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Fig. 1. With VERB, users can explore the high-dimensional word representations interactively before, during, and after applying bias
mitigation techniques. (A) Embedding View highlights a subset of word embeddings using dimensionality reduction and visualizes the
step-by-step transformations of their embeddings across various debiasing techniques. (B) Control Panel enables users to configure
each debiasing technique and provides controls to iterate through each step of the transformation. (C) Explanation Panel gives a
step-by-step description of the transformation. In this example, in the Embedding View, word representations are reoriented with the
concept direction (Gender) along the x-axis. They are then transformed by a debiasing technique called the Linear Projection that
removes this concept. These transformed representations are visualized again in (D) after a new dimensionality reduction, where there
is no longer a well-defined gender concept, and hence the stereotypical associations are mitigated.

Abstract— Word vector embeddings have been shown to contain and amplify biases in data they are extracted from. Consequently,
many techniques have been proposed to identify, mitigate, and attenuate these biases in word representations. In this paper, we utilize
interactive visualization to increase the interpretability and accessibility of a collection of state-of-the-art debiasing techniques. To aid
this, we present Visualization of Embedding Representations for deBiasing system (“VERB”), an open-source web-based visualization
tool that helps the users gain a technical understanding and visual intuition of the inner workings of debiasing techniques, with a focus
on their geometric properties. In particular, VERB offers easy-to-follow use cases in exploring the effects of these debiasing techniques
on the geometry of high-dimensional word vectors. To help understand how various debiasing techniques change the underlying
geometry, VERB decomposes each technique into interpretable sequences of primitive transformations and highlights their effect
on the word vectors using dimensionality reduction and interactive visual exploration. VERB is designed to target natural language
processing (NLP) practitioners who are designing decision-making systems on top of word embeddings, and also researchers working
with fairness and ethics of machine learning systems in NLP. It can also serve as a visual medium for education, which helps an NLP
novice to understand and mitigate biases in word embeddings.

Index Terms—Interactive data visualization, natural language processing, debiasing, word vectors, interpretable machine learning

1 INTRODUCTION

Complicated and massive data sets are becoming more and more com-
monly represented as vectorized embeddings. They are part of a de facto
model for words in word vector embeddings like Word2Vec [42] and
GloVe [44], and are becoming commonplace for other data types like

• Archit Rathore, Jeff M. Phillips, Vivek Srikumar, and Bei Wang are with the
University of Utah. E-mails: archit.rathore@utah.edu, jeffp@cs.utah.edu,
svivek@cs.utah.edu, beiwang@sci.utah.edu.

• Sunipa Dev is with the University of California, Los Angeles. E-mail:
sunipa@cs.ucla.edu.

• Yan Zheng, Michael Yeh, Junpeng Wang, and Wei Zhang are with VISA
research. E-mails: {yazheng, miyeh, junpenwa, wzhan}@visa.com.

graphs, spatial regions, and merchants. These vectorized embeddings
(referred to as representations) directly capture similarity between ob-
jects. Additional structures arise implicitly from these representations,
such as linear subspaces that capture concepts (e.g., gender, occupation,
and nationality) among word vectors. Moreover, these representations
permit easy integration into machine learning tasks.

A downside of these representations is that their high-dimensional
nature obscures easy interpretation – at least not without much ad-
ditional effort. Although these representations do not have explicit
agendas, they can nevertheless encode biases through data imbalance
and other more hidden factors. We must emphasize that bias is a com-
plex concept whose interpretation is being studied. In this paper, it
refers to the associations of a stereotypical nature that are expressed
in word representations. For fair machine learning (ML), it is often
necessary to modify these vectorized representations to mitigate such
biases. This notably includes attenuating bias [5,14], but could be other
forms of normalization or alignment tasks.



Visualization tools for these high-dimensional vector representa-
tions exist, and are overviewed in Sect. 2. However, these previous
approaches are all passive, and only allow a user to inspect such data,
but not modify it. In contrast, the tool we present – VERB (Visualization
of Embedding Representations for deBiasing) – is active, and it allows
a user to modify the embedding while visually exploring it. That is,
when you are using VERB, you are doing something.

In particular, our new tool VERB allows for an easy understanding
and use of methods to debias word vector embeddings. This allows
for easy interpretation and comparison of the various methods now
available. For instance, a user can easily observe the difference between
the original Hard Debiasing approach [5] or the new and simpler
Linear Projection method [14]. Another often overlooked aspect is
the comparison of how concept subspaces are found: there are several
methods based on PCA, or derived from clustering or classification. In
fact, by inspecting the surprising differences between these approaches,
we devise a new interactive approach towards subspace identification
that outperforms all of these prior methods. VERB allows one to insert
a human in the loop of this process to dynamically improve the result,
and verify it is doing what is intended.

Finally, we note that VERB is applicable beyond word vector em-
beddings. Any vectorized or embedded representations can easily be
loaded, inspected, actively modified, and outputted. We demonstrate
this with a new application of analyzing merchant association from a
global payment company. This provides new insights which are nebu-
lous or hidden before the use of VERB. VERB is open source, available
at https://github.com/tdavislab/verb.

Trigger Warning: This paper contains examples of biases and
stereotypes seen in society and in language representations. These
examples may be potentially triggering and offensive. The inclu-
sion of these examples are meant to bring light to and mitigate
these biases, and it is not an endorsement.

2 RELATED WORK

Visual analytics for machine learning models. With the recent suc-
cess of machine learning (ML), a growing number of visual analytics
works have also been proposed for the interpretation of ML mod-
els [4, 9, 28, 33, 45, 50, 62, 65]. Based on the analysis focus, these
works can roughly be categorized into three groups. The first group
concentrates on the input data of ML models to better understand the
data distribution [8, 63] or to better select the high-dimensional data
features [25, 39]. The second group focuses on the intermediate data
representations from ML models to interpret how the data has been
transformed internally. For example, most of the white-box interpre-
tation solutions for deep learning models [46, 47, 54, 58] visualize the
activation of different neurons from hidden layers, to reveal what have
been captured/memorized by deep neural networks. The last group
targets the output from ML models to evaluate and compare different
models. For example, ModelTracker [3] and Squares [49] use glyphs to
encode the prediction probability of ML models and empower ML de-
signers with instance-level data inspections and analysis. MLCube [24]
allows users to compare ML models’ performances (accuracies) over
subsets defined using feature conditions. Facets [1] provides visual-
izations that aid in understanding ML datasets via individual feature
exploration and subdivision of large data sets. To better disclose ML
models’ performance evolution, multiple visual designs for temporal
confusion matrix have also been proposed, e.g. [23, 35].

Our work fits well with this (third) categorization and we focus
on analyzing and comparing the output from multiple ML models, in
particular, debiasing techniques for word representations.

Visualization for NLP. Visualization has been employed for various
NLP tasks such as topic modeling and sentiment analysis. For topic
modeling, Chuang et al. [10] introduced Termite to visually assess topic
model quality. Smith et al. [53] presented Hiérarchie that interactively
visualizes large, hierarchical topic models. Liu et al. [36] created visual
exploration to help users understand hierarchical topic evolution in text
streams. For sentiment analysis, Smith et al. [52] further presented a
so-called relationship enriched visualization that helps users explore

topic models via corrections among words and topics. Wang et al. [56]
introduced SentiView to analyze and visualize public sentiments of
social media texts and their evolution. Liu et al. [34] used optimization
to design StoryFlow, a storyline visualization system that illustrates
the dynamic relations among entities in a given story. Liu et al. [31]
introduced NLIZE, a visual analytic system that enables perturbation-
driven exploration [30] of a natural language inference model, where a
user can perturb a model’s input, attention, and prediction.

Instead of focusing on abstract concepts such as topics and sen-
timents, our work aims to understand fine-level details presented in
word embeddings, in particular, how the word embeddings are changed
geometrically by various debiasing techniques. Word embeddings are
considered as a type of word representations that allows words with
similar meaning to have similar representations. Specifically, a word
vector is a high-dimensional real-valued vector where semantically sim-
ilar words have similar vectors. Several works in the literature are most
relevant to ours in terms of visually exploring the space of word embed-
dings, see [21] for a survey of using visualization for interpreting word
embeddings. Liu et al. [29] studied the pair-wise analogy relationships
of word embeddings and proposed a new projection method to better
preserve the analogy relationships in the projection space. Rathore
et al. [46] visualized and investigated a graph-based summary of a
collection of word embeddings obtained from the BERT (Bidirectional
Encoder Representations from Transformers) family of models [15].
Our tool is similar to [29], in that it enables the interrogation and in-
terpretation via projected views of embeddings, but goes beyond in
guiding the modification of the embeddings.
Visualizing embeddings or latent spaces. Word embeddings are a
type of point cloud data where generic high-dimensional visualization
techniques may be applicable (see [32] for a survey). Since word
embeddings are typically obtained via neural networks, techniques
developed for visualizing latent spaces or hidden representations of
neural networks are also relevant.

To visualize high-dimensional embeddings, dimensionality reduc-
tion algorithms (e.g., PCA, t-SNE [55], and UMAP [40, 41]) are com-
monly used in their analysis and visualization. Openly available toolkits
such as scikit-learn [43] implements a number of such algorithms. Two
analytical tasks are often the focus. The first one is to interpret the
semantics encoded in embeddings (e.g. [29]). For example, Smilkov
et al. [51] developed Embedding Projector as part of the TensorFlow
framework [2], enabling users to conveniently interact with embedding
data and their local neighbors to quantitatively evaluate the embed-
dings. Rauber et al. [47] employed t-SNE projections to visualize the
hidden representations of deep neural networks across neural layers, to
reveal how data instances of the same class progressively form clusters.
Multiple visualization efforts aimed to disentangle the latent space of
deep generative models by relating the latent dimensions with human-
understandable visual concepts [37, 38, 59]. The second analytical
task is to compare embeddings generated from different algorithms.
For example, embeddingVis [27] focuses on graph embeddings and
uses multiple juxtaposed t-SNE views to compare different embedding
methods. The same data instances are linked across all t-SNE views
for explicit tracking. Heimerl et al. [22] proposed a set of metrics
to measure the relationships (embedding correspondences) between
two embeddings in a coordinated multi-view system called embComp.
Ghosh et al. [18] introduced a toolkit – VisExPreS – to disclose and
compare the preserved global and local structures from the embeddings
for novice data analysts.

Our work covers both analytical tasks. For semantic interpreta-
tion, we focus on the biases encoded in word embeddings and provide
interactive applications that remove the biases through subspace trans-
formations. For embedding comparison, we allow any embedding to be
analyzed before and after dynamic modification, and to compare how
different debiasing techniques affect its underlying geometry.

Our work also intersects with visualization for ML fairness (e.g., [6,
26]). It is specifically focusing on debias mitigation techniques in word
embeddings. The What-If tool [20] combines data exploration with
counterfactual (what if) explanations [26] and fairness modifications.
FairVis [6] is used to audit pre-trained models for biases against known
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vulnerable groups in the context of a recidivism prediction system. The
DebIE [17] tool also illustrates bias in word representations but it limits
itself to backend calculations of existing bias evaluations. A single
interpretation of bias direction remains unknown, as well as extensions
of debiasing techniques to contextual embeddings.

VERB integrates different aspects of debiasing in word representa-
tions with several debiasing techniques, encompassing bias subspace
determination, generalizable [13] bias mitigation strategies, and bias
measurement. It helps highlight and compare the different combina-
tions of subspace identification and bias mitigation strategies that work
best for a given embedding and a particular type of bias. VERB can
also be utilized by users without previous knowledge or intuitions about
potential biases to find issues within an incoming prediction model.

3 DEBIASING EMBEDDED REPRESENTATIONS

In this section, we review debiasing methods for embedded represen-
tations (e.g., [42]), which are becoming essential elements of many
pipelines to process and understand texts and other types of complex
data (e.g., merchant embeddings in Sect. 5). The Euclidean nature of
embedded representations makes them easy to integrate into existing
analysis pipelines. Furthermore, the similarity between the representa-
tions is encoded in a way that respects their complex interactions and
often takes the nuance out of modeling and formalizing those notions.

However, embedded representations also come with challenges.
Their distributed nature means that the original features in texts are no
longer bound to specific dimensions. Therefore their easy-to-interpret
properties are now obfuscated. A more troubling aspect is that these
representations encode and potentially hide biases. Caliskan et al. [7] fa-
mously revealed that these representations encode well-trodden stereo-
types, where male identifiers are more associated with careers and
female identifiers are more associated with families. In social studies of
texts, as illustrated in Fig. 1, adjectives such as “rational” and “depend-
able” are often used to describe male leaders while “temperamental”
and “excitable” are often used to describe female leaders. Such associ-
ations can be potentially harmful if these representations are used in
tasks such as resume sorting, where potentially female candidates could
be unwittingly given lower rankings because of this hidden gender bias.

As a result, over the last five years, there has been a rapid develop-
ment of many debiasing mechanisms to pinpoint, quantify, and mitigate
the biases within these representations. While some have focused on
correcting for these biases outside of the embeddings or in spite of
them [67], we focus on approaches that directly analyze and mitigate
issues in these embedded representations. First, these representations
are widespread and so the techniques are highly transferable. Second,
the techniques are simple and efficient, and can be applied dynamically
depending on the tasks, including for contextual embeddings [11].

In developing VERB, we identify that these mechanisms to analyze
and mitigate biases in embedded representations can be decoupled into
a two-step process. The first is to identify a concept subspace among
the vectorized representations that capture the direction of bias (e.g.,
the concept of gender or nationality). The second is to use this subspace
to transform the representations in a simple and controlled way.

These debiasing approaches may require the knowledge of one or
two concept subspaces, or additional word lists for evaluation. For the
most part, their comparative advantages, disadvantages, and relations
are not often discussed, leading to rediscoveries of ideas and potential
confusions among the users. Using VERB as an educational medium,
we first review concept subspace identification methods, and then de-
scribe how these subspaces are used in removing or disassociating these
concepts from the embedded representations.

3.1 Methods of Subspace Identification

In embedded representations, the specific dimensions occupied by
features are unknown. In this section, we discuss four methods in
the literature used to determine the subspace that is the span of a
specific concept (e.g., gender). Some of these methods (PCA and
PCA-paired) naturally generalize to identify multiple directions, but
it is quite rare to use more than one direction to represent a concept.

Fig. 2. Concrete examples of subspace identification methods using
VERB. From left to right: PCA, paired-PCA, 2-means, and classification
normal. (B-D): green points represent male gendered words, orange
points represent female gendered words, and the black line segment that
starts from the origin represents the gender subspace direction.

To keep subspace identication modular and simple, VERB currently
identifies one-dimensional subspaces, as described below.
PCA. The most general and simple approach to determine a subspace
is referred to as the PCA method. It requires one set of word vectors,
referred to as the seed words, of which it computes the top princi-
pal component – which is the best one-dimensional subspace that
minimizes the sum of squared distances from all word vectors. This
resulting unit vector represents the subspace direction. Using VERB,
we illustrate the PCA method in Fig. 2(A) using a set of gendered seed
words:“man, woman, brother, sister, he, she”. The arrow above the
black line segment points towards the direction of the gender subspace
obtained via PCA.
Paired-PCA. Another variant based on PCA was proposed by Boluk-
basi et al. [5]. It requires a list of paired words as the seeds, each pair
has one word vector from different groups. For example, for the gender
concept shown in Fig. 2(B), we use “man-woman, he-she, brother-
sister” as seeds for subspace identification. Paired-PCA method then
reports the concept subspace as the first principle component of the
difference vectors between each paired vectors. A subtle note: because
these vectors are the result of differences, we do not need to “center”
them (remove their mean) first as when PCA is used on word vectors.
2-Means method. The 2-means method [14], for any two sets of
words as seed sets, returns the normalized difference vector of their
respective averages. So for groups of words F = { fi} and M = {mi},
it computes f = 1

|F | ∑i fi and m = 1
|M| ∑i mi as the mean of each set re-

spectively. Then the direction is calculated as v = f−m
‖ f−m‖ . This method

has the advantage that it does not require paired words or an equal
number of words in the two seed sets. We give an example of applying
the 2-means method to two sets of seed words in Fig. 2(C), where
F = {“woman”,“sister”,“she”} and M = {“man”,“brother”,“he”}.
The computed gender direction v originates from the origin in the
visualization.
Classification normal. For two groups of seed words that can be
classified using a linear SVM, the direction perpendicular to the clas-
sification boundary represents the direction of difference between the
two sets. Again, this only requires two sets F and M, but they do
not need to be paired or of equal size. This is illustrated in Fig. 2(D),
where the dotted line represents the classification boundary between
F = {“woman”,“sister”,“she”} and M = {“man”,“brother”,“he”}.
The black segment emanating from the origin again indicates the gender
direction. Ravfogel et al. [48] used this direction iteratively to remove
bias in word vectors by projections.

3.2 Bias Mitigation Methods
There are several methods to modify the embedding structure in ways
that mitigate the encoded bias. While there are more complicated
optimization-based ones designed for specific tasks in gender bias in
text [67], we describe a subset of four debiasing methods that are quite



simple to actuate (although nuances of them may be confusing), and
rely specifically on the concept subspaces identified earlier. Again,
VERB serves as the perfect visual medium to explain these debiasing
methods. For the descriptions below, a point in the space of high-
dimensional embedded representations is denoted as x ∈ Rd (e.g. for
d = 50 or d = 300). A concept subspace is labeled v and is restricted
to be a unit vector in Rd .
Linear Projection (LP). The simplest approach [14] removes the com-
ponent of concept subspace for each data point x. This can be applied
individually to each data point x, where the component along v is 〈v,x〉v,
where 〈v,x〉 is the Euclidean dot product. The LP method then removes
the component along v for every point x ∈ Rd as x′ = x−〈v,x〉v.

Using VERB, we give a simple example, by applying two-means
and LP debiasing in mitigating the gender bias in occupational words.
The two seed sets are M={“man”, “he”} and F={“woman”, “she”}.
The evaluation set is E = {“receptionist”, “nurse”, “scientist”, “mathe-
matician”}. As illustrated in Fig. 3, VERB decomposes the LP method
into an interpretable sequence of transformations. In step 0, both seed
sets and evaluation set are viewed using a perspective from PCA, where
the gender direction is identified using two-means. In step 1, the view-
ing perspective/angle is reoriented so the gender direction is aligned
with the x-axis, where we see clearly that “receptionist” and “nurse”
are shown to be closer towards the female direction while “banker”
and “engineer” are closer towards the male direction. In step 2, for
every word in the embedding, LP removes its component along the
gender direction in Rd , where all words are shown to be aligned along
the horizontal axis. The underlying data is modified in this step. In
step 3, the transformed (debiased) points are reoriented again using
the perspective from PCA, where there is no clear gender association
among the occupational words. This is different from the original view
since the data was modified in step 2.

Fig. 3. A simple example using two-means to identify a gender subspace
and Linear Projection to mitigate the gender bias in word embeddings.

Hard Debiasing (HD). An earlier approach (the first one proposed) by
Bolukbasi et al. [5], known as Hard Debiasing, uses a similar mech-
anism, and is designed specifically for gender bias. It also requires
an additional wordlist called the equalize set, which are used to pre-
serve some of the information about that concept. We summarize this
mechanism next. The words that are used to define v are considered
definitionally gendered and not modified. The exception is another
provided set of pairs of words (e.g., “boy-girl”, “man-woman”, “dad-

mom”, “brother-sister”). These word pairs are equalized; that is, they
are first projected as in Linear Projection, but then each pair is extended
along the direction v, so the words are equally far apart as they were
before the operation. The remaining words are then projected as in
Linear Projection.

In our example with VERB, we again use M={“he, man”} and F
={“she, woman”} and two-means to define a gender direction v, Q=
{“boy-girl”,“sister-brother”} as the equalize set, and E= {“engineer”,
“lawyer”, “receptionist”, “nurse” } again as the evaluation set. This is
illustrated in Fig. 4. Step 1 is obtained after a reorientation of the gender
direction along the x-axis. Step 2 is removing the component of each
point along the gender direction with the exception of M and F (“she,
woman” and “he, man”). Step 3 tries to preserve some information
regarding gender using the equalize set E thus extending the words in
Q (“brother”, “sister”, “boy”, “girl”) along the gender direction so they
become equally far apart. Step 4 reorients the modified words using
PCA from a viewing perspective with the most variance.

Fig. 4. An example using two-means and HD to mitigate the gender bias.

Bolukasi et al. [5] described other methods, and later works by
Wang et al. [60] also provided slight variants, or rediscovered these
approaches. One concern about Hard Debiasing is that it may leave
residual bias [19]. The authors of that critique helped develop the next
approach as an alternative.
Iterative Nullspace Projection (INLP). INLP [48] starts with a pair
of large word lists (e.g., sets of male and female words). It suggests to
select the top 0.5% of the extreme words along either directions of the
he-she vector, denoted as sets M and F respectively. It then builds a
linear classifier that best separates M and F , and linearly projects all
words along the classifier normal (denoted as v1). However, a classifier
with accuracy better than random may still be built on M and F after the
projection, let v2 denote the classifier normal. INLP then applies linear
projection to all words again along v2. This continues for some large
number of iterations (their code uses 35 iterations). Afterwards, the
words which may encode bias, even by association (the sets M and F),
cannot be linearly separated with accuracy better than random chance.

An example run of INLP using VERB is shown in Fig. 5 using two
sets of definitionally gendered words M = {“man, he, him, his, guy,
boy, grandpa, uncle, brother, son, nephew, mr”} and F = {“woman, she,
her, hers, gal, girl, grandma, aunt, sister, daughter, niece”}. A perfect
separator/classifier can be found initially (shown in Step 1), and then
linear projection along the classifier normal is shown in Step 2. The
next classifier normal (shown in Step 4) is not a perfect separator. Yet



after its next application, and a PCA reorientation as shown in Step 6,
no sufficiently good classifier can be found, and the procedure stops.

Fig. 5. An example using classifier normal and INLP to mitigate the
gender bias over two rounds.

Orthogonal Subspace Correction and Rectification (OSCaR). A
critique of the above techniques, especially INLP, is that they are
destroying information that we might want to preserve. For example,
we may want to know that “grandpa” is referring to a male grandpar-
ent. The OSCaR approach [13] seeks a more controlled approach. It
requires two specific concept subspaces, for instance, one representing
gender v1 and another representing occupations v2. OSCaR does not
project out the gender subspace, but rather attempts to disassociate them
by making those subspaces orthogonal. In addition to orthogonalizing
those subspaces, which can be done by rotating v2 to v′2 so 〈v1,v′2〉= 0,
it also rotates all other data points by a lesser amount. Points close to v1
do not rotate much, while points close to v2 rotate about as much as v2.
While OSCaR does not remove any possible way to find any association
between data aligned with either of these subspaces, it does make the
concepts as a whole orthogonal. In the bias evaluation approaches
described in Sect. 3.3, OSCaR is demonstrated to reduce bias in an
amount similar to other debiasing approaches. Moreover, it retains the
information along each of the original subspaces v1 and v2.

With VERB, Fig. 6 shows the four steps of OSCaR. The first sub-
space v1 representing gender is defined with words “he”, “his”, “him”,
“she”, “her”, “hers”, “man”, and “woman.” The second subspace v2
representing occupations is defined with words “engineer”, “scientist”,
“lawyer”, “banker”, “nurse”, “homemaker”, “maid”, and “receptionist.”
In the PCA view (Step 0), one can observe that the two subspaces
are correlated, and the typical gender stereotypes of the occupation is
present in the word representation, e.g., “maid” towards the female and
“engineer” towards the male direction. The reoriented view in Step 1
aligns the Gender direction (v1) along the x-axis. It shows the span of
v1 and v2, which is the 2-dimensional subspace where OSCaR modifies
the data. It is also the subspace with the largest angle between these
two subspaces. In Step 2, the data is modified so that the gender and
occupation subspaces become orthogonal. The Evaluation set words
“grandma”, “grandpa”, and “programmer” (along with all other words),
can be seen to move along with these words. Note how “programmer”
is still near the other technical-oriented careers, and how “grandpa-
grandma” retains the inherently male-female relationship. Finally, in
Step 3, another PCA view is shown on the modified data, and now
the subspaces can be seen to retain the orthogonal nature, and the gen-

der connotation in the occupations has been rectified, so there is no
apparent stereotypical correlation.

Fig. 6. An example using PCA and OSCaR to rectify gender bias in
relation to occupations.

3.3 Bias Evaluation Methods
There are several intrinsic [7, 14] and extrinsic [12, 67] measures to
determine how much bias is contained by word embeddings. When bias
is removed [5, 12, 13], these measures help determine how effective the
bias removal has been. In general, it may not be possible to completely
remove bias in these measures due to the nature of the measurement
or its influence from other data and training choices. We next describe
some common and representative bias measurement methods.

3.3.1 WEAT
The Word Embedding Association Test (WEAT) [7] is an analogue to
Implicit Association Test (IAT) from psychology. It checks for human
like bias associated with words in word embeddings. For example,
it found career oriented words (e.g., “executive”, “career”) are more
associated with statistically male names (e.g., “Tom”, “Peter”) and male
gendered words (e.g., “man”, “boy”); while family oriented words (e.g.,
“family”, “home”) are more associated with statistically female names
(e.g., “Mary”, “Kate”) and female gendered words (e.g., “women”,
“girl”).

WEAT considers four sets of words: two target word sets X and Y
(e.g., representing male and female genders) and two sets of attribute
words A and B (e.g., representing stereotypical male or female profes-
sions). First, for each target word w ∈ X ∪Y , it computes how much
the word is associated with set A, and not associated with set B as

s(w,A,B) =
1
|A| ∑a∈A

cos(a,w)− 1
|B| ∑b∈B

cos(b,w),

where cos(a,w) is the cosine similarity between vector a and w. Then
it averages this across all w ∈ X , minus the average of all w ∈ Y as

s(X ,Y,A,B) =
1
|X | ∑

x∈X
s(x,A,B)− 1

|Y | ∑y∈Y
s(y,A,B).

Finally, the WEAT test statistic is s(X ,Y,A,B) normalized by the stan-
dard deviation of s(w,A,B) for all w ∈ X ∪Y , so typical values should



not be too far from [−1,1], and a value closer to 0 indicates less implicit
(and biased) association.

As the single most common bias quantification, VERB allows users
to compute WEAT before and after debiasing. The default word sets
(which can be modified) in VERB use the following [7, 14]:

• Male words as X = {male, man, boy, brother, he, him, his, son}
• Female words as Y = {female, woman, girl, sister, she, her, hers,

daughter}
• Stereotypically male occupations A = {doctor, engineer, lawyer,

mathematician, banker}
• Stereotypically female occupations B = {homemaker, receptionist,

dancer, maid, nurse}

3.3.2 Embedding Coherence Test
The Embedding Coherence Test (ECT) [14] measures if groups of
words have stereotypical associations. Instead of evaluating the exact
word similarities (e.g., male and female words with occupation words),
it first aggregates the male and female words into their means, described
as m = 1

|X | ∑x∈X x and f = 1
|Y | ∑y∈Y y. Then it evaluates if the order of

similarity from m and from f to a different set A∪B, such as occupation
words (“doctor”, “nurse”, etc.). Then it sorts the values cos(m,w) for
each w ∈ A∪B and the values cos( f ,w). The similarity of these sorted
lists is measured with the Spearman Coefficient, which ranges between
1 (when the ordering is exactly the same, so the least bias) and -1 (where
the ordering is exactly opposite, thus the most bias). So larger values
of ECT indicates less bias.

3.3.3 NLI Based Tests
Since word representations are used downstream in different tasks
and applications in NLP, it is important to measure the effect biased
associations have on the decisions made in these tasks. An example is
natural language inference (NLI). Dev et al. [11] used NLI to provide a
clear signal on the encoded bias. The task is, given a pair of sentences
to predict if the second one is entailed, is contradicted, or is neutral
to the first sentence. The sentence pairs constructed as all neutral and
any deviation from a neutral prediction is bias. These are constructed
from simple template sentences where the verb, object, and subject
are chosen from word lists, and in total over a million sentences are
considered. For each one, the subject (e.g., an occupation like “doctor”)
is paired with another sentence where the subject is replaced by either
“man” or by “woman”. If the occupation has no gender bias, it will result
in a neutral inference prediction, but if bias is encoded, it will result
in higher probability of entailment or contradiction. The higher the
percentage of sentences predicted as neutral, the better the prediction
(i.e., the lower the amount of bias).

4 THE VERB USER INTERFACE

We present VERB, an interactive system for visualizing and interpreting
bias mitigation techniques for word representations.

With VERB, users can explore and interpret four types of debiasing
techniques through three coordinated views. The Embedding View
(Fig. 1A) highlights a subset of word vectors using dimensionality
reduction and visualizes the transformations of their embeddings across
various debiasing techniques. It decomposes a chosen technique into
a sequence of interpretable operations and visualizes their associated
transformations via a step-by-step animation. It also provides additional
capabilities to interact with individual word vectors. In particular, users
can select a word in the Embedding View and VERB will display its
nearest neighbors in the high-dimensional embedding space, before
and after debiasing. The Control Panel (Fig. 1B) enables users to con-
figure each debiasing technique by specifying the algorithm (LP, HD,
INLP, or OSCaR), subspace technique (PCA, paired-PCA, 2-means, or
classification normal), concept labels (e.g., gender, occupation), seed
sets (for defining concept directions), evaluation set, and equalize set,
etc. It also provides controls to navigate through the steps of the chosen
technique and to toggle various aspects of the visualization such as
data labels, subspace direction, and evaluation points. Users can also
choose from a list of predefined examples (detailed in Sect. 5). The

Explanation Panel (Fig. 1C) gives a step-by-step description of the
transformation. Finally, VERB enables users to download the modified
word embedding after applying a particular debiasing technique. Thus
it not only provides an educational guide for understanding a debias-
ing technique, but also allows users to apply and visually verify these
modifications before moving to downstream analysis.

In the example shown in Fig. 1, VERB reveals association in the
word embedding with the gender concept that contributes to its gender
bias. Specifically, before debiasing (Fig. 1A), along the gender direction
(a black line segment that starts from the origin), the adjectives “strong”,
“important”, “arrogant”, “rational” are more closely associated with
the male words “he” and “him”, while the words “temperamental”,
“gossip”, “excitable”, and “beautiful” are more closely associated with
the female words “she” and “her”. VERB then animates the step-by-
step transformation of the word embedding using LP for debiasing and
two-means for subspace identification. After debiasing (Fig. 1D), there
is no longer a gender direction, and the above adjectives do not provide
a clear gender bias.
Transforming embedding views. A central functionality of VERB is
that it allows users to experiment with and visualize the effects associ-
ated with a chosen debiasing mechanism. Specifically, the tool updates
the Embedding View when an algorithm modifies the underlying rep-
resentation step-by-step. As we demonstrate in Sect. 5, VERB can be
applied to not only word vector embeddings that arise from NLP, but
also other embedded representations. While the data is represented as
50- or often higher-dimensional vectors, VERB provides views of the
data objects in a 2-dimensional interface as points. While our default
embedding has 100K points (others could have much more), we do
not attempt to visualize all of these points. Instead, the Control Panel
allows users to select a representative subset (i.e., the evaluation set) to
visualize.

After choosing a debiasing mechanism and a subspace identification
technique in the Control Panel, each debiasing process always starts
with a 2-dimensional perspective, determined by the best 2-dimensional
subspace as determined by PCA on the user-provided data points. The
origin is always shown in the center of the Embedding View. Since
the data points are often interpreted as vectors, the cosine metric is the
most commonly used metric (which measures angles with respect to
the origin as a base point). This initial PCA view (marked as “step 0”
in the Embedding View) itself is not especially meaningful, but useful
as an alternative starting point, and helps highlight the meaningfulness
of the other views.

In “step 1” of the transformation, VERB changes its viewing perspec-
tive of the initial embedded view. In particular, the concept subspace
determined by v is always rotated so it is aligned with the x-axis. The
y-axis is chosen as the highest variance direction among the remaining
points (via PCA). This choice of x-axis is essential for two reasons.
First, the left-right direction provides a faithful account of how far each
representative point is along this concept subspace. Two related terms
(e.g., “temperamental”, “rational”) can be compared, and their relation
along this concept subspace (e.g., gender) is not distorted, which may
be the case if that subspace was not parallel with the viewing plane.
Second, when a projection operation (internal to three of the debiasing
mechanisms) is applied that effectively removes the component along
this concept subspace, then one can clearly see the representative data
points moving onto a lower-dimensional subspace combined into and
represented by the y-axis.

The OSCaR mechanism requires the definition of two subspaces v1
and v2. In this case, the initial embedding view is the span of these
two subspaces. In OSCaR, all of the operations happen only in this
subspace, while all components outside this 2-dimensional subspace
(e.g., coming out of, or into the screen) are not modified. As with
all techniques, this allows users to explicitly see the action happening
without any visual side-effects which obscure these operations.

For the INLP operation, which iteratively applies linear projection
after finding the new best classsifier, VERB shows each of these steps.
After each new normal direction is found for a subspace, it updates
the viewing perspective to make that subspace along the x-axis as
before, so that residual concept can be viewed, and its projection can



be dynamically visualized.
Finally, with the new (modified) embedded representations, VERB

then provides a final view of the best 2-dimensional PCA perspective
of the data. This is important to show the final and best possible view
of the representations, especially when a project mechanism is used,
and otherwise all of the data may have been compressed into a single
1-dimensional subspace (the y-axis) within that perspective.
Implementation. The front end of VERB is implemented using the
HTML/CSS/Javascript stack and D3.js. We use an automatic label
placement algorithm [57] which uses simulated annealing to mini-
mize overlaps between text labels in the Embedding View. Its back
end is developed using Python and Flask. VERB comes (by de-
fault) with a 50-dimensional GloVe embeddings of the 100K most
frequent words taken from the Wikipedia 2014 + Gigaword corpus [44].
It also provides a larger GLoVe embedding (300-dimensional with
the 100K most frequent words) from the Common Crawl corpus
(https://commoncrawl.org/).

5 USE CASES

We demonstrate the efficacy of VERB on several examples. First, we
will show how it can be used to quickly and easily identify new forms
of bias in word vector embeddings. Second, we will demonstrate the
power of VERB in teaching and contrasting methods to identify concept
subspaces and use them to attenuate bias in word vector embeddings.
Third, we will highlight how VERB identifies concept subspaces as
a critical yet under-explored element of debiasing. Inspired by this,
we will show how to optimize subspace identification, leading to an
improved iterative method which quantitatively improves the debiasing
results. Finally, we will showcase VERB’s generality, by exploring a
different type of embedded representation, one that captures merchant
embeddings associated with a large payment company.

5.1 Using VERB to Identify New Types of Biases
VERB allows users to load any word vector embeddings or embedded
representations (e.g., GloVe embeddings and merchant embeddings).
Users can select any subset of words or identifiers (e.g., evaluation set)
to quickly illustrate potential correlations. We demonstrate how VERB
can be used to identify new types of biases such as the royalty bias.

As an example, using VERB, one can easily observe that word
embeddings capture a clear royalty subspace and resulting bias. For
instance, using two-means with seed words “king, queen” (for royal
words) and “man, woman” (for common words), a clear royalty sub-
space becomes quickly apparent. If users also visualize some adjective
words as the evaluation set, “obnoxious, considerate, plain, fancy, at-
tentive, important, majestic”, as in Fig. 7, they can see a potential bias
arising in the captured connotation. Words “obnoxious, attentive, plain,
considerate” are more associated with the common direction, while
“fancy, important, majestic” more in the royal direction.

Note that the y-axis is chosen to show the most variance, and that
variation along that direction is not correlated with royalty. Whereas,
the x-axis is selected to reflect the learned royalty component, and the
further left along this coordinate the more common, and the more right
the more royal association.

Moreover, after removing the royalty concept subspace with linear
projection (LP), then through VERB, users can observe that the gender
concept remains, as shown in Fig. 7 (Right). After another PCA-
based re-orientation, the words “man” and “king” are to the right, and
words “woman” and “queen” to the left. Also, there is still residual
gender associations after debiasing. Stereotypical male, chauvinistic
traits “important, obnoxious” are more on the male side while the
stereotypical female subservient traits “considerate, attentive” are more
associated with the female side.

5.2 Using VERB to Explain Debiasing Methods
VERB was used as part of an AAAI 2021 Tutorial titled “A Visual
Tour of Bias Mitigation Techniques for Word Representations”. VERB
is designed to target NLP practitioners who are designing decision-
making systems with word embeddings, and also researchers working
with fairness and ethics of ML systems in NLP. It also serves as a visual

Fig. 7. Left: royalty bias as observed in adjectives, e.g., “majestic” for
“queen, king” vs. “obnoxious” for “women, man”. Right: it shows residual
gender associations after removing the royalty subspace using LP.

medium for education, which helps NLP novices to understand and
mitigate biases in word embeddings.

To explain diabsing methods to these targeted audience, the descrip-
tion of the debasing methods alone makes it hard for an interested user
to decide which one to use, how to use them, and what the limitations
are. During this tutorial, participants could easily download VERB,
and immediately start interacting with the pre-loaded word vectors em-
beddings, or creating new examples. They can not only clearly observe
the biases and structures presented in these embedded representations,
but also compare and contrast their effectiveness and side effects.

While VERB provides utility to run a variety of identification of
concept subspaces, and then uses them within debiasing approaches,
we highlight a few examples where it is particularly effective in dis-
tinguishing variation in the debiasing methods and improving users’
understanding of them.
Comparing Hard Debiasing vs. Linear Projection. Bolukbasi et
al. [5] introduced the idea of using the Linear Projection (LP) step
towards debiasing, but wrapped it in a more complex Hard Debiasing
(HD) mechanism in an attempt to preserve the structure among defini-
tionally gendered words. This mechanism requires extra word lists and
includes a set of paired words, which are equalized. To demonstrate
the difference, we use VERB to run HD and LP in Fig. 4 and Fig. 3,
respectively, using the same seed sets to define the subspace, and eval-
uation set. One can easily observe that HD requires an extra equalize
set, and as a result an extra step in the process to equalize those pairs.
Hence, it also requires the concept must be the result of some binary
notion, thus disallowing concepts like nationality. On the other hand,
LP simply projects all words to a subspace that is one dimension lower,
including the seed set. While these methods are distinct, it may not be
clear all the ways they differ without VERB.
Understanding OSCaR. OSCaR [13] is a new approach to debiasing,
and does not rely on projection to remove a subspace. Instead, its oper-
ation focuses on a graded rotation (where a different rotation matrix is
applied to each point) that, while subdifferentiable, requires a compli-
cated case statement to define precisely. With VERB, users are able to,
for the first time, dynamically visualize this process under a number
of situations. Fig. 6 show snapshots of the process on an example. In
particular in Step 1, users are presented the specific perspective needed
to understand the graded rotation, and then it is animated between Steps
1 and 2. Furthermore, users can see how afterwards, both the concepts
remain in tact, but they have had their correlation removed.

One observation that quickly became apparent with VERB, but not
before, is that OSCaR works more closely to what one’s intuition might
be (of orthogonalizing subspaces) when the subspaces are defined using
PCA. While two-means may do a better job of explicitly capturing the
concept subspace for the relationship between two sets (e.g., defini-
tionally male and female words), they do not as explicitly capture a
single subspace for the concept as does PCA. Visually, using PCA
with OSCaR allows users to easily see the subspace for each concept,
where the one for gender can be seen as much less noisy than one for
occupations, and how they are orthogonal after the operation.



Fig. 8. VERB visualizes residual bias after applying Hard Debiasing.

Residual Bias. A well-known critique of Hard Debaising [19] is that
it leaves residual bias in the embedding, even after the debiasing op-
eration. While this is illustrated mostly quantitatively or abstractly
in [19], with VERB, users can easily see the potentially concerning
effect. For example, when trying to remove gender bias associated with
occupations, HD projects occupation words off of the gender-defining
subspace. However, for instance, as seen in Fig. 8, the traditional and
stereotypical female occupations (e.g., “receptionist”, “homemaker”)
are still very close to one another, as are stereotypical male professions
(e.g., “lawyer”, “engineer”). This illustrates the concern since if one
knows a homemaker is traditionally female and an engineer is not, then
one may infer that so is receptionist, and a lawyer is also not.

5.3 VERB Inspired Interactive Concept Identification
In building VERB, we realize that it provides a new abstraction for
understanding existing and creating new debiasing methods. In par-
ticular, VERB uses a two-step process, subspace identification and
embedding transformation, for a debiasing process. Instead of trans-
forming a word vector embedding with a pre-defined concept subspace,
we study how to (a) determine an “optimal” concept subspace and (b)
apply transformation w.r.t. such a subspace.

As reviewed in Sect. 3, there are several distinct methods to identify
concept subspaces (PCA, paired-PCA, two-means, classifier normal).
Although these methods are often associated with specific debiasing
methods, they are mostly interchangeable. Despite of their distinctive-
ness, the choice of subspace identification method is often ignored or ne-
glected. VERB allows a users to easily experiment with these methods,
explore their differences, their sensitivity to seed words, and improve
the overall effectiveness. Then, going beyond existing mechanisms,
VERB provides a novel, optimized concept identification method, im-
proving upon prior methods in quantifiable bias mitigation.

5.3.1 New Iterative Method of Subspace Identification
Our new method iteratively improves the subspace direction by op-
timizing a function. It uses golden-section search (GSS) internally,
which given a unimodal function, finds an extremum (minimum or
maximum) of the function within a specified interval. It operates by
successively narrowing the range of function values within the interval
without using the gradient of the function. We use WEAT [7] as the
underlying function. That is given a stereotypical subspace direction v,
the value S(v) provides the difference in WEAT score after applying
Linear Projection for subspace v. The smaller the value, the better v
captures the bias subspace.
Overfitting, testing, and training data. Before we describe our new
subspace identification method, it is important to discuss overfitting,
testing data, and training data. According to its formulation, if WEAT
is evaluated on sets of words A, B, X , and Y , then it may be unfair to
train a subspace on the same words it is evaluated on. Otherwise, the
trained subspace may not generalize to the vast majority of words not
in these sets, i.e., overfitting. For example, if we use definitionally gen-
dered words (e.g., “man, woman, boy, girl”) in A and B, stereotypical
occupation words (e.g, “engineer” and “receptionist”) in X and Y , then
we should consider defining the subspace using words not in those sets.

Method ECT WEAT (adj) NLI Test
Baseline 0.773 1.587 0.297

PCA 0.905 1.17 0.346
2-means 0.912 1.102 0.379

Classification (1 step) 0.872 0.951 0.383
Iterative Subspace 0.966 0.902 0.386
Table 1. Bias Subspace Selection in Word Embeddings.

In particular, we explore statistically gendered names (e.g., “Jack” for
male M and “Susan” for female F), which define a subspace correlated
with the one determined by definitionally gendered words.
New iterative subspace identification. The algorithmic procedure
starts with the two-means approach in identifying an initial concept
subspace using seed sets M to get mean m and set F to get mean
f . Initially let v = m− f represent the gender direction. Then we
iteratively improve the WEAT score S(v) by choosing updated points
m in the convex combination of M and f in the convex combination of
F . In each iteration, we fix either m or f and update the other. When
f is fixed, we cannot use gradient descent to update m, since we do
not have access to a gradient of the function S. Rather, we consider
moving m towards any point x ∈M, by setting m to its new location
mx(α) = (1−α)m+αx for α ∈ [0,1]. The parameter α represents
the fraction towards x from m. We consider each x ∈ M in a fixed
permutation, and determine how best to move m towards x, using GSS
to optimize S(mx(α)) as a function of α . We update m to mx(α), and
then consider the next x′ ∈M in the permutation, and update mx(α) to
mx′(α

′) for the best α ′. After completing this permutation, we fix the
new location of m, and optimize f . These can be alternately optimized.
We find two rounds of optimizing m and f is sufficient.

While the above procedure is automated, VERB is essential in select-
ing the words used in M and F so we can see how they are correlated
with those in A and B respectively. It serves to improve seed word
selection, a critical step in a debiasing process.

5.3.2 Evaluation of Subspace Identification Methods
We evaluate the effectiveness of our new subspace identification method
by computing the WEAT [7] and ECT [14] scores using their respective
standard datasets, before and after debiasing with Linear Projection.
For evaluation, so the evaluation of WEAT is not the same as one
optimized, we alter the word lists X , Y to be stereotypical adjectives
A = {“strong”, “intelligent”, “brave”, “important”} and B = {“pretty”,
“beautiful”, “shy”, “homely”}. In ECT, the aggregated male and female
words compare the ranks of distances to a list of occupations. For the
classification normal, we debias using linear projection exactly once.
Recall that a desirable ECT is closer to 1, while a desirable WEAT
is closer to 0. In addition to our new Iterative Subspace method, we
compute the concept direction v using PCA, 2-means, and classification
normal. Paired-PCA was not available since the input words M and F
(statistically gendered names) are not paired. Table 1 shows that for
ECT, Iterative Subspace achieves the largest score (nearly the optimal
value of 1). Note, if we had trained on A,B instead of M,F , then 2-
means (which gets the second best score) would get the optimal value
of 1. For WEAT, the iterative method (0.902) and the classification
normal approach (0.951) are both big improvements over 2-means
(1.1) and PCA (1.17). For the more extensive NLI Test [11], we use
their large list of gender-occupation bias measuring sentence pairs and
record the fraction of sentences classified neutral, a score called Net
Neutral [11]. The higher the value (closer to 1), the lesser the bias
(see Sect. 3.3.3). In this test, we see a similar improvement with the
two methods. Iterative subspace identification does the best under all
three measures.

5.4 VERB for Merchant data
Extensive amounts of transaction data are available to financial organi-
zations. To utilize such data for applications such as recommendation
or fraud detection, it is important to understand the characteristics asso-
ciated with each unique merchants presented in the data. Although a
lot of the information can be obtained by either calculating summary
statistics associated with each merchant (e.g. average price for each



Fig. 9. Removing location information from a restaurant embedding using
a Linear Projection debiasing technique. From left to right, visualizing
restaurant embedding before and after Linear Projection.

transaction) or directly from the merchant (e.g. merchant categories), a
general profile containing additional information can be distilled from
the data by creating distributed representations using word embedding
algorithms [16, 61, 64]. This is not based on text associated with these
merchants, but rather the sequences in which merchants were visited
by customers.

The embedding dataset presented in this section is generated from
real-world transactions from a global payment company. It captures
payment activities between 70 million merchants and 260 million cus-
tomers from December 1, 2017 to June 30, 2019 in the United States.
The merchant embedding is generated by Word2vec [16, 21], where
each merchant is treated as a word and each customer as a document.

With rich information in the merchant embedding, it can be gener-
ally applied to many downstream tasks [16, 66]. Here we focus on a
subset of the merchant embedding, referred to as the restaurant embed-
ding, which is extremely important for recommendation system. By
visualizing the merchant embedding dataset through VERB (Fig. 9),
one can find that the distribution of embeddings are significantly domi-
nated by each restaurants’ geographical location over other information
such as cuisine type. In other words, geographical location captured
by the embedding would interfere the recommendation system when
recommending restaurants as a user’s “taste” is usually more associated
with other information like cuisine type. It is essential to tease out
the undesired subspaces within the embedding space that represents
irrelevant information for better recommendation performance.

In Fig. 9 (Left), green points are restaurants from the bay area
(BAY), orange points are restaurants from the Los Angeles area (LA),
and purple points are the evaluation restaurants. From the visualization,
all the LA restaurants are clustered together in the left part of the figure
and all the BAY restaurants are clustered in the right part. The location
direction (North-South) are automatically identified by the two-mean
method. By using Linear Projection to remove the location subspace,
similar restaurants are now clustered together (Fig. 9(Right)). For both
training dataset and evaluation dataset, we can clearly see seven cuisine
types here: Chinese, Ramen, Korean BBQ, Dennys, Donuts, Pizza,
Burger/Hotdogs. Therefore, VERB allows for an easy understanding
of restaurant information in the merchant embedding and allows users
to modify the embedding to adapt to various downstream tasks.

6 DOMAIN USERS’ FEEDBACK

We collected feedback from three groups of domain users, after they
thoroughly explored VERB on different vector embedding datasets.
The first group includes three workshop attendees (W1∼W3) from AAAI
2021 conference (where we gave the tutorial). The second group con-
sists of two graduate students (S1∼S2), majoring in Computer Science.
Their research focuses on studying ML and NLP techniques, where
exploring embedding data is an important part of their daily work. The
third group includes two researchers (R1∼R2) of an industrial research
lab, who used VERB to analyze the merchant embedding data as we
have explained in Sect. 5.4.

For all three groups of users, we first introduced VERB to them and

explained the functions of different visual components. The users were
then given sufficient time (several hours for W1∼W3 during the work-
shop, and a couple of days for S1∼S2 and R1∼R2). Lastly, feedback
was collected from them either in written form and/or remote meetings.

In general, all domain users provide positive feedback on VERB in
clearly revealing the bias hidden inside embedding data, and intuitively
comparing different debiasing algorithms. For example, W1∼W3 re-
sponded our feedback questions by valuing the easy accessibility of
VERB and the easy-to-install level was rated between “extremely-easy”
and “easy”. Both S1 and S2 expressed their awareness and worry on
the biases in their embedding data. They reaffirmed the importance
of the debiasing problem and appreciated the interactivity provided by
VERB in easily disclosing the hidden biases. Additionally, we also
had thorough discussions with them on other design choices in pre-
senting the clustering results with different dimensionality reduction
algorithms. R1 commented that VERB concretized the bias mitigation
process in her mind through smooth animations and it demonstrated
the process in a more intuitive manner, which significantly helped her
understand the merchant embedding data. Compared to the traditional
way of manually comparing the embeddings before and after debiasing,
VERB is more convenient, interactive, and user-friendly.

There are also several suggested improvements provided by the
users. First, S2 discussed the importance of debaising in language
translation tasks to prevent the propagation of bias from one language
to the other. He suggested concurrently analyzing multiple sets of
embeddings in the same projection space to investigate and relate the
biases from individual sets. Adding contexts for biases is another
interesting comments, as the biases from one language may not be
biases in the other. Second, S1∼S2, as well as the workshop attendees,
were impressed by VERB integrating so many debiasing algorithms.
However, some of them (e.g., Hard Debiasing) were not very familiar
to them. S1 recommended adding short video clips, or links to some
algorithm explanations to briefly explain different debiasing techniques.
Lastly, some direct side-by-side comparisons for different debiasing
algorithms were also recommended by the users (without considering
the space usage). The feedback provides promising further directions
for us to explore.

7 CONCLUSIONS AND DISCUSSIONS

This paper presents VERB, a new tool for visualizing, interacting
with, and teaching embedded representations of data. It is especially
useful at allowing users to interact and observe the effects of debiasing
word vector embeddings – an essential component of most NLP tasks,
and critical for ensuring fairness. VERB is distinct from previous
visualization tools for high-dimensional vectorized data in that it is used
to modify and improve the vectors, before they are used in downstream
tasks, not just explore or inspect them.

The VERB visual tool is useful in other ways, it allows one to find
new types of bias, it identifies the importance of subspace determina-
tion in addition to the debiasing mechanisms – leading to an improved
method, and it is demonstrated to extend to other forms of data includ-
ing merchants from a large payment transaction company.

A key challenge VERB addresses is how to show high-dimensional
embedded representions informatively when only a 2-dimensional view
is visually available. It relies on displaying this vectorized data as
projected views, via linear projections. This linearity is essential since
the debiasing and modification relies on identification and movement
of data along linear subspaces. Non-linear methods like t-SNE or
ISOMAP would distort these linear objects. Moreover, these identified
concept subspaces are essential to defining these views. These identified
subspaces define the x- and possibly y-axis of the view, where users
can clearly see the amount of contribution individual words have along
that subspace, without concerning the possible distortions introduced
by a skewed projection.

Overall, VERB is a simple and easy-to-use interface for understand-
ing and acting on a wide variety of vectorized representations. It
demystifies, and provides a powerful way to interact with and debias
these representations, towards interpretable and fair ML that operates
on these representations.
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