TopoAct: Visually Exploring the Shape of Activations
in Deep Learning
Supplementary Material

Archit Rathore!, Nithin Chalapathi', Sourabh Palande', Bei Wang!

1 School of Computing, Scientific Computing and Imaging (SCT) Institute, University of Utah, USA

Show activation images

TopoAct
- BO00000000

Search for class... 2828 | Reset
L]

Dataset overlap-so [H

. Top Classes
° « fire engine, fire truck
« school bus
* tractor

Images from top classes

- 2
0.01 17/1667

‘ school bus 0.01
tractor 0.01

12/1667 A

12/1667

Figure 1: With TopoAct, users can interactively explore topological summaries of activations in a neural network for a single layer and
across multiple layers. Users can investigate activations at a particular layer under the single layer exploration mode. (A) The mapper graph
view provides a graph-based topological summary of the activation vectors from 300,000 images across 1,000 classes, where each node of the
mapper graph represents a cluster of activation vectors and each edge encodes the relationships between the clusters. For a chosen cluster
in the summary graph, data example view (B) gives textual description of the top three classes within the cluster together with five image
examples from each top class. The feature visualization view (C) applies feature inversion to generate idealized images (called activation
images) for individual activation vectors (obtained from data examples) as well as an averaged activation vector within a chosen cluster.

1. TopoAct User Interface and System Design

We describe details regarding the user interface and system design
of TopoAct. Figure 1 illustrates the user interface under single layer
exploration mode.

The header includes: information regarding the layer of choice
(e.g., 3a, 3b, 4a), the dataset (across various mapper parame-
ters) under exploration (e.g., overlap-30-epsilon-fixed, overlap-50-

epsilon-adaptive), and a class search box that supports filtering by
a set of classes. The header also contains a check box that superim-
poses averaged activation images over the graph nodes to provide
an alternative overview of the topological summary (see Feature
Visualization View for details).

Class search box with a shopping directory view. As illustrated
in Figure 2, users can type a class name in the search box which
is used to filter the mapper graph. The search algorithm uses par-

2 A. Rathore, N. Chalapathi, S. Palande, & B. Wang / TopoAct: Visually Exploring the Shape of Activations

bib | Q@

)| el |
| oboe |
banjo | o
sabot (R [oovore L ot poppr Jooranon Yoo
tabby \
| | =D
1 banana \
beaker ‘\ e
oaver ‘ checssburger consomme J cri § cowbol
L | o e e

Figure 2: Class search box used to specify a set of classes to be
filtered by the mapper graph.

tial matching to locate a list of possible class names. Alternatively,
users can select a subset of classes from the “shopping directory"
view in which top classes within the current layer are listed in
alphabetical order. The mapper graph will highlight the clusters
that contain any of the user-specified classes among their top three
classes. As an example, we look at layer 5a of the overlap-30-
epsilon-adaptive dataset. Using the shopping directory view, we
select several classes of large motor vehicles, for example, school
bus, tow truck, fire engine, minibus, minivan, etc. Each of the nodes
highlighted in the mapper graph of Figure 3 contains at least one of
the selected classes among its top three classes.

Figure 3: A mapper graph highlighting nodes that include classes
of large motor vehicles.

1.1. Single Layer Exploration Mode

For single layer exploration, the interface is composed of three
views: the mapper graph view, the data example view and the fea-
ture visualization view, see Figure 1 for an illustration.

Mapper graph view. TopoAct uses the mapper construction
to construct a topological summary from the activation vec-
tors of 300,000 images across 1,000 classes. Different from di-
mensionality reduction approaches such as t-SNE [MHO08] and
UMAP [MHM18], TopoAct computes and captures the shape of
the activation space in the original high-dimensional space in the
form of a mapper graph and preserves the structural information,
as much as possible, when the mapper graph is drawn on the 2-
dimensional screen.

As shown in Figure 1(A), we use force-directed layout by

Dwyer [Dwy09] to visualize the mapper graph. Each node repre-
sents a cluster of “similar" (in a Euclidean distance sense) acti-
vation vectors; and each edge encodes the relations between clus-
ters of activation vectors. Given two clusters of activation vectors
C. and G, there is an edge uv connecting them if |C, NCy| # 0.
Given C, and C, connected by an edge uv, the edge weight of uv is
their Jaccard Index, that is, J(Cy,Cv) := |CNCy|/|Cu UCy|. Each
edge is then visualized by visual encodings (i.e., thickness and
colormap) that scale proportionally with respect to their weights.
Weights on the edges highlight the strength of relations between
clusters.

To explore the mapper graph, users can zoom and pan within the
view. Hovering over a node in the mapper graph displays simple
statistics of the cluster: number of activation vectors in the cluster
and averaged lens function value. Clicking on a node will give in-
formation on the top three classes (with a membership percentage)
within the selected cluster; it will also update the selection for the
data example view and the feature visualization view, as described
below.

Data example view. To make each cluster more interpretable, we
combine the original data examples with feature visualization. For
a selected node (cluster) in the mapper graph, we give a textual de-
scription of the top three classes in the cluster as well as five data
examples from each of the three top classes. For example, as illus-
trated in Figure 4a, a selected cluster in the mapper graph view for
layer 5a of overlap-30-epsilon-adaptive contains three top classes
of images: fire engine, tow truck, and electric locomotive. Its cor-
responding data example view contains five images sampled from
each class to give a concrete depiction of the input images that trig-
ger the activations.

Cd
W
 fire engine 0.55% 13/2359

"i tow truck 0.47% 11/2359

electric loc... 0.47% 11/2359
3‘
]

Figure 4: A data example view (a) and a feature visualization view
(b) for layer 5a, overlap-30-epsilon-adaptive, where (c) contains an
averaged activation image for the chosen cluster.

Feature visualization view. After a user selects a node (cluster) in
the mapper graph view, we display activation images pre-generated
for each input image from the data example view. These individ-
ual activation images are generated by applying feature visualiza-
tion to individual activation vectors from the 300,000 input images.
The feature visualization displays up to 15 of such individual ac-
tivation images, up to 5 for each of the top class, see Figure 4b.
Furthermore, we also average the activation vectors that fall within
the cluster and run feature inversion on the averaged activation,
producing an averaged activation image per cluster (as shown in
Figure 4c). Moving across clusters following edges of the mapper

A. Rathore, N. Chalapathi, S. Palande, & B. Wang / TopoAct: Visually Exploring the Shape of Activations 3

graph will help us understand how the averaged activation images
vary across clusters. We obtain a global understanding of not only
what the network “sees" via these idealized images but also how
these idealized images are related to each other in the space of ac-
tivations.

In addition to the graph view, we can replace each node in the
mapper graph by an averaged activation image as a glyph. This can
be perceived as an alternative to the activation atlas [CAS™19] with
one crucial difference: the mapper graph captures clusters of activa-
tion vectors in their original high-dimensional space and preserves
relations between these clusters. Such a global view provides valu-
able insights during in-depth explorations.

t-SNE and UMAP projections. For comparative purpose, we per-
form dimensionality reduction on the activation vectors for each
layer using t-SNE and UMAP. The projection is done using all
300K activation vectors onto a 2D space. For t-SNE, we set per-
plexity to be 50 following the parameter choice used in the Ac-
tivation Atlas [CAS*19] and implemented using the Multicore-
TSNE [Uly16] Python library. UMAP projection is performed us-
ing the official python implementation [MHSG18] with 20 nearest
neighbors and a minimum distance of 0.01. Due to the large size
(300K) of activation vectors, t-SNE and UMAP projections are pre-
computed. We also provide linked view between the mapper graph
and the t-SNE/UMAP projection, selecting a node in the mapper
graph will highlight its corresponding activation vectors in the t-
SNE/UMAP projections. We provide subsampled versions of these
projections (5K, 10k, 50K, 100K, and 300K) to deal with the issue
of visual clutter and to accommodate browser’s rendering capabili-
ties on a number of devices.

1.2. Multilayer Exploration Mode

In multilayer exploration mode, three adjacent layers are explored
side by side, see Figure 6(top). After choosing a particular class
or a set of classes using the class search box, TopoAct highlights
nodes (clusters) across all three layers that contain the chosen set of
classes among its top three classes. Other visualization features are
inherited from the single layer exploration. Multilayer exploration
helps capture the evolution of classes as images run through the
network and supports structural comparisons of summaries across
layers. This can be particularly useful when used in conjunction
with the class search tool. As an example of class search in mul-
tilayer mode, we look at layers 4e, 5a and 5b of the overlap-30-
epsilon-adaptive dataset. We use the same selection of classes of
large motor vehicles used in the earlier example of class search in
single layer mode (Figure 3). Figure 5 shows the class search re-
sults, now in the multilayer exploration mode.

1.3. System Design

TopoAct is web-based with a public demo available via GitHub f,
It is tested for Google Chrome and Mozilla Firefox. It was de-
veloped using Javascript, HTML, and CSS, together with D3.jsi.

T https://architrathore.github.io/TopoAct-v2.1/
1 D3.js: https://d3js.org/

[]
oa |
[

Figure 5: Class search highlights nodes that include classes of
large motor vehicles across multiple layers.

The 300,000 dataset examples were sampled from ImageNet
with reduced resolution. For our mapper graph construction, we
used a modified version of the open sourced Kepler Mapper li-
brary [vVS19] that we optimized to handle large number of data
points that we encounter in our use case. The construction of map-
per graphs across layers were performed on high performance
server machines with 128, 160, and 256 CPU cores, and RAM
ranging from 504 GB to 1024 GB. The construction took around
15 minutes for layers with lower-dimensional activation vectors
(i.e., layer 3a produces 256-dimensional activation vectors) and 25-
30 minutes for higher-dimensional activation vectors (e.g., layer 5b
produces 1024-dimensional activation vectors). For our choice of €
for the DBSCAN algorithm, we ran PyNNDescent§ on a commod-
ity workstation with a 4 core intel i7 (4750HQ) and 8GB of RAM.
Computing € took on average 5 minutes per layer. Finally, we used
Google Colab ¥ to run our feature visualization with GPUs, ei-
ther from an Nvidia P100, Nvidia K80, or Nvidia T4 GPU. Feature
visualization of all 300,000 input images was done via the Lucid
library “, which took on average 8 hours. Feature visualization of
average activation vectors took between 2.5 (i.e., 3a) to 6 hours
(i.e., 5b) per mapper graph.

2. Multilayer Comparison of Mapper Graphs: InceptionV1

We can compare the shape of activation spaces across multiple lay-
ers. As illustrated in Figure 6, we show side-by-side comparison
of all layers for the dataset overlap-30-epsilon-adaptive. There are
several observable trends. First, there are more high-degree branch-
ing nodes at deeper layers (i.e. 5b), indicating more specialized
differentiation among activation vectors, and consequently, among
learned features. Second, there are more “islands”, that is, small
isolated components at deeper layers, indicating further separation
among activation vectors and the corresponding learned features
at those layers. A further investigation into structural comparisons
across layers, such as tracking the evolution of a particular branch-
ing node is nontrivial and left for future work.

§ https://github.com/Imcinnes/pynndescent
Al https://colab.research.google.com
I Lucid: https://github.com/tensorflow/lucid

https://architrathore.github.io/TopoAct-v2.1/

4 A. Rathore, N. Chalapathi, S. Palande, & B. Wang / TopoAct: Visually Exploring the Shape of Activations

= 000000008 Show actvation inages e S, Searchforclass.. 333 [Reset

Seachiorcass.. §85 [Rasat

w 00000D0BE oo e prer——
g 9 vran-30-Epsion-adotve B for el ol

Figure 6: Comparing 9 mapper graphs for overlap-30-epsilon-
adaptive dataset using multilayer exploration.

3. L, Norm and Adaptive Cover

In the demo, we used a uniform cover which caused large varia-
tions in cluster sizes. While some clusters were composed of only a
handful of activation vectors, there were several very large clusters
with thousands of activation vectors, and large intersection between
neighboring clusters. Finding meaningful relationships across such
large clusters is difficult in these cases since top three classes may
not be good representatives of the cluster as a whole.

The branches and loops explored in our examples contain rela-
tively small clusters for which the averaged activation images are
more meaningful. The best way to remedy the large variation in
cluster sizes is to use an adaptive cover, in which interval lengths
are modified in such a way that each interval contains approxi-
mately the same number of points. Creating adaptive cover ele-
ments may be achieved by looking at the distribution of lens func-
tion values using histograms. We now discuss this in a bit more
details.

In general, vectors with a dimension as high as the ones from
neural network (maximum of 1024 dimensions in our case) tend
to suffer from the curse of dimensionality, which implies that in
very high dimensions, the Euclidean metric or the L, norm does
not exhibit variation - all distances and norms look the same. Fig-
ure 7 shows the distribution of activation vectors for each layer vs.

random vectors of the same dimension. The mode associated with
the distribution of L-norm of activation vectors is left-shifted in
comparison with the distribution of random vectors, and the acti-
vation vectors have less sharp peaks. We hypothesize that such an
observation is due to two reasons:

e The ReLU activation sets all negative values to be zero, hence a
significant number of elements in a single activation vector are
zero. On average 33% of elements of an individual activation
vectors are zero.

e The activation vectors likely have low intrinsic dimensions (in
comparison to the high-dimensional space they are embedded
into).

mixed3a mixed3b mixed4a
Activati Activati 3000 Activati
ctivations ctivations ctivations
3000 Random 3000 Random 2500 Random
2500 2500
2000
2000 2000
1500 1500 1500
1000 1000 1000
500 500 500
0 0 0
o 2 4 6 8 10 0 5 10 0 5 10
mixed4b mixed4c mixed4d
Activations | 4000 Activations Activations
3000 Random Random 3000 Random
3000
2000 2000
2000
1000 1000 1000
o o o
o 5 10 o 5 10 o 5 10 15
mixed4e mixed5a mixed5b
3000 Activations Activations | 500 Activations
2500 Random 2000 Random Random
2000 1500 1500
1500
1000 1000
1000
500
s00 500
0 0 0

0 5 10 15 0 5 10 15 0 5 10 15 20

Figure 7: Comparison of distribution of Ly-norms between activa-
tion vectors and random vectors.

mixed3a

2000 A mixed3b

mixed4a

1750 1 mixed4b

mixed4c

15001 mixed4d

1250 mixed4e

mixed5a

1000 1 mixed5b
750
500
250

0- T T T T T

0 1 2 3 4 5 6 7 8
Figure 8: L, norms of activation vectors across all layers.

Figure 8 shows the distribution of L, norms for all layers in
the Inception architecture. Notice that the distribution is close to
a Gaussian and the variance of the distribution is reasonably large
as opposed to very low variance of random vectors. Additionally,
the severity of the curse of dimensionality can be further reduced
by using an adaptive cover that has more intervals in the denser re-
gions of lens function. The resulting mapper graphs with such an
adaptive cover will contain nodes of comparable sizes.

A. Rathore, N. Chalapathi, S. Palande, & B. Wang / TopoAct: Visually Exploring the Shape of Activations

References

[CAS*19] CARTER S., ARMSTRONG Z., SCHUBERT L., JOHNSON I.,
OLAH C.: Activation atlas. Distill 4, 3 (2019), el5. 3

[Dwy09] DWYER T.: Scalable, versatile and simple constrained graph
layout. Proceedings of the 11th Eurographics/IEEE - VGTC conference
on Visualization (2009), 991-1006. 2

[MHO8] MAATEN L. v. D., HINTON G.: Visualizing data using t-SNE.
Journal of Machine Learning Research 9 (2008), 2579-2605. 2

[MHM18] MCINNES L., HEALY J., MELVILLE J.: Umap: Uni-
form manifold approximation and projection for dimension reduction.
arXiv:1802.03426 (2018). 2

[MHSG18] MCINNES L., HEALY J., SAUL N., GROSSBERGER L.:
UMAP: Uniform manifold approximation and projection. Journal of
Open Source Software 3,29 (2018), 861. 3

[Ulyl6] ULYANOV D.: Multicore-TSNE. https://github.com/
DmitryUlyanov/Multicore-TSNE, 2016. 3

[vVS19] vAN VEEN H. J., SAUL N Keplermapper.
http://doi.org/10.5281/zenodo.1054444, Jan 2019. 3

https://github.com/DmitryUlyanov/Multicore-TSNE
https://github.com/DmitryUlyanov/Multicore-TSNE

