gradient vector field. Given a discrete Morse function
f : K → R we may associate a discrete gradient vector field as follows.
Since any noncritical simplex α(p) has at most one of the sets U(α) and L(α)
nonempty, there is a unique face ν(p−1) < α with f(ν) ≥ f(α) or a unique
coface β(p+1) > α with f(β) ≤ f(α). Denote by V the collection of all such
pairs {σ < τ}. Then every simplex in K is in at most one pair in V and the
simplices not in any pair are precisely the critical cells of the function f . We
call V the gradient vector field associated to f . We visualize V by drawing
an arrow from α to β for every pair {α < β} ∈ V . Theorems 2.1 and 2.2
may then be visualized in terms of V by collapsing the pairs in V using the
arrows. Thus a discrete gradient (or equivalently a discrete Morse function)
provides a collapsing order for the complex K, simplifying it to a complex L
with potentially fewer cells but having the same homotopy type.

The collection V has the following property. By a V -path, we mean a
sequence

α
(p)
0 < β

(p+1)
0 > α

(p)
1 < β

(p+1)
1 > · · · < β(p+1)

r > α
(p)
r+1

where each {αi < βi} is a pair in V . Such a path is nontrivial if r > 0 and
closed if αr+1 = α0. Forman proved the following result.

Theorem 2.3 ([13]) If V is a gradient vector field associated to a discrete
Morse function f on K, then V has no nontrivial closed V -paths.

In fact, if one defines a discrete vector field V to be a collection of pairs of
simplices of K such that each simplex is in at most one pair in V , then one
can show that if V has no nontrivial closed V -paths there is a discrete Morse
function f on K whose associated gradient is precisely V .

We note here the following result that will be needed below. A proof may
be found in [26, p. 99].

Lemma 2.1 Suppose K ′ is the barycentric subdivision of K and let V be a
discrete gradient vector field on K. Then there is a discrete gradient vector
field V ′ on K ′ such that the critical cells of V and V ′ are in one-to-one
correspondence. In fact, for a critical p-cell α ∈ K of V , one may choose a
p-cell α′ ∈ K ′ with α′ ⊂ α which is critical for V ′. ut

3 A Discrete Stratified Morse Theory

Our goal is to describe a combinatorial version of stratified Morse theory. To
do so, we need to: (a) define a discrete stratified Morse function; and (b) prove
the combinatorial versions of the relevant fundamental results. Our results
are very general as they apply to any finite simplicial complex K equipped
with a real-valued function f : K → R. Our work is motivated by relevant
concepts from (classical) stratified Morse theory [18], whose details are found
in Appendix A.
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3.1 Background

Open simplices. To state our main results, we need to consider open simplices
(as opposed to the closed simplices of Section 2). Let {a0, a1, · · · , ak} be a
geometrically independent set in RN , a closed k-simplex [σ] is the set of all

points x of RN such that x =
∑k
i=0 tiai, where

∑k
i=0 ti = 1 and ti ≥ 0 for all

i [32]. An open simplex (σ) is the interior of the closed simplex [σ].
A simplicial complex K is a finite set of open simplices such that: (a)

If (σ) ∈ K then all open faces of [σ] are in K; (b) If (σ1), (σ2) ∈ K and
(σ1) ∩ (σ2) 6= ∅, then (σ1) = (σ2). For the remainder of this paper, we always
work with a finite open simplicial complex K. Unless otherwise specified, we
work with open simplices σ and define the boundary σ̇ to be the boundary of
its closure.

Stratified simplicial complexes. In the conference version of this paper [27],
we worked with a weak notion of stratification. We have since discovered
technical issues with that definition; work in progress seeks to find the most
general setting in which our theory can be applied. In this paper, we employ
Definition 3.1 to define a stratified simplicial complex.

Recall a subset S of a topological space Z is locally closed if it is the
intersection of an open and a closed set in Z. For a topological space S, let S
denote its closure, S̊ its interior.

Definition 3.1 A stratification of K is a finite collection of disjoint subsets
S = {Si} called strata, where each |Si| is a locally closed subset of |K|, such
that K =

⋃
Si, and which satisfies the condition of the frontier: |Si| ∩ |Sj | 6= ∅

if and only if |Si| ⊆ |Sj |.

For the remainder of the paper, we abuse notation by writing Si instead of
its geometric realization |Si|. Also, since we will be dealing exclusively with
functions defined simplex-wise, when we write f : Si → R, it will be understood
that this is a function assigning a single value to each simplex in Si.

Remark 3.1 Let Si \ S̊i be the frontier of a stratum Si. The frontier condition
of Definition 3.1 is equivalent to the statement that the frontier of each Si is a
union of strata. Each Si is a union of (open) simplices; its connected components
are called strata pieces. The condition of the frontier in Definition 3.1 yields a
P-decomposition as in [18, p. 36]. That is, it imposes a partial order P = (S,�)
on the strata: Si � Sj if and only if Si ⊆ Sj .

Lemma 3.1 A minimal element in the partial order P = (S,�) is a subcom-
plex of K.

Proof Suppose Si is such a minimal element and suppose σ ∈ Si. It suffices
to show that ∂σ ∈ Si as well. Suppose τ < σ. Then τ ∈ Sj for some j and so
τ ∈ Sj ∩ Si. This implies that Sj ⊆ Si. But Si is minimal in the order P and
so Sj = Si; that is, τ ∈ Si. ut
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A stratification gives an assignment from K to the set S, denoted s : K → S.
In our setting, each Si is the union of finitely many open simplices (that may
not form a subcomplex of K); and each open simplex σ in K is assigned to a
particular stratum s(σ) via the mapping s. Since these subspaces may not be
simplicial complexes, we must modify Definition 2.1 as follows.

Definition 3.2 Suppose Si is a stratum in S. A function f : Si → R is a
discrete Morse function if for every α(p) ∈ Si, (i) |U(α)| ≤ 1, (ii) |L(α)| ≤ 1,
and (iii) if one of the sets U(α) or L(α) is nonempty then the other must be
empty.

Condition (iii) above is not necessary for functions defined on simplicial
complexes, but the proof of that relies on the fact that all faces of a simplex
are in the complex as well. This need not be true for the various strata and so
we impose the condition here.

Stratum-preserving homotopies. If X and Y are two stratified spaces, we
call a map f : X → Y stratum-preserving if the image of each connected
component of a stratum of X lies in a unique component of a stratum of Y [16].
Such a map f : X → Y is a stratum-preserving homotopy equivalence if there
exists a stratum-preserving map g : Y → X such that g ◦ f and f ◦ g are
stratum-preserving homotopic to the identity [16].

3.2 Discrete Stratified Morse Function

Discrete stratified Morse function. LetK be a simplicial complex equipped
with a stratification s and a function f : K → R. We define

Us(α) = {β(p+1) > α | s(β) = s(α) and f(β) ≤ f(α)},
Ls(α) = {γ(p−1) < α | s(γ) = s(α) and f(γ) ≥ f(α)}.

Definition 3.3 Given a simplicial complex K equipped with a stratification
s : K → S, a function f : K → R (equipped with s) is a discrete stratified
Morse function if for every α(p) ∈ K, (i) |Us(α)| ≤ 1, (ii) |Ls(α)| ≤ 1, and (iii)
if one of these sets is nonempty then the other must be empty.

In other words, a discrete stratified Morse function is a pair (f, s) where
f : K → R is a discrete Morse function when restricted to each stratum Sj ∈ S
(in the sense of Definition 3.2). We omit the symbol s whenever it is clear from
the context.

Definition 3.4 A simplex α(p) is globally critical if |U(α)| = |L(α)| = 0. A
simplex α(p) is locally critical if it is not globally critical and if |Us(α)| =
|Ls(α)| = 0. A critical value of f is its value at a critical simplex.

Definition 3.5 A simplex α(p) is globally noncritical if |U(α)| + |L(α)| =
1. A simplex α(p) is locally noncritical if it is not globally noncritical and
|Us(α)|+ |Ls(α)| = 1.
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The two conditions in Definition 3.5 mean that, within the same stratum
as s(α): (i) there is a β(p+1) > α with f(β) ≤ f(α) or (ii) there is a γ(p−1) < α
with f(γ) ≥ f(α); conditions (i) and (ii) cannot both be true.

A classical discrete Morse function f : K → R is a discrete stratified
Morse function with the trivial stratification S = {K}. We will present several
examples in Section 4 illustrating that the class of discrete stratified Morse
functions is much larger.

Violators. The following definition is central to our algorithm in constructing
a discrete stratified Morse function from any real-valued function defined on a
simplicial complex.

Definition 3.6 Suppose K is a simplicial complex equipped with a real-valued
function f : K → R. A simplex α(p) is a violator of the conditions associated
with a discrete Morse function if one of these conditions holds: (i) |U(α)| ≥ 2;
(ii) |L(α)| ≥ 2; (iii) |U(α)| = 1 and |L(α)| = 1. These are referred to as type
I, II and III violators; the sets containing such violators are not necessarily
mutually exclusive.

Here is a useful fact about violators that we shall need later.

Lemma 3.2 Suppose (f, s) : K → R is a discrete stratified Morse function. If
α is a violator for f , then either α is locally critical or α is a boundary simplex
for the stratification; that is, either some face ν of α is in the frontier of s(α)
or α is in the frontier of the stratum s(τ) of a coface τ .

Proof By definition, f |s(α) is a discrete Morse function on s(α). It is possible
that α is critical for this restriction and since α is a violator it cannot be
globally critical. Otherwise, there is either a face ν < α with f(ν) ≥ f(α) or a
coface τ > α with f(α) ≥ f(τ), and this paired simplex (ν or τ) also lies in
s(α). But α is a global violator. So in either case, there is another face ν′ < α
or coface τ ′ > α causing the violation. But ν′, τ ′ 6∈ s(α) and hence either ν′

belongs to the frontier of s(α) or α belongs to the frontier of s(τ ′) (and hence
s(α) ⊆ s(τ ′)). ut

In addition to our first example of a discrete stratified Morse function shown
in Figure 1, we give another example in one dimension higher in Figure 2.
The function f on the left is not a discrete Morse function, as the vertex
f−1(49) violates the conditions of a discrete Morse function. However, f can
be converted into a discrete stratified Morse function on the right, when
the violator f−1(49) is treated as its own stratum. The remaining simplices
form another independent stratum where the green arrows denote the discrete
gradient field in the stratum.

3.3 Back and Forth: Discrete Morse and Discrete Stratified Morse Functions

An honest discrete Morse function f : K → R is a discrete stratified Morse
function for the trivial stratification S = {K}. More is true however.



Discrete Stratified Morse Theory 9

20

12

849

42

7448 88

7244 72

21

20

12

849

42

74
48 88

7244 72

21

Fig. 2 The function f on the left is not a discrete Morse function; however, it can be
converted into a discrete stratified Morse function on the right when it is equipped with an
appropriate stratification s.

Lemma 3.3 Suppose f : K → R is a discrete Morse function and let S = {Si}
be a stratification of K, with s : K → S the assignment map. Then (f, s) is a
discrete stratified Morse function.

Proof Since f is a discrete Morse function, for every simplex α the sets U(α) and
L(α) satisfy the required conditions. In particular, if one of them is nonempty
then the other is empty. Since Us(α) ⊆ U(α) and Ls(α) ⊆ L(α), the conditions
of Definition 3.3 hold. ut

Lemma 3.3 is in contrast with the smooth case. Indeed, a Morse function
on a manifold M may not be a stratified Morse function on an arbitrary
stratification of M . For example, for a torus equipped with the standard height
function h, choose a regular value c such that h−1(c) consists of two disjoint
circles C1 and C2. Take the stratification of the torus consisting of a point on
C1, the circle C1, and the complement of C1. Then h is not a stratified Morse
function with respect to this stratification since h|C1

is constant. However, a
small perturbation of h is a stratified Morse function.

Lemma 3.3 is not true for discrete gradient vector fields, however. Suppose
V is a discrete gradient on K associated to some function f : K → R and
suppose S = {Si} is a stratification. It is entirely possible that a regular simplex
α is paired with a simplex β with s(α) 6= s(β). That is, the vector field V may
be orthogonal to the strata. We do have the following result.

Theorem 3.1 Suppose (f, s) : K → R is a discrete stratified Morse function
with stratification S = {Si}. For each i, denote by Vi the discrete gradient
vector field associated to f |Si

, and let V =
⋃
i Vi. Then V is a discrete gradient

vector field on K.

Proof It suffices to show that there are no closed V -paths. Suppose

γ := {α0 < β0 > α1 < β1 > · · · > αt < βt > α0}
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is a closed V -path. Then γ is not contained in a single stratum piece. Say it lies
in two strata pieces: {α0 < β0 > α1 < β1 > · · · < βk} ⊆ S1, {αk+1 < βk+1 >
· · · < βu} ⊆ S2, and {αu+1 < βu+1 > · · · < βt > α0} ⊆ S1. Note that γ must
decompose this way since simplices can be paired only within the same stratum
piece. Since βk > αk+1, we have αk+1 ∈ S1 and so by the frontier condition
we have S2 ⊆ S1. Also, since βu > αu+1, we have αu+1 ∈ S2 and again the
frontier condition implies S1 ⊆ S2. It follows that S1 = S2 and since strata
pieces are disjoint we conclude that S1 = S2; that is, γ lies in a single stratum
piece, a contradiction. The general case of γ passing through multiple strata
pieces follows inductively. ut

Of course, the vector field V is not associated to the function f ; that is, it
is not the gradient vector field of f (more on this later). The gradient field
V produced in Theorem 3.1 respects the strata in the sense that each pair
{α < β} in V satisfies s(α) = s(β). The following result is a useful technical
tool for us in the sequel.

Theorem 3.2 Suppose (f, s) : K → R is a discrete stratified Morse function
with stratification S = {Si}, and let V be the induced discrete gradient vector
field on K. If necessary, extend the partial order on S to a linear order and write
the strata S1 < · · · < Sn. Then there is a discrete Morse function g : K → R
satisfying the following properties.

1. The gradient of g is V .

2. There are real numbers a1 < a2 < · · · < an such that g−1(−∞, ai] =
⋃
j≤i

Sj

for 1 ≤ i ≤ n.

Proof There are infinitely many discrete Morse functions compatible with V ;
we need only construct one satisfying the second property. The standard way
to construct discrete Morse functions with gradient V is to consider the Hasse
diagram of K, modified by reversing arrows from β to α whenever {α < β} is
a pair in V . This is an acyclic directed graph and a standard result in graph
theory is that such graphs support functions on their vertices whose function
values decrease along every directed path. Such a function yields a discrete
Morse function on K with gradient V . We know that the minimal element S1

is a subcomplex of K (Lemma 3.1); choose a discrete Morse function g1 on S1

compatible with V1 and set a0 = maxσ∈S1 g1(σ). Assume inductively that we
have constructed gi, a discrete Morse function on S1 ∪ · · · ∪ Si satisfying the
second property. We extend it to Si+1 as follows. Collapse the subgraph of the
Hasse diagram corresponding to S1 ∪ · · · ∪ Si to a point. This is then a sink
in this directed graph. Since f |Si+1

is a discrete Morse function, we can find
a function gi+1 whose gradient agrees with Vi+1 on Si+1 and which satisfies
gi+1(σ) > ai for all σ ∈ Si+1. Set ai+1 = maxσ∈Si+1 gi+1(σ). This completes
the inductive step. ut

We say that a function g satisfying the conclusions of Theorem 3.2 separates
the strata.
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3.4 Homotopy Type

In both smooth and discrete Morse theory, we have theorems about how the
topology of the sublevel sets (or sublevel complexes, in the discrete case) vary
as we move through increasing function values. The same is true in stratified
Morse theory, where a neighborhood of a critical point consists of Morse data,
which is a product of tangential and normal data (see Appendix A). Our
definition of a discrete stratified Morse function is too loose to allow for such
theorems as it stands. The issue is that we have no control on how the function
values change as we cross from one stratum to another, as opposed to the
smooth case where the function is continuous and so function values cannot
vary too much in a neighborhood of a critical point.

We can still say something, however, in the form of Theorem 3.3 and
Corollary 3.1. In the following, global and local noncritical pairs are derived
based on the discrete gradient vector field V described in Theorem 3.1. A
global noncritical pair involving a simplex α is obtained based on information
pertaining to U(α) and L(α); while a local noncritical pair involving α is based
upon the restriction of U(α) and L(α) to a particular stratum s, that is, Us(α)
and Ls(α).

Theorem 3.3 (Weak DSMT Theorem A) Given a discrete stratified
Morse function (f, s), performing a collapse of either a global noncritical
pair or a local noncritical pair is a stratum-preserving homotopy equivalence.

Proof We make use of the auxiliary discrete Morse function constructed in
Theorem 3.2. Suppose (f, s) : K → R is a discrete stratified Morse function
with associated discrete gradient V . Let g be a discrete Morse function with
gradient V which separates the strata. Then any noncritical pair, global or
local, is simply a regular pair for g. By Theorem 2.1 we may collapse such a
pair without changing the homotopy type of the complex. Moreover, since all
noncritical pairs lie within a stratum, this homotopy equivalence is stratum-
preserving. ut

Describing what happens around a critical cell is much more complicated,
but we can say the following. A consequence of Theorems 2.1 and 2.2 is that if
the simplicial complex K has a discrete gradient vector field V , then K has
the homotopy type of a CW-complex with one cell for each critical cell of V
(of the same dimension). Theorem 3.1 then implies the following result.

Corollary 3.1 (Weak DSMT Theorem B) Suppose (f, s) : K → R is a
discrete stratified Morse function and denote by V the discrete gradient vector
field obtained as the union of the Vi associated with f |Si . Then K has the
homotopy type of a CW-complex with one cell for each critical cell of V .

3.5 Algorithm for Constructing Discrete Stratified Morse Functions

We give an algorithm to construct a discrete stratified Morse function from
any real-valued function on a simplicial complex, f : K → R as follows.
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1. Make a single pass of all simplices inK, order the violators V = {σ1, σ2, . . . , σr}
by increasing dimension and by increasing function value within each di-
mension.

2. Initialize S = ∅, i = 0.
3. i = i+ 1. Obtain σi from V and add σi to S (as an independent stratum

piece).
4. Consider Ki = K \ {σ1, . . . , σi}:

– If the restriction of f to Ki, f |Ki , is a discrete Morse function, then
Ki may be further stratified to satisfy the frontier condition. Let J
denote the set of indices k ≤ i such that σk ∈ Ki and add the following
strata pieces to S (which may contain more than two strata pieces): the
frontier Ki \ (K̊i ∪ {σj}j∈J) and K̊i.

– Otherwise, if f |Ki is not a discrete Morse function, then at least one σj
with j > i remains a violator.

5. Remove simplices that are no longer violators from the list V , renumbering
the remaining elements in V if necessary, and repeat the steps 3-4 above
until no violators remain.

Before we prove the correctness of the above algorithm, we give a simple
example to illustrate it step-by-step, as shown in Figure 3. If A is any subset of
a topological space, we let Ac denote its complement and A denote its closure.
Then the interior Å is the complement of the closure of the complement; that

is, Å =
(
Ac
)c

. For simplicity, in this example we represent each simplex by its

function value; for instance, 89 represents the vertex f−1(89), and 46 represents
the edge f−1(46). Given f : K → R in Figure 3(a), the algorithm proceeds as
follows:

1. Compute V = {89, 7, 46, 75}. The violators are first sorted by dimension,
then by function value: 89 is a 0-dimensional violator, while the rest in V
are 1-dimensional.

2. Initialize S = ∅, i = 0.
3. i = i + 1 = 1. Obtain σi = σ1 = 89 from V and add it to S. That is,
S = {{89}}. See Figure 3(b).

4. Consider K1 = K \ {89}: f |K1
is not a discrete Morse function.

5. Remove simplex 7 in V that is no longer a violator. Now V = {89, 46, 75}.
6. i = i + 1 = 2. Obtain σi = σ2 = 46 from V and add it to S. That is,
S = {{89}, {46}}. See Figure 3(c).

7. Consider K2 = K \ {89, 46}: f |K2 is not a discrete Morse function.
8. i = i + 1 = 3. Obtain σi = σ3 = 75 from V and add it to S. That is,
S = {{89}, {46}, {75}}. See Figure 3(d).

9. Consider K3 = K \ {89, 46, 75} = {7, 25, 58, 62, 66, 83, 97, 99}: f |K3
is now

a discrete Morse function. We may need to further stratify K3 to satisfy
the frontier condition.
(a) Compute Kc

3 = K \K3 = {46, 75, 89}
(b) Compute Kc

3 = {46, 58, 62, 75, 89, 97}
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(d) (e) (f)

Fig. 3 An illustration of the algorithm for constructing discrete stratified Morse function
from an arbitrary function defined on a simplicial complex.

(c) Compute the interior K̊3 of K3: K̊3 =
(
Kc

3

)c
= {7, 25, 66, 83, 99}

(d) Compute the closure of K3: K3 = K; J = {1, 2, 3}.
(e) Compute the frontier of K3: K3 \ K̊3 = {46, 58, 62, 75, 89, 97}
(f) Add connected components of K̊3 and S ′ = K3 \ (K̊3 ∪ {σj}j∈J) to S

as strata pieces. In particular S ′ = K3\(K̊3∪{89, 46, 75}) = {58, 62, 97}.
Therefore S = {{89}, {46}, {75}, {46, 58, 62, 75, 89, 97}, {58}, {62}, {97}}.
See Figure 3(e).

Lemma 3.4 The collection S satisfies the condition of the frontier and there-
fore meets the conditions of Definition 3.1.

Proof First note that every simplex in K belongs to some strata piece; the
strata pieces are obviously disjoint. Based on Lemma 3.2, if σk and σ` are
distinct violators in S, then σk∩σ` 6= ∅ if and only if σk ∈ ∂σj := (σ` \ σ̊j) ⊆ σ`.
Similarly, if σk intersects the closure of the frontier strata piece, then it must
lie in the boundary of one of the simplices in that strata piece. A violator in S
cannot intersect the open strata piece K̊i by definition, and if it intersects its
closure then it intersects the frontier strata piece and we are done. ut
Theorem 3.4 The function (f, s) associated to the stratification defined in
the algorithm above is a discrete stratified Morse function.

Proof We assume K is connected. If f itself is a discrete Morse function, then
there are no violators in K. The algorithm produces the trivial stratification
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S = {K} and since f is a discrete Morse function on the entire complex, the
pair (f, s) trivially satisfies Definition 3.3.

If f is not a discrete Morse function, let S = V ∪ {F} ∪ {I} denote the
stratification produced by the algorithm, where V is the set of violators that
form their own strata, F is the set of frontier strata pieces and I is the interior
complementary to F . Since each violator α ∈ V forms its own strata piece s(α),
the restriction of f to s(α) is trivially a discrete Morse function in which α is
a critical simplex.

Recall that the sets F and I are obtained as follows. We remove the collection
V from K to obtain L and consider the restriction of f to this subspace. The
function f is a discrete Morse function here, and since I is the interior of L, f
restricts to a discrete Morse function on I. The set F is obtained as L \ (I ∪V).
If σ is a simplex in F , then σ is not one of the violators for f that get removed
(or it is not a violator at all in the first place). It follows that f |F is a discrete
Morse function and we are done. ut

Remark 3.2 When we restrict the function f : K → R to one of the strata
Si ∈ S, a non-violator σ that is regular globally (that is, σ forms a gradient
pair with a unique simplex τ) may become a critical simplex for the restriction
of f to Si.

The algorithm is relatively efficient. We give a back-of-the-envelope argu-
ment below. Suppose K has n simplices and let c be the maximum number
of codimension-1 faces and cofaces of any simplex in K (in other words, c
could be considered as the maximum “degree” of a simplex in K). The first
step of the algorithm takes O(cn) steps to identify the set of violators V by
checking for each simplex α(p), its faces γ(p−1) < α and cofaces β(p+1) > α. For
the initial sorting of the r number of violators by dimension and by function
values, it takes O(r log r). Then for each violator σi removed from the set V,
the algorithm must check the complex Ki for remaining violators by paying
attention to simplicies adjacent to σi, which takes O(c). For r violators, this
requires O(cr). Assuming all the list and set operations are O(1) and c being a
constant, then the algorithm runs in O(n log n) time, where the bottleneck is
the sorting of violators.

3.6 Coarseness

Suppose f is a function on K and denote the set of stratifications S of the
complex K on which f is a discrete stratified Morse function by Σ(K, f).
The set Σ(K, f) is partially ordered by inclusion: S ≤ S ′ if each stratum
piece Si ∈ S is contained in some element of S ′. Generally, we wish to work
with coarse stratifications; that is, we seek maximal elements of Σ(K, f). Our
algorithm in Section 3.5 does just that.

Proposition 3.1 The stratification produced by the algorithm of Section 3.5
is a maximal element of Σ(K, f).
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Proof The algorithm produces a stratification S consisting of some violators
σ1, σ2, . . . , σ` for the function f , the interior of K` = K \ {σ1, . . . , σ`}, and the
frontier of K` (with the violators removed). Suppose there is a stratification
S ′ ∈ Σ(K, f) with S ≤ S ′. Then there is some stratum piece S ∈ S ′ containing
K̊`. If they are not equal, then there is a simplex α in S \ K̊`. If α is one of the
violators for f then f |S cannot be a discrete Morse function on S, otherwise
the algorithm would have terminated sooner. If α lies in the frontier of K` then
S contains the entire frontier by definition and hence must be all of K`. But
then S ′ would not satisfy the frontier condition. Thus, K̊` must be one of the
elements of S ′. Similarly, the frontier of K` must also be an element of S ′. The
violators are disjoint and so they must then also be elements of S ′. It follows
that S = S ′ and that S is maximal. ut

Note that if f is a discrete Morse function on K, then the algorithm produces
the trivial stratification S = {K}, which is indeed maximal in Σ(K, f).

4 Discrete Stratified Morse Theory by Example

We apply the algorithm described in Section 3.5 to a collection of examples
to demonstrate the utility of our theory. For each example, given a function
f : K → R that is not necessarily a discrete Morse function, we equip f with a
particular stratification s, thereby converting it to a discrete stratified Morse
function (f, s). These examples help to illustrate that the class of discrete
stratified Morse functions is much larger than that of discrete Morse functions.

99 87

65

43

21

10

f

87

65

43

21

10

'
(f, s)

10

9

(a) (b) (c)

Fig. 4 Upside-down pentagon. (a): f is not a discrete Morse function. (b): (f, s) is a discrete
stratified Morse function where violators removed by the algorithm are in red; critical
simplicies (other than the violators) are in blue; the discrete gradient vector field is marked
by green arrows. (c): the simplified simplicial complex by removing the Morse pairs following
the discrete gradient vector field.

Example 1: upside-down pentagon. As illustrated in Figure 4 (a), f :
K → R defined on the boundary of an upside-down pentagon is not a discrete
Morse function, as it contains a set of violators: V = {f−1(10), f−1(1), f−1(2)},
since |U(f−1(10))| = 2 and |L(f−1(1))| = |L(f−1(2))| = 2, respectively.

By following the algorithm in Section 3.5, we would first remove the violator
f−1(10) and check to see if what remains is a discrete Morse function. We
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see that this is indeed the case: we have four Morse pairs illustrated by green
arrows in Figure 4 (b): (f−1(3), f−1(1)), (f−1(4), f−1(2)), (f−1(7), f−1(5)),
and (f−1(8), f−1(6)). The resulting discrete stratified Morse function (f, s)
is a discrete Morse function when restricted to each stratum. Recall that a
simplex is critical for (f, s) if it is neither the source nor the target of a discrete
gradient vector. The critical values of (f, s) are therefore 9 and 10.

One of the primary uses of classical discrete Morse theory is simplification.
In this example, we can collapse a portion of each stratum following the discrete
gradient field (illustrated by green arrows, see Section 2). Removing the Morse
pairs simplifies the original complex as much as possible without changing
its homotopy type, and the resulting simplification yields a complex with one
vertex and one edge, see Figure 4 (c).

Example 2: pentagon. For our second pentagon example, f can be made
into a discrete stratified Morse function (f, s) by making f−1(0) (a type II
violator) and f−1(9) (a type I violator) their own strata following the algorithm
in Section 3.5 (Figure 5). The critical values of (f, s) are 0, 1, 3, 7, 8 and 9. It
is important to note that f−1(1) and f−1(3) are considered critical as they
form their own strata pieces; however they are not the violators removed by
the algorithm. The simplicial complex can be reduced to one with fewer cells
by canceling the Morse pairs, as shown in Figure 5 (d).
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Fig. 5 Pentagon. (a): f is not a discrete Morse function. (b): an intermediate simplicial
complex after removing violators in red. (c): separating simplicies f−1(1) and f−1(3) from
(b) results in a stratification that satisfies the frontier condition. There are six strata pieces
associated with the discrete stratified Morse function (f, s). (d): the simplified simplicial
complex.

Example 3: split octagon. The split octagon example (Figure 6) begins with
a function f defined on a triangulation of a stratified space that consists of two
0-dimensional and three 1-dimensional strata pieces (Figure 6(a)). The set of
violators to be considered is V = {f−1(0), f−1(10), f−1(24), f−1(30), f−1(31)}.
However, after removing f−1(30), then f−1(31), the rest of the simplicies in
V are no longer violators and the restriction of f to what is left is a discrete
Morse function (Figure 6(b)). The result of canceling Morse pairs yields a
simpler complex shown in Figure 6(c).
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Fig. 6 Split octagon. (a) f is defined on the triangulation of a stratified space. (b) the
resulting discrete stratified Morse function (f, s). (c) the simplified complex.

Example 4: tetrahedron. In Figure 7(a), the values of the function f defined
on the simplices of a tetrahedron are specified for each dimension. For each
simplex α ∈ K, we list the elements of its corresponding U(α) and L(α) in
Table 1. We also classify each simplex in terms of its criticality in the setting
of classical discrete Morse theory. According to Table 1 the violators V have
function values of 10, 14 (type I), 6 (type II), 7, 8, 11 and 12 (type III).

We describe our algorithm step by step, the intermediate results (strata
pieces) are illustrated in Figure 7(b). For simplicity, a simplex α is represented
by its function value f(α). First, initialize S = ∅. Second, remove the vertex
10, then 7 is no longer a violator, remove it from the list V; now S = {10}.
Third, remove the vertex 14, then 8, 11, 12 are no longer violators, remove
them from the list V; S = {10, 14}. Fourth, 6 is the only remaining violator,
add it to S = {10, 14, 6}. Finally, let C = K \ {10, 14, 6}. Then C = K \ {6}
and C̊ = C \ {2, 8, 11, 13}. Add C̊ and C \ (C̊ ∪ {14}) to S. S now contains 5
strata pieces. Besides vertices 10 and 14 and triangle 6, S also contains a strata
piece {1, 2, 3, 8, 11} that is homotopy equivalent to an open 1-manifold; vertex
3 and edge 2 forms a Morse pair. The last strata piece in S is {4, 5, 7, 9, 12, 13},
which is topologically a punctured disc; in particular, there are two Morse
pairs, (12, 9) and (7, 5).

As an alternative to the algorithm described in Section 3.5, we show in
Figure 7(c) that we could obtain a different stratification by changing the
ordering of the violators to be removed. As in (b), V = {10, 14, 6, 7, 8, 11, 12}.
First, initialize S = ∅. Second, remove the vertex 14, then 8, 11, 12 are no longer
violators, remove them from V ; now S = {14}. Third, remove the edge 7, then
10 is no longer a violator, remove it from V; S = {14, 7}. Fourth, 6 is the only
remaining violator, add it to S = {14, 7, 6}. Finally, let C = K \ {14, 7, 6}.
Then C = K \ {6} and C̊ = C \ {1, 2, 3, 8, 11}. S now contains 5 strata pieces
in (c) that are slightly different from (b). Note that the stratifications in (b)
and (c) are incomparable in the set Σ(K, f).

Example 5: split solid square. As illustrated in Figure 8, the function f
defined on a split solid square is not a discrete Morse function; there are three
type I violators f−1(9), f−1(10), and f−1(11). Making these violators their
own strata (in the order of increasing function value following the algorithm in
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1 2 3 4 5 6 7 8 9 10 11 12 13 14
U(α) ∅ ∅ {2} ∅ ∅ ∅ {5} {6} ∅ {4, 7} {6} {9} ∅ {8, 11, 12}
L(α) ∅ {3} ∅ {10} {7} {8, 11} {10} {14} {12} ∅ {14} {14} ∅ ∅
Type C R R R R II III III R I III III C I

Table 1 Tetrahedron. For simplicity, a simplex α is represented by its function value f(α)
(as f is 1-to-1). In terms of criticality for each simplex: C means critical; R means regular; I,
II and III correspond to type I, II and III violators.
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Fig. 7 Tetrahedron. (a) f is defined on the simplices of increasing dimensions. (b) the
resulting discrete stratified Morse function (f, s) is shown by individual strata pieces; using
the algorithm in Section 3.5. Not all simplices are shown. (c) An alternative stratification.

Section 3.5) helps to convert f into a discrete stratified Morse function (f, s).
In this example, all simplices are considered critical for (f, s). For instance,
consider the open 2-simplex f−1(4), we have L(f−1(4)) = {f−1(11)} and
U(f−1(4)) = ∅; with the stratification s in Figure 8 (right), Ls(f

−1(4)) = ∅
and so 4 is not a critical value for f but it is a critical value for (f, s). Since
every simplex is critical for (f, s), there is no simplification to be done.
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Fig. 8 Split solid square. Every simplex is critical for (f, s).
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5 Applications to Triangulations of Stratified Spaces

5.1 Background on Whitney Stratifications and Triangulations

Whitney stratifications. We review relevant background on Whitney strat-
ifications; the primary reference for the material in this section is [28]. For
simplicity, we assume all manifolds are smooth (i.e., of class C∞). If x, y ∈ Rn
with x 6= y, we define the secant xy to be the line through the origin in Rn
parallel to the line joining x and y. If x ∈ Rn, we identify the tangent space
TxRn with Rn in the standard way.

Let M be a smooth manifold without boundary and let Z be a subset
of M . A stratification S = {Si}i∈P of Z is a cover of Z by pairwise disjoint
smooth submanifolds of M which lie in Z; these submanifolds Si are called
strata (whose connected components are referred to as strata pieces); where
P is some poset. The stratification S is locally finite if each point of M has a
neighborhood which meets finitely many strata. We say S satisfies the condition
of the frontier if the strata in S satisfy Si ∩ Sj 6= ∅ if and only if Si ⊆ Sj ; or
equivalently, if for each stratum Si of S its frontier (Si \ Si) ∩ Z is a union of
strata (compare with Definition 3.1).

Definition 5.1 Let X and Y be submanifolds of a smooth manifold M . We
say that X is Whitney regular over Y if whenever {xi} ⊂ X and {yi} ⊂ Y are
sequences of points both converging to some point y ∈ Y , the lines `i = xiyi
converge to a line ` ∈ Rn, and the tangent spaces TxiX converge to a space
T ⊆ Rn, then

(A) TyY ⊆ T , and
(B) ` ⊆ T .

Remark 5.1 Convergence here should be thought of as taking place in a small
neighborhood of y identified with Rn via a coordinate chart. Also, Condition
B above implies Condition A [28].

Proposition 5.1 [28, Proposition 2.7] Suppose y ∈ X \ Y and (X,Y ) satis-
fies condition B at y. Then dimY < dimX.

Definition 5.2 A stratification S = {Si} is a Whitney stratification if it is
locally finite, satisfies the condition of the frontier, and if whenever j ≤ i, Si is
Whitney regular over Sj .

Remark 5.2 Let S be a Whitney stratification of a subset Z of a manifoldM and
let Si, Sj be strata. Proposition 5.1 implies that if i ≤ j then dimSi < dimSj .

Here is a useful way of constructing stratified spaces [24]. A stratified set
of type 0 is a smooth manifold. To construct a stratified set X(k+1) of type
k + 1, take a stratified set X(k) of type k, a smooth manifold K, a smooth
submanifold L of codimension 0 in ∂K, and an “attaching” map α : L→ X(k),
and then set X(k+1) = X(k) ∪α K. These attaching maps are not arbitrary
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continuous maps; they must be proper, continuous, and as close as possible to
a smooth fiber bundle. The strata are then the various Xk = X(k) \X(k−1).
For the pinched torus in Figure 9, we begin with X(0) as the pinch point. To
build X(1) we take the closed interval K = [0, 1], L = {0, 1}, and α : L→ X(0)

the obvious map. To build X(2), we take K to be the disjoint union of a disc
and a square, L to be the disjoint union of the boundary circle and boundary
square, and α : L→ X(1) to be the map identifying the circle via the identity
and the square via the map that first yields a wedge of two circles and then
collapses one to the base point.

Triangulating stratified sets. By a triangulation of a set Z we mean a
finite simplicial complex K and a homeomorphism h : |K| → Z, where |K|
denotes the geometric realization of K. Any smooth manifold is triangulable,
for example.

Suppose we have a compact set Z with Whitney stratification S = {Si}. As
above, we may think of Z as being built up by the pieces Si in such a way that
when i ≤ j, we have Si ⊆ ∂Sj (this is essentially the condition of the frontier).
We now have the following theorem (see Theorem 2.1 of [24] or Proposition 5
of [17]).

Theorem 5.1 [24, Theorem 2.1] A compact Whitney stratified set Z admits
a triangulation by a finite simplicial complex so that each Si is triangulated as
a subcomplex.

= + + +
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<latexit sha1_base64="7C4+ovUXtq/nlpGAUV2RkrchYZc=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lhg9IIEL2Vv2YMPe3mV3zoQQfoONhcbY+oPs/DcucIWCL5nk5b2ZzMwLUykMuu63U9jY3NreKe6W9vYPDo/Kxyctk2SacZ8lMtGdkBouheI+CpS8k2pO41Dydji+nfvtJ66NSNQjTlIexHSoRCQYRSv51Ye+V+2XK27NXYCsEy8nFcjR7Je/eoOEZTFXyCQ1puu5KQZTqlEwyWelXmZ4StmYDnnXUkVjboLp4tgZubDKgESJtqWQLNTfE1MaGzOJQ9sZUxyZVW8u/ud1M4yug6lQaYZcseWiKJMEEzL/nAyE5gzlxBLKtLC3EjaimjK0+ZRsCN7qy+ukVa95bs27r1caN3kcRTiDc7gED66gAXfQBB8YCHiGV3hzlPPivDsfy9aCk8+cwh84nz+LF43V</latexit><latexit sha1_base64="7C4+ovUXtq/nlpGAUV2RkrchYZc=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lhg9IIEL2Vv2YMPe3mV3zoQQfoONhcbY+oPs/DcucIWCL5nk5b2ZzMwLUykMuu63U9jY3NreKe6W9vYPDo/Kxyctk2SacZ8lMtGdkBouheI+CpS8k2pO41Dydji+nfvtJ66NSNQjTlIexHSoRCQYRSv51Ye+V+2XK27NXYCsEy8nFcjR7Je/eoOEZTFXyCQ1puu5KQZTqlEwyWelXmZ4StmYDnnXUkVjboLp4tgZubDKgESJtqWQLNTfE1MaGzOJQ9sZUxyZVW8u/ud1M4yug6lQaYZcseWiKJMEEzL/nAyE5gzlxBLKtLC3EjaimjK0+ZRsCN7qy+ukVa95bs27r1caN3kcRTiDc7gED66gAXfQBB8YCHiGV3hzlPPivDsfy9aCk8+cwh84nz+LF43V</latexit><latexit sha1_base64="7C4+ovUXtq/nlpGAUV2RkrchYZc=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lhg9IIEL2Vv2YMPe3mV3zoQQfoONhcbY+oPs/DcucIWCL5nk5b2ZzMwLUykMuu63U9jY3NreKe6W9vYPDo/Kxyctk2SacZ8lMtGdkBouheI+CpS8k2pO41Dydji+nfvtJ66NSNQjTlIexHSoRCQYRSv51Ye+V+2XK27NXYCsEy8nFcjR7Je/eoOEZTFXyCQ1puu5KQZTqlEwyWelXmZ4StmYDnnXUkVjboLp4tgZubDKgESJtqWQLNTfE1MaGzOJQ9sZUxyZVW8u/ud1M4yug6lQaYZcseWiKJMEEzL/nAyE5gzlxBLKtLC3EjaimjK0+ZRsCN7qy+ukVa95bs27r1caN3kcRTiDc7gED66gAXfQBB8YCHiGV3hzlPPivDsfy9aCk8+cwh84nz+LF43V</latexit><latexit sha1_base64="7C4+ovUXtq/nlpGAUV2RkrchYZc=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lhg9IIEL2Vv2YMPe3mV3zoQQfoONhcbY+oPs/DcucIWCL5nk5b2ZzMwLUykMuu63U9jY3NreKe6W9vYPDo/Kxyctk2SacZ8lMtGdkBouheI+CpS8k2pO41Dydji+nfvtJ66NSNQjTlIexHSoRCQYRSv51Ye+V+2XK27NXYCsEy8nFcjR7Je/eoOEZTFXyCQ1puu5KQZTqlEwyWelXmZ4StmYDnnXUkVjboLp4tgZubDKgESJtqWQLNTfE1MaGzOJQ9sZUxyZVW8u/ud1M4yug6lQaYZcseWiKJMEEzL/nAyE5gzlxBLKtLC3EjaimjK0+ZRsCN7qy+ukVa95bs27r1caN3kcRTiDc7gED66gAXfQBB8YCHiGV3hzlPPivDsfy9aCk8+cwh84nz+LF43V</latexit>

S0
<latexit sha1_base64="8s56Xa5cnBVFXT6As1rfWF/h/oI=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lhg9IIEL2Vv2YMPe3mV3zoQQfoONhcbY+oPs/DcucIWCL5nk5b2ZzMwLUykMuu63U9jY3NreKe6W9vYPDo/Kxyctk2SacZ8lMtGdkBouheI+CpS8k2pO41Dydji+nfvtJ66NSNQjTlIexHSoRCQYRSv51Ye+W+2XK27NXYCsEy8nFcjR7Je/eoOEZTFXyCQ1puu5KQZTqlEwyWelXmZ4StmYDnnXUkVjboLp4tgZubDKgESJtqWQLNTfE1MaGzOJQ9sZUxyZVW8u/ud1M4yug6lQaYZcseWiKJMEEzL/nAyE5gzlxBLKtLC3EjaimjK0+ZRsCN7qy+ukVa95bs27r1caN3kcRTiDc7gED66gAXfQBB8YCHiGV3hzlPPivDsfy9aCk8+cwh84nz+Jko3U</latexit><latexit sha1_base64="8s56Xa5cnBVFXT6As1rfWF/h/oI=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lhg9IIEL2Vv2YMPe3mV3zoQQfoONhcbY+oPs/DcucIWCL5nk5b2ZzMwLUykMuu63U9jY3NreKe6W9vYPDo/Kxyctk2SacZ8lMtGdkBouheI+CpS8k2pO41Dydji+nfvtJ66NSNQjTlIexHSoRCQYRSv51Ye+W+2XK27NXYCsEy8nFcjR7Je/eoOEZTFXyCQ1puu5KQZTqlEwyWelXmZ4StmYDnnXUkVjboLp4tgZubDKgESJtqWQLNTfE1MaGzOJQ9sZUxyZVW8u/ud1M4yug6lQaYZcseWiKJMEEzL/nAyE5gzlxBLKtLC3EjaimjK0+ZRsCN7qy+ukVa95bs27r1caN3kcRTiDc7gED66gAXfQBB8YCHiGV3hzlPPivDsfy9aCk8+cwh84nz+Jko3U</latexit><latexit sha1_base64="8s56Xa5cnBVFXT6As1rfWF/h/oI=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lhg9IIEL2Vv2YMPe3mV3zoQQfoONhcbY+oPs/DcucIWCL5nk5b2ZzMwLUykMuu63U9jY3NreKe6W9vYPDo/Kxyctk2SacZ8lMtGdkBouheI+CpS8k2pO41Dydji+nfvtJ66NSNQjTlIexHSoRCQYRSv51Ye+W+2XK27NXYCsEy8nFcjR7Je/eoOEZTFXyCQ1puu5KQZTqlEwyWelXmZ4StmYDnnXUkVjboLp4tgZubDKgESJtqWQLNTfE1MaGzOJQ9sZUxyZVW8u/ud1M4yug6lQaYZcseWiKJMEEzL/nAyE5gzlxBLKtLC3EjaimjK0+ZRsCN7qy+ukVa95bs27r1caN3kcRTiDc7gED66gAXfQBB8YCHiGV3hzlPPivDsfy9aCk8+cwh84nz+Jko3U</latexit><latexit sha1_base64="8s56Xa5cnBVFXT6As1rfWF/h/oI=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lhg9IIEL2Vv2YMPe3mV3zoQQfoONhcbY+oPs/DcucIWCL5nk5b2ZzMwLUykMuu63U9jY3NreKe6W9vYPDo/Kxyctk2SacZ8lMtGdkBouheI+CpS8k2pO41Dydji+nfvtJ66NSNQjTlIexHSoRCQYRSv51Ye+W+2XK27NXYCsEy8nFcjR7Je/eoOEZTFXyCQ1puu5KQZTqlEwyWelXmZ4StmYDnnXUkVjboLp4tgZubDKgESJtqWQLNTfE1MaGzOJQ9sZUxyZVW8u/ud1M4yug6lQaYZcseWiKJMEEzL/nAyE5gzlxBLKtLC3EjaimjK0+ZRsCN7qy+ukVa95bs27r1caN3kcRTiDc7gED66gAXfQBB8YCHiGV3hzlPPivDsfy9aCk8+cwh84nz+Jko3U</latexit>

x
<latexit sha1_base64="G49X2kJVehBS/VicdZIWw1N1guU=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lhgFTOBC9pY92LC3d9mdM5ILP8HGQmNs/UV2/hsXuELBl0zy8t5MZuYFiRQGXffbKaytb2xuFbdLO7t7+wflw6O2iVPNeIvFMtYPATVcCsVbKFDyh0RzGgWSd4Lx9czvPHJtRKzucZJwP6JDJULBKFrprvpU7Zcrbs2dg6wSLycVyNHsl796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4aWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8Str1mufWvNt6pXGVx1GEEziFc/DgAhpwA01oAYMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPH51SjVY=</latexit><latexit sha1_base64="G49X2kJVehBS/VicdZIWw1N1guU=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lhgFTOBC9pY92LC3d9mdM5ILP8HGQmNs/UV2/hsXuELBl0zy8t5MZuYFiRQGXffbKaytb2xuFbdLO7t7+wflw6O2iVPNeIvFMtYPATVcCsVbKFDyh0RzGgWSd4Lx9czvPHJtRKzucZJwP6JDJULBKFrprvpU7Zcrbs2dg6wSLycVyNHsl796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4aWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8Str1mufWvNt6pXGVx1GEEziFc/DgAhpwA01oAYMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPH51SjVY=</latexit><latexit sha1_base64="G49X2kJVehBS/VicdZIWw1N1guU=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lhgFTOBC9pY92LC3d9mdM5ILP8HGQmNs/UV2/hsXuELBl0zy8t5MZuYFiRQGXffbKaytb2xuFbdLO7t7+wflw6O2iVPNeIvFMtYPATVcCsVbKFDyh0RzGgWSd4Lx9czvPHJtRKzucZJwP6JDJULBKFrprvpU7Zcrbs2dg6wSLycVyNHsl796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4aWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8Str1mufWvNt6pXGVx1GEEziFc/DgAhpwA01oAYMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPH51SjVY=</latexit><latexit sha1_base64="G49X2kJVehBS/VicdZIWw1N1guU=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lhgFTOBC9pY92LC3d9mdM5ILP8HGQmNs/UV2/hsXuELBl0zy8t5MZuYFiRQGXffbKaytb2xuFbdLO7t7+wflw6O2iVPNeIvFMtYPATVcCsVbKFDyh0RzGgWSd4Lx9czvPHJtRKzucZJwP6JDJULBKFrprvpU7Zcrbs2dg6wSLycVyNHsl796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4aWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8Str1mufWvNt6pXGVx1GEEziFc/DgAhpwA01oAYMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPH51SjVY=</latexit>

x
<latexit sha1_base64="G49X2kJVehBS/VicdZIWw1N1guU=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lhgFTOBC9pY92LC3d9mdM5ILP8HGQmNs/UV2/hsXuELBl0zy8t5MZuYFiRQGXffbKaytb2xuFbdLO7t7+wflw6O2iVPNeIvFMtYPATVcCsVbKFDyh0RzGgWSd4Lx9czvPHJtRKzucZJwP6JDJULBKFrprvpU7Zcrbs2dg6wSLycVyNHsl796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4aWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8Str1mufWvNt6pXGVx1GEEziFc/DgAhpwA01oAYMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPH51SjVY=</latexit><latexit sha1_base64="G49X2kJVehBS/VicdZIWw1N1guU=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lhgFTOBC9pY92LC3d9mdM5ILP8HGQmNs/UV2/hsXuELBl0zy8t5MZuYFiRQGXffbKaytb2xuFbdLO7t7+wflw6O2iVPNeIvFMtYPATVcCsVbKFDyh0RzGgWSd4Lx9czvPHJtRKzucZJwP6JDJULBKFrprvpU7Zcrbs2dg6wSLycVyNHsl796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4aWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8Str1mufWvNt6pXGVx1GEEziFc/DgAhpwA01oAYMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPH51SjVY=</latexit><latexit sha1_base64="G49X2kJVehBS/VicdZIWw1N1guU=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lhgFTOBC9pY92LC3d9mdM5ILP8HGQmNs/UV2/hsXuELBl0zy8t5MZuYFiRQGXffbKaytb2xuFbdLO7t7+wflw6O2iVPNeIvFMtYPATVcCsVbKFDyh0RzGgWSd4Lx9czvPHJtRKzucZJwP6JDJULBKFrprvpU7Zcrbs2dg6wSLycVyNHsl796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4aWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8Str1mufWvNt6pXGVx1GEEziFc/DgAhpwA01oAYMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPH51SjVY=</latexit><latexit sha1_base64="G49X2kJVehBS/VicdZIWw1N1guU=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lhgFTOBC9pY92LC3d9mdM5ILP8HGQmNs/UV2/hsXuELBl0zy8t5MZuYFiRQGXffbKaytb2xuFbdLO7t7+wflw6O2iVPNeIvFMtYPATVcCsVbKFDyh0RzGgWSd4Lx9czvPHJtRKzucZJwP6JDJULBKFrprvpU7Zcrbs2dg6wSLycVyNHsl796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4aWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8Str1mufWvNt6pXGVx1GEEziFc/DgAhpwA01oAYMhPMMrvDnSeXHenY9Fa8HJZ47hD5zPH51SjVY=</latexit>

{<latexit sha1_base64="qROjVUIJGpn2FSbST0yop5+/aHY=">AAAB63icbVDLSgNBEOz1GeMr6tHLYCJ4Cru56DHgxWME84BkCbOTTjJkZnaZmRXCkl/w4kERr/6H3+DNv3E2yUETCxqKqm66u6JEcGN9/9vb2Nza3tkt7BX3Dw6Pjksnpy0Tp5phk8Ui1p2IGhRcYdNyK7CTaKQyEtiOJre5335EbXisHuw0wVDSkeJDzqjNpUovq/RLZb/qz0HWSbAkZVii0S999QYxSyUqywQ1phv4iQ0zqi1nAmfFXmowoWxCR9h1VFGJJszmt87IpVMGZBhrV8qSufp7IqPSmKmMXKekdmxWvVz8z+umdngTZlwlqUXFFouGqSA2JvnjZMA1MiumjlCmubuVsDHVlFkXT9GFEKy+vE5atWrgV4P7WrkefS7iKMA5XMAVBHANdbiDBjSBwRie4AVePek9e2/e+6J1w1tGeAZ/4H38AJXEjp8=</latexit><latexit sha1_base64="qROjVUIJGpn2FSbST0yop5+/aHY=">AAAB63icbVDLSgNBEOz1GeMr6tHLYCJ4Cru56DHgxWME84BkCbOTTjJkZnaZmRXCkl/w4kERr/6H3+DNv3E2yUETCxqKqm66u6JEcGN9/9vb2Nza3tkt7BX3Dw6Pjksnpy0Tp5phk8Ui1p2IGhRcYdNyK7CTaKQyEtiOJre5335EbXisHuw0wVDSkeJDzqjNpUovq/RLZb/qz0HWSbAkZVii0S999QYxSyUqywQ1phv4iQ0zqi1nAmfFXmowoWxCR9h1VFGJJszmt87IpVMGZBhrV8qSufp7IqPSmKmMXKekdmxWvVz8z+umdngTZlwlqUXFFouGqSA2JvnjZMA1MiumjlCmubuVsDHVlFkXT9GFEKy+vE5atWrgV4P7WrkefS7iKMA5XMAVBHANdbiDBjSBwRie4AVePek9e2/e+6J1w1tGeAZ/4H38AJXEjp8=</latexit><latexit sha1_base64="qROjVUIJGpn2FSbST0yop5+/aHY=">AAAB63icbVDLSgNBEOz1GeMr6tHLYCJ4Cru56DHgxWME84BkCbOTTjJkZnaZmRXCkl/w4kERr/6H3+DNv3E2yUETCxqKqm66u6JEcGN9/9vb2Nza3tkt7BX3Dw6Pjksnpy0Tp5phk8Ui1p2IGhRcYdNyK7CTaKQyEtiOJre5335EbXisHuw0wVDSkeJDzqjNpUovq/RLZb/qz0HWSbAkZVii0S999QYxSyUqywQ1phv4iQ0zqi1nAmfFXmowoWxCR9h1VFGJJszmt87IpVMGZBhrV8qSufp7IqPSmKmMXKekdmxWvVz8z+umdngTZlwlqUXFFouGqSA2JvnjZMA1MiumjlCmubuVsDHVlFkXT9GFEKy+vE5atWrgV4P7WrkefS7iKMA5XMAVBHANdbiDBjSBwRie4AVePek9e2/e+6J1w1tGeAZ/4H38AJXEjp8=</latexit><latexit sha1_base64="qROjVUIJGpn2FSbST0yop5+/aHY=">AAAB63icbVDLSgNBEOz1GeMr6tHLYCJ4Cru56DHgxWME84BkCbOTTjJkZnaZmRXCkl/w4kERr/6H3+DNv3E2yUETCxqKqm66u6JEcGN9/9vb2Nza3tkt7BX3Dw6Pjksnpy0Tp5phk8Ui1p2IGhRcYdNyK7CTaKQyEtiOJre5335EbXisHuw0wVDSkeJDzqjNpUovq/RLZb/qz0HWSbAkZVii0S999QYxSyUqywQ1phv4iQ0zqi1nAmfFXmowoWxCR9h1VFGJJszmt87IpVMGZBhrV8qSufp7IqPSmKmMXKekdmxWvVz8z+umdngTZlwlqUXFFouGqSA2JvnjZMA1MiumjlCmubuVsDHVlFkXT9GFEKy+vE5atWrgV4P7WrkefS7iKMA5XMAVBHANdbiDBjSBwRie4AVePek9e2/e+6J1w1tGeAZ/4H38AJXEjp8=</latexit>

Fig. 9 The pinched torus as a stratified space, whose stratification is formed by strata S0,
S1, and S2.

In addition, whenever i ≤ j, we have that Si is triangulated as a subcomplex
of ∂Sj . So, for example, in the pinched torus of Figure 9 we have that the
pinch point x := S0 is a vertex in the triangulation of S1, and that S1 is a
subcomplex of the closure S2 of the two disjoint discs. The important idea here
is that one may think of building the triangulation from the bottom up by
first triangulating the 0-stratum, then extending that to a triangulation of the
1-stratum, and so on, noting that at each stage, the lower-dimensional (closed)
stratum is a subcomplex of the boundary of the next (closed) stratum.
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5.2 Applications to Classical Stratified Morse Theory

Suppose Z is a Whitney stratified subset of a smooth manifold M with strati-
fication S = {Si}. A stratified Morse function f : S → R is, roughly speaking,
a function that restricts to a Morse function on each stratum (see Appendix A
for the formal definition). In this section, we investigate the following obvious
question. Suppose f : Z → R is a stratified Morse function. Is there a triangu-
lation of Z and a discrete stratified Morse function on that triangulation that
“mirrors” the behavior of f? That is, can we find a discrete stratified Morse
function and a bijection between its critical cells and the critical points of the
function f?

Comparing classical (smooth) and discrete Morse theory. To answer
this question, we first need to address it in the classical nonstratified case.
This has been solved satisfactorily by Benedetti [4,5]. Suppose M is a smooth
d-manifold with boundary (possibly empty) and f : M → R is a Morse function.
Denote by ci the number of critical points of f of index i. We call the d-tuple
c = (c0, c1, . . . , cd) the Morse vector of the function f and we say that M
admits c is a Morse vector. A classical theorem of Morse asserts that the
manifold M is homotopy equivalent to a cell complex with ci cells of dimension
i.

Similarly, if K is a d-dimensional simplicial complex with a discrete Morse
function g : K → R having ci critical cells of dimension i, we call c =
(c0, c1, . . . , cd) the discrete Morse vector of the function g and say that K
admits c as a discrete Morse vector. If K is a triangulation of a manifold M
with boundary, we say the function g is boundary critical if all the cells in the
subcomplex triangulating ∂M are critical for g. Forman proved the analogue
of Morse’s theorem: the complex K has the homotopy type of a cell complex
with ci cells of dimension i. We recall Theorem 2.28 of [5] below.

Theorem 5.2 [5, Theorem 2.28] If a smooth d-manifold M (with boundary)
admits c as a Morse vector, then for any PL triangulation T of M , there exists
an integer r so that the r-th barycentric subdivision of T admits

(a) a discrete Morse function with ci critical i-faces, and
(b) a boundary-critical discrete Morse function with cd−i critical interior i-faces.

The statement (b) in Theorem 5.2 is related to duality. If f : M → R
is a Morse function on M with Morse vector c = (c0, c1, . . . , cd), then the
function −f : M → R is also a Morse function but with Morse vector c∗ =
(cd, cd−1, . . . , c0). In the discrete case, the negative of a discrete Morse function
on a complex K is not a discrete Morse function. However, in the case of a
triangulation T of a manifold, one may consider the dual block complex T ∗

with a corresponding dual function f∗, yielding an analogous result.

Discretizing a stratified Morse function. Suppose Z is a compact set
with stratification S = {Si} and that f : Z → R is a stratified Morse function.
Let d denote the dimension of the top stratum. Set di = dimSi and denote by
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ci = (ci0, . . . , c
i
di

) the Morse vector of f |Si . According to Theorem 5.1, there

is a triangulation T of Z so that each closed stratum Si is triangulated as a
subcomplex Ti. This leads to our main result in this section relating discrete
stratified Morse theory to (classical) stratified Morse theory.

Theorem 5.3 There exists an integer r such that the r-th barycentric subdivi-
sion of T admits a discrete stratified Morse function F satisfying the following:

(a) the stratification of T is given by the various Ti \ Ti−1, i = 0, . . . , d; and
(b) the restriction of F to the i-th stratum has discrete Morse vector c∗i =

(cidi , . . . , c
i
0).

Proof Keeping in mind the discussion at the end of Section 5.1, we proceed
as follows. The 0-stratum S0 is a smooth manifold. By Theorem 5.2 we may
choose r0 so that the r0-th subdivision of T0 admits a (boundary critical)
discrete Morse function with discrete Morse vector c∗0. (In this case we could
also find a discrete Morse function with vector c0 since S0 has no boundary,
but this is not true moving forward). We now proceed inductively. Suppose
the result is true for stratum i ≥ 0, and consider the r-th subdivision of T ,
where r = r0 + · · ·+ ri. This means that we have stratified Ti by the various
Ti \Ti−1 and we have a discrete stratified Morse function Fi satisfing condition
(b) above on Ti. We know that Si ⊆ Si+1; in fact, it lies inside the boundary
of Si+1. Again by Theorem 5.2, there is an integer ri+1 so that the ri+1-th
subdivision of Ti+1 has a boundary critical discrete Morse function with vector
c∗i+1. Observe that this requires subdivision of the subcomplex Ti, but by
Lemma 2.1, this subdivision of Ti supports a discrete Morse function with the
same Morse vector. This completes the proof. ut

6 Generating Discrete Stratified Morse Functions from Point Data

In this section, we are interested in generating discrete stratified Morse functions
from point cloud data – a natural question relevant to data analysis. Consider
the following scenario. Suppose K is a simplicial complex and that f is a
function defined on the 0-skeleton K0 of K. Such functions arise naturally in
data analysis where one has a sample of function values on a space. Algorithms
exist to build discrete Morse functions on K extending f (see, for example,
[25]). However, existing algorithms are oblivious of additional structure in K.
What if K arises from a triangulated Whitney stratified space? More generally,
what if we are given a stratification of K and we want to extend f to a function
on K that respects the stratification? In our framework, we may take this
input and generate a discrete stratified Morse function which will not be a
global discrete Morse function in general, but which will allow us to preserve
interesting information about the underlying complex.

Formally speaking, given a simplicial complex K equipped with an
injective function on its vertices f : K0 → R, can we extend f to a
discrete stratified Morse function f̃ on K?
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An algorithm to extend f on K0 to a discrete Morse function f on K was
presented in [25]. In this section, we extend the work of King et al. [25] to the
setting of discrete stratified Morse theory. Let us first review the algorithm
of [25]. Since the function f is injective, we may order the vertices. We begin
with the vertex with smallest function value and proceed as follows. Given a
vertex v, consider the lower link Kv of v. If Kv is empty then we know that
v is a local minimum and so we make v critical. Otherwise, we restrict f to
Kv and iteratively run the algorithm on Kv. During this iteration we take the
extra step of canceling all possible gradient paths; that is, if there is a unique
gradient path between two critical cells we reverse it to eliminate those critical
cells. We then find the critical vertex w in Kv with smallest function value and
pair v with the edge [v, w] (this makes sense as it should be the steepest edge
away from v). For each regular pair σ < τ in Kv we then pair v ∗ σ with v ∗ τ ,
and for each critical cell α 6= w in Kv we make v ∗ α critical. The resulting
discrete vector field has no directed loops and is therefore a discrete gradient.

To bring this into the stratified setting, we begin by assuming that we
already have a stratification S = {Si} of the complex K; let s : K → S be the
associated assignment map. Extend the partial order on S to a linear order if
necessary and write the strata as S0 < S1 < · · · < Sn. Given the function f on
K0, consider the function maxf on K defined by setting maxf(σ) = maxv∈σ f(v).
We then proceed as follows.

1. The stratum S0, being minimal in the order, is a subcomplex of K by
Lemma 3.1. Use the algorithm of [25] to generate a discrete Morse function
f0 on S0 extending the restriction of f to the vertices of S0. We may choose
such an extension to be arbitrarily close to the function maxf ([25], Theorem
3.4).

2. Assume inductively that we have defined an extension fi on Si, i ≥ 0, that
is a discrete stratified Morse function on Si. The algorithm of [25] works
on Si+1 \ Si to generate a discrete Morse function on this space, with the
following modification. Simplices adjacent to the boundary of Si+1 may
not be considered by the algorithm if the lower link of a vertex is empty.
We therefore declare that all simplices that do not get considered remain
unpaired (critical).

3. In the end we obtain a discrete stratified Morse function f̃ : K → R
extending f .

Remark 6.1 This algorithm potentially leaves many simplices σ having a face
τ < σ with s(σ) 6= s(τ) critical. That is, the simplices in each stratum having
a face in the stratum’s frontier could be left unpaired by the algorithm. To
address this, we could implement a greedy pairing among such simplices in
each stratum, pairing as many as possible until the creation of a cycle is forced.
There may be other approaches to decreasing the number of such critical
simplices.

It is not clear that we can choose f̃ to be arbitrarily close to maxf on
all of K. Indeed, if the values of f on lower strata are much larger than on
higher strata it may not be possible to find such an extension in the inductive
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step. Moreover, in the inductive step, it could happen that a vertex in Si+1

has an empty lower link, either because all its neighbors lie in Si+1 and have
higher values or because some of its neighbors lie in a lower stratum and are
therefore not considered by the algorithm of [25]. This will force the vertex to
be critical and in the latter case the adjacent simplices will be made critical as
well, therefore making it impossible to keep associated function values close to
the function maxf.

We do have the following curious result, however.

Theorem 6.1 We may choose an extension f̃ : K → R of f that is a discrete
Morse function on all of K.

Proof The algorithm of [25] actually generates a discrete gradient vector field
from the function f : K0 → R. There is then a great deal of flexibility in
choosing an extension f̃ . Observe the following: in the inductive step we
actually first generate a discrete gradient on Si+1 \ Si which happens to leave
some cells on the boundary critical (i.e., some simplices having a face in Si
remain unpaired). We know that the union of these gradients is a discrete
gradient on all of K (Theorem 3.1) and we may then choose a discrete Morse
function f̃ extending f : K0 → R compatible with this gradient. ut

Now, if we are not given a stratification of K, there are several ways we could
proceed. We can choose some extension of f to K, such as the function maxf
or the piecewise linear extension of f (take the average value of the vertices
of a simplex). Employing the algorithm of Section 3.5 yields a stratification
on which the extension is a discrete stratified Morse function. We could stop
there, or we could discard the chosen extension and implement the algorithm
above. Another approach is to use the algorithm of [33] to produce the coarsest
stratification of K into cohomology manifolds, or the approach of [6] to obtain
a stratification of K based on homology, and then proceed using the algorithm
above. It is not clear which method is preferable; this will be the subject of
future research.

7 Discussions and Future Work

We end our paper by providing some food for thought. All of this is the focus
of current research and the results will be presented elsewhere.

Topology of sublevel sets with constraints on the function. While we
have laid the foundations for the study of a discrete version of stratified Morse
theory and provided some examples and basic results, much work remains to be
done. As mentioned above, our definition of a discrete stratified Morse function
is too loose to allow for analogues of the classical sublevel set theorems in the
smooth case. As Theorem 3.2 makes clear, we can have such functions that
separate the strata and so there need not be a relation between the values of a
discrete stratified Morse function in one stratum and the values in an adjacent
one. In essence, there is no semblance of continuity in our most general setting.
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If we wish to obtain results concerning sublevel sets, we will be forced to
impose additional conditions on either our stratifications or our functions (or
both). The fact that we are working with simplicial complexes helps out a bit.
Indeed, in this setting, we are aided by the fact that we can talk about the open
star St (σ) and link Lk (σ) of a simplex σ; these are the simplicial analogues
of neighborhood and boundary of a neighborhood, respectively. In turn, if we
have a function f : K → R we then have the notion of the lower link Lk−(σ)
of a simplex. It consists of those simplices α in Lk (σ) with f(α) < f(σ). The
classical sublevel set theorems are often described in terms of these objects. In
particular, in the case of stratified Morse theory, the normal Morse data has
the homotopy type of the cone on Lk−(σ).

So, to prove analogues of these theorems in our context we need to have
some control over the behavior of our function f : K → R around a local
critical simplex. To this end, the following condition seems necessary.

Separation. If σ is a critical cell then the closed star St(σ) contains no other
critical cells.

This is analogous to the notion that critical points of a (stratified) Morse
function are separated. We also want some form of the following.

Continuity. Denote by s(σ) the stratum containing the critical cell σ and by
Sts(σ)(σ) the closed star of σ inside the stratum s(σ). Then in a component X

of St(σ)− Sts(σ)(σ) if α ∈ X we have f(α) > f(σ) or f(α) < f(σ) depending
on whether X intersects the upper link or lower link of σ, respectively.

With these conditions on a discrete stratified Morse function in place, we
are optimistic that we can prove sublevel set theorems. There is also the matter
of trying to understand the discrete analogue of the normal Morse data (see
Appendix A). Since we are working with arbitrary simplicial complexes, it is
not at all clear what the proper notion of “normal slice” is, and so we must
seek alternative formulations (see Theorem A.5). This is work in progress that
will be presented elsewhere. A related notion that also needs further study is
that of the ordinary discrete Morse theory on open simplicial complexes. Note
that a stratum is a union of open simplices, and some of the boundary faces
of a given simplex may lie in a different stratum. The restriction of a discrete
stratified Morse function to such a stratum is a discrete Morse function (on
that stratum), but we still need to prove analogues of Forman’s theorems in
this context. If a critical cell lies away from the frontier of such a stratum, then
Forman’s theorems still apply, but what if a critical cell has one of its faces in
a different stratum? What is the proper statement about how the homotopy
type of the space changes as we pass the critical value? As these questions
appear to be rather subtle, we will defer them for now.

One other issue to explore, as suggested by a referee, is whether we should
develop a gradient-based version of discrete stratified Morse theory. That is,
by analogy with the classical “smooth” setting we defined a notion of discrete
stratified Morse function, but perhaps we could begin by setting up the notion
of a discrete stratified gradient. Such a theory could perhaps help us identify
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the proper analogue of the normal Morse data in this arena. It seems that we
would need to allow flows to bifurcate in some way, and then pair a p-simplex
with multiple (p+ 1)-simplices, treating the whole collection as some sort of
critical object. This may be related to work of Batko et al. [2] on discrete
dynamical systems.

Implementations. In Section 3.5, we give an algorithm that constructs a
discrete stratified Morse function on any finite simplicial complex equipped
with an arbitrary real-valued function. We recently released an open-source
visualization tool that implements this algorithm for 2-dimensional simplicial
complexes embedded in the plane. The tool provides an interactive demo for
exploring the algorithmic process and for performing homotopy-preserving
simplification of the resulting stratified complex [37]. In fact, many examples
presented in this paper can be recreated using the tool. Implementing this
algorithm in higher dimension and the algorithm in Section 6 is left for future
work.

Filtration-preserving reductions of complexes in persistent homol-
ogy and parallel computation. As discrete Morse theory is useful for pro-
viding a filtration-preserving reduction of complexes in the computation of both
persistent homology [9,31,36] and multi-parameter persistent homology [1],
we hope that discrete stratified Morse theory could offer a new perspective on
these computations. First, given any real-valued function defined on a simplicial
complex, f : K → R, our algorithm generates a stratification of K such that the
restriction of f to each stratum is a discrete Morse function. Applying Morse
pairing to each stratum reduces K to a smaller complex of the same homotopy
type. Second, if such a reduction can be performed in a filtration-preserving
way with respect to each stratum, it would lead to an alternative computation
of persistent homology in the setting where the function is not required to be
Morse. Finally, since discrete Morse theory can be applied independently to
each stratum of K, we can design a parallel algorithm that computes persis-
tent homology pairings by strata and uses the stratification, which captures
relations among strata pieces, to combine the results. Such reductions may not
be asymptotically faster in comparison to existing approaches; nevertheless, it
is a direction worth investigation.

Applications in imaging and visualization. Discrete Morse theory can
be used to construct discrete Morse complexes in imaging (e.g. [8,36]), as
well as Morse-Smale complexes (MSCs) [11,12] in visualization (e.g. [19,21]).
In addition, it plays an essential role in the visualization of scalar fields and
vector fields (e.g. [34,35]). Since discrete stratified Morse theory leads naturally
to stratification-induced domain partitioning where discrete Morse theory
becomes applicable, we envision our theory to be applicable for the analysis
and visualization of large complex data.

Consider MSCs as an example. They are effective for identifying, ordering,
and selectively simplifying features of data across a wide range of applications
such as combustion [20] and battery design [22,23]. A MSC [12] describes
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the topology of a function based on its induced gradient flow by clustering
the points in the domain into regions of monotone gradient flows, where each
region is associated with a pair defined by a minimum (source) and a maximum
(sink) of the function. Using discrete Morse theory, the complex is given by a
combinatorial gradient field where simplification is done implicitly by changing
the flow in the field [19]. Inspired by previous work [7] that approximates a
MSC from point cloud data, we may consider the problem of defining and
visualizing a generalized MSC derived from a discrete stratified Morse function,
referred to as a generalized MSC.

A generalized MSC satisfies the Morse-Smale condition only locally, in
spirit similar to a discrete stratified Morse function, which satisfies the Morse
conditions locally within each stratum. Intuitively, suppose we are given an
arbitrary function f on a simplical complex K, then we can generate a discrete
stratified Morse function on K with a stratification s such that the restriction
of f each stratum is Morse. Assuming in addition f that is also Morse-Smale
when restricted to each strata piece, this means that we could compute a MSC
for each strata and glue the resulting complexes together to form a generalized
MSC. Such a complex will enjoy some key properties: they are easy to implement
(and may handle high-dimensional data) by following the standard algorithms
in computing MSC for each strata piece; they give simple interpretations of data
associated with arbitrary functions (provided with a reasonable stratification);
they expand the applicability of MSCs in visualization without requiring the
functions on the point cloud data to be Morse; and they also lead to implicit,
local simplification schemes that change the flow in a combinatorial field.

There is some connection between the above setup and previous work [21,
36]. To compute the Morse complex of a 2D or 3D grayscale digital image,
Robins et al. [36] proposed an algorithm that decomposes a multidimensional
image into (cubical) lower-stars by grayscale value, computes the discrete Morse
matching separately and merges the results. The Morse matching is obtained
by performing simple homotopy expansions from one subcomplex to the next,
introducing critical cells only when such an expansion cannot be found. The
resulting vector field is optimal in the sense that the number of critical cells
is minimal. In contrast to our algorithm, the algorithm of [36] partitions the
domain into regions (Morse cells) with uniform flow behaviors (points belong
to the same partition when their gradient flows terminate at the same local
maxima), while we partition the domain in a way that respect the underlying
stratification. A similar algorithm was used by Gyulassy et al. [21] to compute
MSC in parallel. The algorithm [21] relies on a divide-and-conquer approach
that divides the dataset into parcels where the discrete gradient and MSC
are computed locally on the boundary and in the interior of each parcel. In
particular, “the boundary flow is fixed such that any flow passing through the
boundary must pass through critical points restricted to the boundary” [21].
When two parcels are glued back together, the gradient flow on the boundary
of parcels and the MSC on the new interior need to be updated to maintain
consistency [21]. Furthermore, certain artifacts that have resulted from merging
are removed by simplifying the ε-persistence pairs of the MSC. In comparison,
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the strata pieces from our framework can be considered as special types of
parcels in the setting of [21]. Such parcels have potential advantages in the
sense that the gradient flows on their boundaries remain consistent (and do not
need to be updated) when the parcels are merged together and no artifacts are
generated during the merging process. From an implementational perspective,
these parcels do not necessarily induce more scalable implementations for
computing MSC; however they do give rise to a different partition of the
domain that respects its existing stratified structure.
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A Preliminaries on classical and stratified Morse theory

For completeness, we include here a review of the basics of (stratified) Morse theory. Given a
topological space X, studying the relation between the critical points of a Morse function (or
a stratified Morse function) on X and the topology of X requires more care in the smooth
setting in comparison with the discrete setting. Most of our review originates from the
seminal work of Goresky and MacPherson [18].

A.1 Classical Morse theory

Let X be a compact, differentiable d-manifold and f : X → R a smooth real-valued function
on X. For a given value a ∈ R, let Xa = f−1(−∞, a] = {x ∈ X | f(x) ≤ a} denote the
sublevel set. Morse theory studies the topological changes in Xa as a varies.

Morse functions. A point x ∈ X is critical if the derivative at x equals zero. The value of
f at a critical point is a critical value. All other points are regular points and all other values
are regular values of f . A critical point x is non-degenerate if the Hessian, the matrix of
second partial derivatives at the point, is invertible. The Morse index of the non-degenerate
critical point x is the number of negative eigenvalues in the Hessian matrix, denoted as λ(x).

Definition A.1 f : X → R is a Morse function if all critical points are non-degenerate and
its values at the critical points are distinct.

Results. We now review two fundamental results of classical Morse theory (CMT).

Theorem A.1 (CMT Theorem A) ([18], p. 4; [10], p. 129) Let f : X → R be a
differentiable function on a compact smooth manifold X. Let a < b be real numbers such that
f−1[a, b] is compact and contains no critical points of f . Then Xa is diffeomorphic to Xb.

On the other hand, let f be a Morse function on X. We consider two regular values
a < b such that f−1[a, b] is compact but contains one critical point u of f , with index λ.
Then Xb has the homotopy type of Xa with a λ-cell (or λ-handle, the smooth analogue of a
λ-cell) attached along its boundary ([18], page 5; [10], page 129). We define Morse data for
f at a critical point u in X to be a pair of topological spaces (A,B) where B ⊂ A with the
property that as a real value c increases from a to b (by crossing the critical value f(u)), the
change in Xc can be described by gluing in A along B [18] (page 4). Morse data measures the
topological change in Xc as c crosses critical value f(u). We have the second fundamental
result of Morse theory,

Theorem A.2 (CMT Theorem B) ([18], p. 5; [29], p. 77) Let f be a Morse function
on X. Consider two regular values a < b where f−1[a, b] is compact and contains one
critical point u of f , with index λ. Then Xb is diffeomorphic to the space Xa ∪B A, where
(A,B) = (Dλ ×Dd−λ, (∂Dλ)×Dd−λ) is the Morse data, d is the dimension of X, λ is the
Morse index of u, Dk denotes the closed k-dimensional disk, and ∂Dk is its boundary.

A.2 Stratified Morse Theory

Morse theory can be generalized to certain singular spaces, in particular to Whitney stratified
spaces [18,30].

Stratified Morse function. Let X be a compact d-dimensional Whitney stratified space
embedded in some smooth manifold M. A function on X is smooth if it is the restriction to
X of a smooth function on M. Let f̄ : M→ R be a smooth function. The restriction f of f̄
to X is critical at a point x ∈ X iff it is critical when restricted to the particular manifold
piece which contains x [3]. A critical value of f is its value at a critical point.
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Definition A.2 f is a stratified Morse function if ([3], [18] page 13):

1. All critical values of f are distinct.
2. At each critical point u of f , the restriction of f to the stratum S containing u is

non-degenerate.
3. The differential of f at a critical point u ∈ S does not annihilate (destroy) any limit of

tangent spaces to any stratum S′ other than the stratum S containing u.

Condition 1 and 2 imply that f is a Morse function when restricted to each stratum in the
classical sense. Condition 2 is a non-degeneracy requirement in the tangential directions to
S. Condition 3 is a non-degeneracy requirement in the directions normal to S [18] (page 13).

Results. Now we state the two fundamental results of stratified Morse theory.

Theorem A.3 (SMT Theorem A) ([18], p. 6) Let X be a Whitney stratified space and
f : X → R a stratified Morse function. Suppose the interval [a, b] contains no critical values
of f . Then Xa is diffeomorphic to Xb.

Theorem A.4 (SMT Theorem B) ([18], p. 8 and p. 64) Let f be a stratified Morse
function on a compact Whitney stratified space X. Consider two regular values a < b such
that f−1[a, b] is compact but contains one critical point u of f . Then Xb is diffeomorphic to
the space Xa ∪B A, where the Morse data (A,B) is the product of the normal Morse data
at u and the tangential Morse data at u.

To define tangential and normal Morse data, we have the following setup. Let X be
a Whitney stratified subset of some smooth manifold M. Let f : X → R be a stratified
Morse function with a critical point u. Let S denote the stratum of X which contains the
critical point u. Let N be a normal slice at u, that is, N = X ∩N ′ ∩ BM

δ (u), where N ′ is
a sub-manifold of M which is traverse to each stratum of X, intersects the stratum S in a
single point u, and satisfies dimS + dimN ′ = dimM. BM

δ (u) is a closed ball of radius δ in
M based on a Riemannian metric on M. By Whitney’s condition, if δ is sufficiently small
then ∂BM

δ (u) will be transverse to each stratum of X, and to each stratum in X ∩N ′, fix
such a δ > 0 [18] (page 40).

The tangential Morse data for f at u is the pair

(P,Q) = (Dλ ×Ds−λ, (∂Dλ)×Ds−λ),

where λ is the (classical) Morse index of f restricted to S, f |S, at u, and s is the dimensional
of stratum S [18] (page 65).

The normal Morse data is the pair

(J,K) = (N ∩ f−1[v − ε, v + ε], N ∩ f−1(v − ε)),

where f(u) = v and ε > 0 is chosen such that f |N has no critical values other than v in the
interval [v − ε, v + ε] [18] (page 65).

The Morse data is the topological product of the tangential and the normal Morse data,
where the product of pairs is defined as (A,B) = (P,Q)× (J,K) = (P × J, P ×K ∪Q× J).

Theorem A.4 corresponds to the Main theorem of [18] (page 65), which has the following
homotopy consequences. Suppose X is a Whitney stratified space, f : X → R is a proper
stratified Morse function, and [a, b] contains no critical values except for a single isolated
critical value v ∈ (a, b) which corresponds to a critic point p in some stratum S of X. λ is
the Morse index of f |S at the point p.

Theorem A.5 (SMT Homotopy Consequences) ([18] (Section 3.12, p. 68) The space
Xb has the homotopy type of a space which is obtained from Xa by attaching the pair

(Dλ, ∂Dλ)× (cone(l−), l−).

Here, l− is the lower half link of X where l− = N ∩ f−1(v − ε) ∩BM
δ .


