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Abstract Topological feature analysis is a powerful instrument to understand the
essential structure of a dataset. For such an instrument to be useful in applications,
however, it is important to provide some importance measure for the extracted fea-
tures that copes with the high feature density and discriminates spurious from impor-
tant structures. Although such measures have been developed for scalar and vector
fields, similar concepts are scarce, if not nonexistent, for tensor fields. In particular,
the notion of robustness has been proven to successfully quantify the stability of
topological features in scalar and vector fields. Intuitively, robustness measures the
minimum amount of perturbation to the field that is necessary to cancel its critical
points.

This chapter provides a mathematical foundation for the construction of a fea-
ture hierarchy for 2D symmetric tensor field topology by extending the concept of
robustness, which paves new ways for feature tracking and feature simplification of
tensor field data. One essential ingredient is the choice of an appropriate metric to
measure the perturbation of tensor fields. Such a metric must be well-aligned with
the concept of robustness while still providing some meaningful physical interpre-
tation. A second important ingredient is the index of a degenerate point of tensor
fields, which is revisited and reformulated rigorously in the language of degree the-
ory.

1 Introduction

As a linear approximation of physical phenomena, tensors play an important role in
numerous engineering, physics, and medical applications. Examples include various
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descriptors of stress at a point in a continuous medium under load or the diffusion
characteristics of water molecules in fibrous media. Tensors provide a powerful and
simple language to describe anisotropic phenomena for which scalars and vectors
are not sufficient, but the analysis of tensor fields is a complex and challenging task.
Therefore, visualization becomes a crucial capability to support the understanding
of tensor fields. See [18] for a survey on the analysis and visualization of second-
order tensors.

In this chapter, we are especially interested in a structural characterization of
symmetric second-order tensor fields using topological methods, which can form
the basis of advanced analysis and visualization methods. Roughly speaking, ten-
sor field topology segments the tensor field into regions of equivalent tensor line
behavior. Conceptually, it is closely related to the vector field topology. Degenerate
points in tensor fields take the role of critical points in vector fields, and tensor lines
correspond to streamlines. However, despite these parallels, there are also many dif-
ferences.

First, whereas critical points in vector fields behave as sources and sinks and
separatrices can be interpreted as material boundaries of flows, the topological fea-
tures of tensor fields often do not have a direct physical meaning. Degenerate points
are points of high symmetry with isotropic behavior and thus might be considered
as being especially boring. However, they play an important role from a structural
point of view, as they are points where the eigenvector field is not uniquely specified
and thus not necessarily continuous.

Second, there are also major structural differences in comparison to vector fields,
because eigenvector fields have no specified orientation. In the 2D case, they exhibit
a rotational symmetry with a rotational angle of π . As such, they are a special case
of N-symmetric direction fields [17], which are important for many applications in
geometry processing and texture design. For example, the eigenvector fields of the
curvature tensor have been used for the purpose of quadrangular re-meshing, where
degenerate points are mesh vertices with distinct valency [1, 16]. A related applica-
tion is the synthesis of textures, for example, by defining the stroke directions as an
eigenvector field of some tensor field, where degenerated points account for points
with non-trivial texture characteristics [30, 3]. For both applications, it is essential to
have control over the number of degenerate points. Furthermore, in tensor field anal-
ysis, it can also be beneficial to have control over not only the degenerated points but
also their cancellation for feature-preserving interpolation and smoothing [15, 24].

While tensor field topology has attracted the most attention in geometric applica-
tions, it was introduced along with the vector field topology in visualization appli-
cations by Delmarcelle [9] and Tricoche [26]. Since the introduction of tensor field
topology, theoretical and application-driven advancement has been slow for several
reasons (in contrast to vector field topology): the lack of theory for 3D tensor fields,
the complexity of the resulting topological structures, and the challenge of a direct
interpretation of such structures in the application domain. However, there has been
some recent, encouraging effort by Zhang et al. [31] concerning a theory for 3D ten-
sor field and the application of stress tensor field analysis. To further develop tensor
field topology as a useful analysis tool, we are convinced that a major requirement is
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to find a mathematically rigorous way to cope with the high density of the extracted
topological features, even in the setting of 2D tensor fields, where a large number of
structures originate from extended isotropic regions and are very sensitive to small
changes in the data.

The most important requirement in applications is a stable topological skeleton
representing the core structure of the data. For all the above-mentioned applications,
tensor field topology can provide a means for the controlled manipulation and sim-
plification of data. In this work, we introduce a measure for the stability of degener-
ate points with respect to small perturbations of the field. The measure is based on
the notion of robustness and well group theory, which has already been successfully
applied to vector fields. We extend this concept to 2D symmetric second-order ten-
sor fields to lay the foundation for a discriminative analysis of essential and spurious
features.

The work presented in this chapter paves the way for a complete framework of
tensor field simplification based on robustness. We generalize the theory of robust-
ness to the space of analytical tensor fields. In particular, we discuss the appropriate
metrics for measuring the perturbations of tensor fields, but a few challenges remain.
First, we need to develop efficient and stable algorithms to generate a hierarchical
scheme among degenerate points. Second, the actual simplification of the tensor
field using the hierarchical representation and cancellation of degenerate points is
technically non-trivial. In this chapter, we focus on the first part by providing the
necessary foundation for the following steps.

Our main contributions are threefold: First, we interpret the notion of tensor in-
dex under the setting of degree theory; Second, we define tensor field perturbations
and make precise connections between such perturbations with the perturbations of
bidirectional vector fields; Third, we generalize the notion of robustness to the study
of tensor field topology.

This chapter is structured as follows: After reviewing relevant work in Section 2,
we provide a brief description of well group theory and robustness for vector fields
in Section 3. Then in Section 4, we reformulate some technical background in ten-
sor field topology in a way that is compatible with robustness, by introducing the
bidirectional vector field and an anisotropy vector field. The anisotropy vector field
then provides the basis for Section 5 in which the notion of robustness is extended
to the tensor field setting.

2 Related work

Tensor Field Topology. Previous research has examined the extraction, simplifi-
cation, and visualization of the topology of symmetric second order tensor fields
on which this work builds. The introduction of topological methods to the struc-
tural analysis of tensor fields goes back to Delmarcelle [9]. In correspondence to
vector field topology, Delmarcelle has defined a topological skeleton, consisting of
degenerate points and separatrices, which are tensor lines connecting the degenerate
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points. Delmarcelle has mainly been concerned with the characterization of degen-
erate points in two-dimensional fields. Therefore he also provided a definition for
the index of a critical point. Tricoche et al. [27] built on these ideas by develop-
ing algorithms to apply the concept of topological skeleton to real data. A central
question of their work is the simplification of the tensor field topology and track-
ing it over time. They succeeded in simplifying the field, but the algorithm contains
many parameters and is very complex. A robust extraction and classification algo-
rithm for degenerate points has been presented by Hotz et al. [15]. Their method
is based on edge labeling using an eigenvector-based interpolation. This work has
been extended by Auer et al. [2] to cope with the challenge of discontinuities of
tensor fields on triangulated surfaces. While the characteristics of the tensor field
topology for two-dimensional fields are similar to the vector field topology, it is in
general not possible to define a global vector field with the same topological struc-
ture. It is possible, however, to define a vector field whose critical points are located
in the same positions as the degenerate points of the tensor field by duplicating their
indexes. This idea has been used by Zhang et al. [30] for constructing a simplified
tensor field for texture generation. Our method follows a similar line of thought but
goes a step further by defining an isometric mapping of the tensor field to a vector
field.

Robustness for Vector Fields. In terms of vector field topology, topological meth-
ods have been employed extensively to extract features such as critical points and
separatrices for vector field visualization [19] and simplification [8]. Motivated by
hierarchical simplification of vector fields, the topological notion of robustness has
been used to rank the critical points by measures of their stability. Robustness is
closely related to the notion of persistence [10]. Introduced via the algebraic con-
cept of well diagram and well group theory [11, 12, 7], it quantifies the stability
of critical points with respect to the minimum amount of perturbation in the fields
required to remove them. Robustness has been shown to be very useful for the anal-
ysis and visualization of 2D and 3D vector fields [28, 23]. In particular, it is the core
concept behind simplifying a 2D vector field with a hierarchical scheme that is inde-
pendent of the topological skeleton [22]; and it leads to the first ever 3D vector field
simplification, based on critical point cancellation [20]. Measures of robustness also
lead to a fresh interpretation of critical point tracking [21]: Stable critical points can
be tracked more easily and more accurately in the time-varying setting.

In this paper, we extend the notion of robustness to the study of tensor field
topology. We would like to rely on such a notion to develop novel, scalable, and
mathematically rigorous ways to understand tensor field data, especially questions
pertaining to their structural stability. We believe that robustness holds the key to
increase the interpretability of tensor field data, and may lead to a new line of re-
search that spans feature extraction, feature tracking, and feature simplification of
tensor fields.
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3 Preliminaries on Robustness for Vector Fields

In this section, we briefly review the relevant technical background of robustness
for 2D vector field such as critical points, degrees, indices, well groups and well
diagrams. These concepts are important for developing and understanding the ex-
tensions of robustness for the tensor field.

Critical Point and Sublevel Set. Let f : R2→ R2 be a continuous vector field. A
critical point of f is a zero of the field, i.e., f (x) = 0. Define f0 : R2 → R as the
vector magnitude of f , f0(x) = || f (x)||2, for all x ∈ R2. Let Fr denote the sublevel
set of f0, Fr = f−1

0 (−∞,r], that is, all points in the domain with a magnitude up to
r. In particular, F0 = f−1(0) is the set of critical points. A value r > 0 is a regular
value of f0 if Fr is a 2-manifold, and for all sufficiently small ε > 0, f−1

0 [r−ε,r+ε]

retracts to f−1
0 (r); otherwise it is a critical value. We assume that f0 has a finite

number of critical values and f contains a finite number of isolated critical points.
Fig. 1 gives an example of a 2D vector field f with four critical points (Fig. 1 left)
and the regions in the domain enclosed by colored contour lines of f0 (Fig. 1 middle)
illustrate sublevel sets of f0 at critical values.
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Fig. 1: Figure recreated from [28] showing the merge tree for a continuous 2D vector
field example. From left to right: vector fields f , relations among components of Fr
(for r ≥ 0), and the augmented merge tree. f contains four critical points, a red
sink x1, a green source x3, and two blue saddles x2 and x4. We use β , γ , ω , etc., to
represent components of the sublevel sets.

Degree and Index. Suppose x is an isolated critical point of f . For a 2D vector field,
the degree of x equals its index, which in turn corresponds to the winding number of
a simple closed curve on the plane around x. Formally, fix the local coordinates near
x and pick a closed disk D that encloses x in its interior and contains no other critical
points. Then the index of x (w.r.t. f ), I f (x), or equivalently the (local) degree of f
at x, denoted as deg( f |x), is the degree of the mapping u : ∂D→ S1 that associates
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∂D (the boundary of D) to the circle, given by u(z) = f (z)/| f (z)| (u is sometimes
referred to as the Gauss map). It is shown that isolated first-order critical points have
an index of ±1: a saddle has an index of −1 and non-saddles have an index of +1.
In Fig. 1 right, x2,x4 are saddles of index −1 whereas x1 and x3 have index +1.

Let C ⊆ Fr be a path-connected component of Fr. Consider {x1,x2, ...,xn} to be
the set of critical points in C. Then the degree of f restricted to ∂C is the sum of
the degrees of f at the xi, deg( f |∂C) = ∑

n
i=1 deg( f |xi). For notational convenience,

when f is fixed, we abuse the notation by defining the degree of C as deg(C) :=
deg( f |∂C). For example, in Fig. 1 middle, component β1 (representing a sublevel
set of f0) is of degree 0 as it contains critical points x1 and x2 with opposite degrees.

Poincaré-Hopf Theorem for Vector Fields. We review the Poincaré-Hopf theorem
in the setting of a 2D vector field. A particularly useful corollary for 2D vector field
simplification is that if a region C ⊂ R2 has degree zero, it is possible to replace the
vector field inside C with a vector field free of critical points.

Theorem 1 (Poincaré-Hopf theorem). Let M be a smooth compact 2-manifold.
Let f be a vector field on M with finitely many isolated critical points. For M with
boundary, f points in the outward normal direction along the boundary. Then the
sum of the indices of the critical points is equal to the Euler characteristic of the
manifold: ∑i I f (xi) = χ(M).

Well Group. Given a mapping f : X→Y and a subspace A⊆Y, the well group the-
ory [11, 12, 7] studies the robustness of the homology of the pre-image of A, f−1(A)
with respect to perturbations of the mapping f . Roughly speaking, the homology of
a topological space measures its topological features, where the rank of the 0-, 1-
and 2-dimensional homology groups corresponds to the number of connected com-
ponents, tunnels, and voids, respectively. Here we review the well group theory in
the setting of a 2D vector field f : R2→R2 where A = 0, and correspondingly study
the stable property of the critical points ( f−1(0)) of f [7].

Let f ,h : R2 → R2 be two continuous 2D vector fields. Define the distance be-
tween the two mappings as d( f ,h) = supx∈R2 || f (x)−h(x)||2. We say a continuous
mapping h is an r-perturbation of f , if d( f ,h) ≤ r. In other words, for each point
x ∈ R2, the point h(x) lies within a disk of radius r centered at f (x). See Fig. 2.

If h is an r-perturbation of f , then h−1(0) is a subspace of Fr, that is, we have
an inclusion h−1(0) ⊆ Fr. The connected components of h−1(0) generate a vector
space that is the 0-dimensional homology group of h−1(0), denoted as H(h−1(0)).
Similarly, we have the 0-dimensional homology group of Fr, denoted as H(Fr).
The subspace relation h−1(0) ⊆ Fr induces a linear map jh : H(h−1(0))→ H(Fr)
between the two vector spaces. The well group, U(r), as first studied in [12], is
the subgroup of H(Fr) whose elements belong to the image of each jh for all r-
perturbation h of f . That is,

U(r) =
⋂
h

im jh. (1)
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r

f(x)

h(x)
x

Fig. 2: Geometric interpretation of an r-perturbation of a vector field at a point x in
the domain.

Assuming a finite number of critical points, the rank of U(0) is the number of critical
points of f . For values r < s, Fr ⊆ Fs inducing a linear map fs

r : H(Fr)→ H(Fs)
between the two homology groups. It can be shown that U(s)⊆ fs

r (U(r)), for r ≤ s.
Therefore the rank of the well group decreases monotonically as r increases. The
following lemma suggests an algorithm to compute the rank of the well groups.

Lemma 1 (Lemma 3, [7]). If r is a regular value of f0, then the rank of the well
group U(r) is the number of connected components C ⊆ Fr such that deg(C) 6= 0.

Well Diagram. A point r belongs to the well diagram of f0, Dgm( f0), with multi-
plicity k if the rank of the well group drops by k at r [7]. For reasons of stability, the
point 0 is counted with infinite multiplicity. The point ∞ is counted with multiplicity
k if for all sufficiently large values of r, the rank of U(r) is k. The well diagram con-
tains a multi-set of points (infinitely many points at 0 and finite number of nonzero
points) on the extended real line, R̄ = R∪{±∞}, where each point in Dgm( f0) is
either a 0, a positive real number, or ∞.

We therefore consider each point in the well diagram as a measure of how re-
sistant a homology class of f−1(0) is against perturbations of the mapping f [12].
Recall that f0 has finitely many critical values that can be indexed consecutively
as {ri}i (where 0 = r0 < r1 < r2 < · · · < rl), U(ri) ⊆ F(ri) := H(Fri) are the corre-
sponding well groups. We define the mapping f j

0 : F(0)→ F(r j). A homology class
α in the well group U(0) dies at r j if f i

0(α) is a nonzero class in U(ri); and either
f j
0(α) = 0, or f j

0(α) /∈ U(r j), for each i < j. The robustness of a class α in U(0) is
the value at which the class dies [12].

As shown in the example of Fig. 1 right, each critical point of f generates a class
in U(0), denoted as α1, α2, α3, and α4 (corresponding to critical points x1 to x4,
respectively). At r1, two classes α1 and α2 die, and therefore they have a robustness
of r1. Similarly, α3 and α4 die at r3, with a corresponding robustness of r3. In terms
of the well diagram, the well group U(r1) drops in rank by two because there is an
r1-perturbation of f such that there are only two zeros. Therefore two points are in
the well diagram at r1. Similarly, two points in the well diagram at r3 because the
well group drops its rank by two.
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Robustness of Critical Points. In the setting of 2D vector fields, the robustness
of a critical point xi can be described by the robustness of the class αi in U(0)
that it generates 1. Therefore in our example (Fig. 1), points x1,x2,x3, and x4 have
robustness r1,r1,r3 and r3 respectively.

To compute the robustness of critical points in f , we construct an augmented
merge tree of f0 that tracks the (connected) components of Fr together with their
degree information as they appear and merge by increasing r from 0. A leaf node
represents the creation of a component at a local minima of f0 and an internal node
represents the merging of components. See [28, 6] for algorithmic details. The ro-
bustness of a critical point is the height of its lowest degree zero ancestor in the
merge tree. To illustrate the construction, we show a 2D example recreated from [28]
in Fig. 1. By definition, the critical points x1 and x2 have robustness r1, whereas x3
and x4 have robustness r3. Such a topological notion quantifies the stability of a crit-
ical point with respect to perturbations of the vector fields. Intuitively, if a critical
point x has robustness r, then it can be canceled with a (r+δ )-perturbation, but not
with any (r−δ )-perturbation, for δ > 0 arbitrarily small.

Given the above machineries, the properties associated with robustness for criti-
cal points are direct consequences of Lemma 2 and Lemma 3. Their original proof
sketches can be found in the supplementary material of [28]. These proofs, which
are similar to the proof of Lemma 1, are revisited in Section 5.3 for completeness
(in the setting of a specific type of vector field).

Lemma 2 (Nonzero Degree Component for Vector Field Perturbation, Corol-
lary 1.2 in [28] supplement). Let r be a regular value of f0 and C a connected
component of Fr such that deg(C) 6= 0. Then for any δ -perturbation h of f , where
δ < r, the sum of the degrees of the critical points in h−1(0)∩C is deg(C).

Lemma 3 (Zero Degree Component for Vector Field Perturbation, Corollary
1.1 in [28] supplement). Let r be a regular value of f0 and C a connected component
of Fr such that deg(C) = 0. Then, there exists an r-perturbation h of f such that h
has no critical points in C, h−1(0)∩C = /0. In addition, h equals f except possibly
within the interior of C.

In the example of Fig. 1 right, x1 has a robustness of r1, Lemma 3 implies that
there exists an (r1 +δ )-perturbation (for an arbitrarily small δ > 0) that can cancel
x1 by locally modifying the connected component C ⊆ Fr1+δ containing it.

4 Tensor Fields and Bidirectional Anisotropy Vector Fields

For the remainder of this paper, we consider 2D symmetric second-order tensor
fields. In this section, we establish the necessary foundations for introducing a ro-
bustness measure for the degenerate points of tensor fields. We introduce the notion

1 We rely on this definition to describe the robustness of a critical point xi, even though the critical
point is only a particularly chosen generator of the class αi in U(0).
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of bidirectional anisotropy vectors, which serves two purposes. First, we use it to
define the notion of perturbations of tensor fields for our setting (Section 4.2). Sec-
ond, this notion will be central for the definition of the tensor index under the setting
of degree theory (Section 5.1).

We start by summarizing some basic concepts of tensor field topology in Sec-
tion 4.1. For a complete introduction, we refer the reader to the work by Delmar-
celle [9] or Trichoche [25]. Then we introduce the notion of bidirectional anisotropy
vector fields in Section 4.2 and discuss its relation with respect to the space of devi-
ators. Finally, we establish an isometry from the space of deviators to the anisotropy
vector field in Section 4.3.

4.1 Background in Tensor Field Topology

The topology of a 2D symmetric second-order tensor field is defined as the topology
of one of the two eigenvector fields [9]. The degenerate points constitute the basic
ingredient of the tensor field topology and play a role similar to that for the critical
points (zeros) for vector fields.

2D Symmetric Second-Order Tensor Fields. In our setting, a tensor T is a lin-
ear operator that associates any vector v to another vector u = T v, where v and u
are vectors in the Euclidean vector space R2. In this work, we restrict ourselves
to symmetric tensors. A tensor field T assigns to each position x = (x1,x2) ∈ R2 a
symmetric tensor T(x) = T . Let T denote the space of 2D symmetric second-order
tensors over R2. In matrix form, with respect to a given basis of R2, a tensor field T
is defined as

T : R2→T ,T(x) = T =

[
t11 t12
t12 t22

]
. (2)

The tensor T at x is fully specified by two orthogonal eigenvectors vi at x and its
two associated real eigenvalues λi, defined by the eigenvector equation T vi = λivi
(for i ∈ {1,2}) with vi ∈ R2 and vi 6= 0. By imposing an ordering of λ1 ≥ λ2, the
normalized eigenvectors e1 (resp. e2) associated with λ1 (resp. λ2) are referred to as
the major (resp. minor) eigenvectors.

Degenerate Points. At points x where the eigenvalues of T(x) are different λ1 6= λ2,
the eigenspace of λi (for i ∈ {1,2}) is the union of the zero vector and the set of all
eigenvectors corresponding to eigenvalue λi, which is a one-dimensional subspace
of R2. Such points are considered non-degenerate points of the tensor field T. At
these points, the tensor can then be expressed as

T = λ1e1⊗ e1 +λ2e2⊗ e2 (3)

where ⊗ denotes the tensor product of the normalized eigenvectors ei. For point
x0 ∈ R2 where λ1(x0) = λ2(x0) = λ , its associated tensor is proportional to the unit
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tensor and the corresponding eigenspace is the entire vector space R2. Its matrix
representation is independent from the frame of reference, given as

T (x0) =

[
λ 0
0 λ

]
.

The points x0 are called degenerate points. In the following sections, we assume that
these points are isolated points in R2, which is usually the case. While the degenerate
points as isotropic points exhibiting a high symmetry, they are structurally the most
important features for the eigenvector fields.

Real Projective Line. Before we proceed, we need the notion of real projective line
and the homeomorphism between the real projective line and the circle. The real
projective line, denoted as RP1 (or P1 for short), can be thought of as the set of lines
through the origin of R2, formally P1 := (R2 \{0})/∼, for the equivalence relation
x ∼ y iff x = cy for some nonzero c ∈ R. We sketch the proof below for P1 being
homeomorphic to a circle S1, via P1 ' (S1/∼)' S1.

The quotient topology of a real projective line can be described by the mapping
η : R2 \ {0} → P1 that sends a point x ∈ R2 \ {0} to its equivalent class [x]. η

is surjective and has the property that η(x) = η(y) iff x ∼ y. Restricting such a
mapping to S1, we obtain a mapping η |S1 : S1→ P1 that identifies the two antipodal
points. We now consider S1 as {z ∈ C | ||z||= 1}. Then we have η |S1(z) = [z]. It is
easy to show that η |S1 defines a homeomorphism between P1 and S1/∼ (where ∼
describes the equivalence of z ∼ −z) since η |S1 has the property that U ⊂ (S1/ ∼)
is open (w.r.t. quotient topology on S1/∼) iff (η |S1)−1(U) is open in R2 \{0}.

Now consider the mapping θ : S1→ S1 defined as θ(z) = z2. θ is a continuous
surjective function such that θ(z) = θ(−z). Following the universal property (of
quotient topology2), there exists a unique continuous homeomorphism φ : (S1/ ∼
)→ S1 by having θ descending to the quotient. Therefore (S1/∼)' S1.

Eigenvector Fields. In the following section, we describe the construction of an
eigenvector field associated with the tensor field T. As described before, a real 2D
symmetric tensor T at x has two (not necessarily distinct) real eigenvalues λ1 ≥ λ2
with associated eigenvectors v1 and v2. It is important to note that neither norm nor
orientation is defined for the eigenvectors via the eigenvector equation, that is, if vi is
an eigenvector, then so is cvi for any nonzero c∈R. The normalized eigenvectors are
denoted as ei (for i ∈ {1,2}), where ei ∈ S1. This point of view is reflected through
the interpretation of an eigenvector as elements of the real projective line. Thus
we define the two eigenvector fields as the mapping ψψψ i : R2→ P1 (for i ∈ {1,2}),
referred to as the major and minor eigenvector fields, respectively:

2 The quotient space X/∼ together with the quotient map q : X→ (X/∼) is characterized by the
following universal property: If g : X→ Z is a continuous map such that a∼ b implies g(a) = g(b)
for all a and b in X, then there exists a unique continuous map f : (X/∼)→ Z such that g = f ◦q.
We say that g descends to the quotient.
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ψψψ i : R2→ P1,x 7→
{

[ei] if λ1 6= λ2
[e0] for degenerate points, if λ1 = λ2

(4)

[e0] is an arbitrary chosen element of P1. Note that the eigenvector field is not con-
tinuous in degenerate points, and in general it is not possible to define [e0] such that
it becomes continuous. From now on, we restrict our attention to the major eigenvec-
tor field, referred to as the eigenvector field of T, denoted as ψψψ := ψψψ1, as the minor
eigenvectors are always orthogonal and do not provide additional information in the
2D case.

The eigenvector fields and the degenerate points constitute the basic ingredients
of the topological structure of a tensor field, and they build the basics for the bi-
directional anisotropy vector fields that will be defined in Section 4.2.

4.2 Space of Bidirectional Anisotropy Vectors

In this section, we define the space of bidirectional anisotropy vectors equipped with
a distance measure that is based on the L2 norm of vectors. A comparison with the
commonly used distance measure for tensors using the Frobenius norm shows that
this space is topological equivalent to the space of deviators D . The bidirectional
anisotropy vectors constitute a step toward the definition of an anisotropy vector
field later used in the study of robustness.

x

y

t11

t22

t12

T

t11 =-t22

D(T)
Ω

= ([e1],A)

([e2 ],A)

Ω(T )

Fig. 3: Mapping of a tensor T to the bidirectional anisotropy vector defined by its
anisotropy A and the eigenvector [e1]. The space on the right represents the vector
space spanned by the three independent components of the tensor. The gray plane
on the left highlights the subspace of traceless tensors.
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Bidirectional Anisotropy Vectors. We define bidirectional anisotropy vectors as
bidirectional vectors ω whose direction is defined by the equivalence class of the
major eigenvector [e1] and a norm given by the tensors anisotropy A (e.g., A =
|λ1−λ2|). Formally, we consider these vectors as elements of P1×R≥0. Degenerate
points, that is, points with zero anisotropy and an undefined major eigenvector, are
represented as the zero vectors.

Let T be the space of 2D symmetric tensors over R2. For each tensor T ∈ T ,
we define the bidirectional anisotropy vector by the following mapping (Fig. 3):

Ω : T → P1×R≥0

T 7→ Ω(T ) = ω =

{
([e1],A) if λ1 6= λ2
([e0],0) for degenerate points, if λ1 = λ2

(5)

The space P1×R≥0 can also be interpreted as (R2/∼), for the equivalence relation
x∼ y iff x =−y. In this setting, ω is equal to the equivalence class [Ae1] = {v,−v}
consisting of the two vectors v = Ae1 ∈ R2 and −v = −Ae1 ∈ R2 with e1 ∈ [e1].

α

d(ω ,ω ')

ωω '

Fig. 4: The distance between two bidirectional vectors ω and ω ′ defined as the
minimal distance between the members of their equivalence classes.

Distance Measure. We now define a distance measure between two bidirectional
vectors ω = {v,−v} and ω ′ = {v′,−v′} with vector representatives v and v′, respec-
tively. See Fig. 4 for an illustration:

d(ω ′,ω) = min(‖v− v′‖2,‖v+ v′‖2). (6)

Theorem 2. The distance measure defined in Eq. (6) is a metric on the space of
bidirectional vectors.

Proof. The expression in Eq. (6) is obviously independent on the arbitrarily chosen
representatives v and v′. It is also obviously symmetric and non-negative. Therefore
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we have: d(ω,ω ′) = 0⇔min(‖v−v′‖2,‖v+v′‖2) = 0⇔ v = v′ or v =−v′ ⇔ω =
ω ′. Furthermore the triangle inequality is satisfied (see Appendix B for derivations).
Thus Eq. (6) defines a metric on the space of bidirectional vector fields.

Space of Deviators. The space of bidirectional anisotropy vectors is closely related
to the space of deviatoric tensors D . A deviator D is the traceless or anisotropic part
of a tensor T :

D = T − tr(T )
2

I, (7)

where I represents the unit tensor. The space of 2D symmetric deviatoric tensors D
is a subspace of the set of 2D symmetric tensors T (see Fig. 3). The eigenvectors of
D coincide with the eigenvectors of T . Thus the deviator field has the same topology
as the original tensor field. Its eigenvalues are δ1 = −δ2 = 1

2 (λ1− λ2). The most
commonly used norm in T is the Frobenius norm. For the deviator, the Frobenius
norm is ‖D‖F = 1

2 |λ1 − λ2|, which corresponds to an anisotropy measure (shear
stress) that is typically used for failure analysis in mechanical engineering and will
be used as the anisotropy measure A below, that is, let A = |λ1−λ2|. Based on the
Frobenius norm, degenerate points are the points x0 at which ‖D(x0)‖F = 0. The
Frobenius norm therefore induces a metric on D , that is, for D,D′ ∈D :

dF(D,D′) = ‖D−D′‖F . (8)

Deviator and Bidirectional Vectors. If we restrict the mapping Ω | defined in
Eq. (5) to the space of deviatoric tensors D , the resulting mapping Ω |D is one-
to-one. The inverse mapping is then defined by

(Ω |D )−1 : P1×R≥0 → D

ω = [Ae] 7→ D =

√
A

2
e⊗ e−

√
A

2
e⊥⊗ e⊥. (9)

Here e⊥ represents a normalized vector orthogonal to e. It can be seen immediately
that this expression is independent on the sign of the representative vector e and thus
is well-defined. For ω = [0e0], Eq. 9 results in a zero tensor that is independent on
the chosen vector e0.

Theorem 3. For the above defined metric Eq. (6) on the space of bidirectional
anisotropy vectors and the Frobenius metric Eq. (8) on the space of deviators, we
have

Ω(D′) ∈ Br(Ω(D))⇒ D′ ∈ Br′(D) (10)

with r′ =
√

5r. For the opposite direction, we have

D′ ∈ Br′(D)⇒Ω(D′) ∈ Br(Ω(D)). (11)

Thus the mapping defined in Eq. (5) is continuous, and the space of tensor deviators
and the bidirectional anisotropy vectors are topologically equivalent.
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Proof. Let D and D′ be two symmetric, traceless 2D tensors with major eigen-
values ( 1√

2
λ , −1√

2
λ ) and ( 1√

2
µ, −1√

2
µ), respectively, as well as their corresponding

eigenvectors [ei] and [ fi], for i = 1,2. Their norms are given by ‖D‖2
F = λ 2 and

‖D′‖2
F = µ2. The corresponding bidirectional anisotropy vectors are defined as

ω = Ω(D) = [Ae1] with A = λ and ω ′ = Ω(D′) = [A′ f1] with A′ = µ .
In order to compare the Frobenius distance between deviators and the distance

between bidirectional anisotropy vectors, we first bring them into similar forms.
Therefore we decompose the distance into two parts (see Appendix C for a deriva-
tion).

d2
F(D,D′) = ‖D−D′‖2

F = ‖D‖2
F +‖D′‖2

F −2(D : D′)

= (λ −µ)2 +4λ µ sin2
α (12)

where D : D′ is the inner product of the tensors and α is the angle between the
major eigenvectors. One can interpret this decomposition as having a shape-related
part (λ −µ)2 and a direction-related part 4λ µ sin2

α . A similar decomposition has
been proposed by Zhang et al. [29] for the comparison of normalized tensors.

The distance defined between the bidirectional anisotropy vectors (Eq. (6)) is
based on the L2 distance between vectors. Therefore we will now express the L2
distance between two vectors with length A and A′ accordingly (see Appendix C for
a derivation):

d2(ω,ω ′) = (A−A′)2 +4A A′ sin2(α/2)
= (λ −µ)2 +4λ µ sin2(α/2). (13)

As in Eq. 12, we can interpret Eq. 13 as having a shape-related part and a distance-
related part. The shape-related parts in Eq. (12) and Eq. (13) are identical; however,
the direction-related parts differ with respect to the angels.

Now let Ω(D′) ∈ Br(Ω(D)) be a bidirectional vector in the r-ball of Ω(D) for
some value r ∈ R>0, which means

d2(Ω(D),Ω(D′)) = (λ −µ)2 +4λ µ sin2(α/2)≤ r2.

It follows that (λ − µ)2 ≤ r2 and 4λ µ sin2(α/2) ≤ r2. From this we can derive
an upper limit for the Frobenius distance of the two tensors D′ and D. Combining
the relation sinα = 2sin(α/2)cos(α/2) and the fact that α ∈ [0,π/2], we have
sinα ≤ 2sin(α/2). It follows for the deviators:

d2
F(D,D′) = (λ −µ)2︸ ︷︷ ︸

≤r2

+ 4λ µ sin2
α︸ ︷︷ ︸

≤4λ µ(4sin2(α/2))≤4r2

≤ 5r2⇒ D′ ∈ B√5r(D).

The opposite direction is trivially satisfied, since sin2(α/2) ≤ sin2
α for all α ∈

[0,π/2], and d2(Ω(D),Ω(D′))≤ d2
F(D,D′).
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Bidirectional Anisotropy Vector Field. In accordance with the tensor field, we
now define a bidirectional anisotropy vector field.

A bidirectional anisotropy vector field ωωω assigns to each position x = (x1,x2) ∈
R2 a bidirectional anisotropy vector ω . The map Ω can be used to convert the tensor
field T into a bidirectional anisotropy vector field ωωω(x) = Ω(T(x)) = (Ω ◦T)(x).
If the tensor field is continuous, then the bidirectional anisotropy vector field is also
continuous, as it is a concatenation of two continuous mappings.

4.3 The Anisotropy Vector Field

In the following section, we define an anisotropy vector field ω̃ωω as a mapping from
R2 to S1×R≥0. An element in S1×R≥0 can be understood as a vector in R2 repre-
sented in polar coordinates. Such a vector field ω̃ωω serves two purposes. First, we use
it to specify the perturbation of a tensor field. Second, we use it to define the tensor
index following the degree theory.

To define anisotropy vectors, we first define a mapping Ω̃ from the space of
tensors T to S1×R≥0 by lifting the first part of the mapping Ω from P1 to its
covering space S1 using the mapping φ : P1→ S1 defined in Section 4.1. According
to Eq. (5), we define

Ω̃ : T → S1×R≥0

T 7→ Ω̃(T ) = ω̃ = ((φ × Id)◦Ω) = Ae2
1. (14)

Here e1 ∈ C is an eigenvector representative of [e1] considered as a complex num-
ber. It can be easily seen that Ae2

1 = A(−e1)
2 is independent of the choice of the

representative.

Theorem 4. The above defined mapping (Eq. 14) restricted to the space of deviators
Ω̃ |D is an isometry with respect to the L2-norm in R2 and the Frobenius norm in
D2.

Proof. The proof follows directly from Eq. (12) and (13). Let D and D′ be two
symmetric, traceless 2D tensors defined as above. We have

d2(Ω̃(D),Ω̃(D′)) = (λ −µ
′)2 +4λ µ sin2((2α)/2) = d2

F(D,D′),

since squaring a complex number doubles the angle.

We would like to point out that thus defined vectors are less appropriate for ge-
ometric representations of the tensor and their directions are not directly correlated
to the principal directions of the tensor. The explicit direction depends on the frame
of reference chosen for the representation of the complex numbers (see also Sec-
tion 4.4).
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Anisotropy Vector Field. With these definitions, we can define the anisotropy vec-
tor field ω̃ωω , which serves as basis for the application of the concept of robustness to
tensor fields. ω̃ωω assigns to each position x ∈ R2 a vector ω̃ . Thereby the map Ω̃ is
used to convert the tensor field T into a vector field ω̃ωω(x) = Ω̃(T(x)) = (Ω̃ ◦T)(x).
If the tensor field is continuous, then the anisotropy vector field is also continuous
as a concatenation of two continuous mappings (see Fig. 5).

ω̃ωω : R2→ S1×R≥0(' R2), ω̃ωω(x) = ((φ × Id)◦ωωω)(x) (15)

Therefore Id : R→ R is the identity map.

!2

α

x2

x1 α2

ω
×!

a1ω1

a2
ω 2

!2

φ × Id

!ω = φ × Id( )"ω

Fig. 5: The concatenation of the mapping defined by the tensor field and the homo-
morphism φ between P and S defined in Section 4.1 is a continuous mapping from
R2 to R2. It defines a vector field on R2.

4.4 Notes on the Topology of the Anisotropy Vector Field

When looking at the vector field derived from the tensor field in Section 4.3, an
obvious question is how its vector field topology relates to the tensor topology of
the original tensor field. From the construction of the anisotropy vector field, it is
clear that its critical points, zeros of the vector field, coincide with the degenerate
points of the tensor field.

These points, however, constitute only a part of the topology. The second essen-
tial part is the connecting separatrices. For the vector case, these are the integral
lines of the vector field. For tensor fields, the separatrices are tensor lines, which
follow one eigenvector field. The structure in the vicinity of the critical points is
characterized by its index (compare to Section 5.1). In our setting, the index of the
tensor field degenerate points and the index of the anisotropy vector field are related
by the degree two mapping φ defined in 4.1. Thus a wedge point in the tensor field
(tensor index +1/2) is mapped to sources/sinks (vector index +1) and trisectors
(tenors index −1/2) are mapped to saddle points (vector index −1). In general a
degenerate point of tensor index i is mapped to a critical point of index 2i (Fig. 6).
This mapping gives rise to a very distinct structure in which different critical points
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Tensor field degenerate points with half integer indices

index -0.5 index 0.5 index 1.5

Corresponding anisotropy vector field critical points with integer indices

index -1.0 index 1 index 3.0

Fig. 6: Change of the structure of the field when mapping the tensor field to the
anisotropic vector field. Examples for isolated degenerate points.

will be connected. Integral lines in the vector field do not coincide with the integral
lines for the tensor field.

What is important, however, for our discussion is that the stability of the critical
points and the degenerated points in terms of robustness is the same.

5 Robustness for Tensor Fields

Similar to vector field topology, one of the major challenges in tensor field topology
is the complexity of the topological structure. A large part of the topological struc-
ture originates from extended isotropic regions and such a structure is very sensitive
to small changes in the data. Therefore we would like to have a stable topological
skeleton representing the core structure of the data. Previous attempts to simplify
the tensor field topology have relied on heuristics that lack a clean mathematical
framework. Motivated by the notion of robustness based on the well group theory
for the vector fields, we extend such a concept to 2D symmetric second-order tensor
fields. In this section, we connect the indexes of degenerate points with the degree
theory in Section 5.1, define tensor field perturbation in Section 5.2, and generalize
robustness to tensor field topology in Section 5.3. Our main contributions are three-
fold: We interpret the notion of tensor index under the setting of degree theory; We
define tensor field perturbations and make precise connections between such per-
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turbations with the perturbations of bidirectional anisotropy vector fields; And we
generalize the notion of robustness to tensor field topology.

5.1 Indexes of Degenerate Points and Degree Theory

Index of Degenerate Points. Similar to the zeros of vector fields, we also consider
the notion of index for these degenerate points. Delmarcelle [9] defines the index
of a degenerate point x ∈ R2 as the number of “half-windings” an eigenvector per-
forms when moved along a simple closed curve (i.e., a Joran curve) enclosing the
degenerate point. For linear fields, the structure of the eigenvector fields surrounding
the degenerate points follows two characteristic patterns depending on their indexes
(see Fig. 7).

Trisector Wedge

Fig. 7: Basic structure of eigenvector fields in the vicinity of degenerate points. It
can easily be seen that it is not possible to orient the tensor lines in a continuous
way.

Connection to Degree Theory. The above definition of an index by Delmarcelle
follows a geometric point of view considering the number of “half-windings” of
the eigenvectors. There is also, however, a close connection between the index of
a degenerate point and the degree of a mapping as defined in algebraic topology.
Since the degree plays an important role in the theory of robustness, we revisit the
concept in Section 3 and provide here a formulation in terms of degree theory. The
line of thought is similar to that of Trichoche ([25], page 55).

Consider a tensor field T defined on an orientable surface M (here M = R2),
and suppose all degenerate points are isolated and finite in number. We would like
to associate (via the theory of Hopf [14]) an index with each x of M. We built a
continuous mapping ξ by lifting the eigenvector field ψ to its covering space S1 (see
Fig. 8). That is, ξ = φ ◦ψ , where ψ : R2→ P1 and φ : P1→ S1, that is, ξ (x) = [e1]

2,
where [e1] is a generator.

For the definition of the index of a degenerate point x, we consider the boundary
of a region C enclosing x, that is, the curve ∂C with no other degenerate points in
its interior. We define the index of x, IT (x) to be 1

2 deg(ξ |∂C).

Poincaré-Hopf Theorem for Tensor Fields. Delmarcelle has provided a tensor
field equivalence of Poincaré-Hopf theorem ([9], page 163).
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±v1 ±v2

!2

α
x2

x1 α
e1

e2

2

C

∂C
φψ

[e2]
[e1]

ψ (∂C)

ζ = φ !ψ

ζ (∂C)

Fig. 8: The mapping ξ = φ ◦ψ defines a continuous mapping from R2 to S1, which
corresponds to lifting the mapping φ from P1 to the covering space S1.

Theorem 5 (Theorem 15, [9]). The tensor index of a 2D orientable surface M rel-
ative to a tangent tensor field T with a finite number of degenerate points on M is
equal to the Euler characteristic of M. That is, IT (M) = ∑i IT (xi) = χ(M).

According to Hopf’s result [14], whenever the continuous field of directions tan-
gent to M is not zero at more than finitely many points xi, we always have the above
theorem [5].

5.2 r-Perturbation of Anisotropy Vector Field

Suppose we have two anisotropy vector fields f and h, derived from tensor fields T
and T′, respectively, that is, f = ω̃ωω and h = ω̃ωω

′. We define the distance between the
two as

d( f ,h) = sup
x∈R2
|| f (x)−h(x)||2.

We say a continuous mapping h is an r-perturbation of f , if d( f ,h) ≤ r. In other
words, for each point x ∈R2, the point h(x) lies within a disk of radius r centered at
f (x). See Fig. 2 for a geometric interpretation of an r-perturbation of the anisotropy
vector field at a point x in the domain.

5.3 Robustness of Degenerate Points

Converting a tensor field T to its corresponding anisotropy vector field f greatly
simplifies the extension of robustness from the vector field to the setting of the
tensor field. First, the degenerate points of T correspond to the critical points of
f ; therefore f has no critical points in a path-connected region C ⊂ R2 iff T has
no degenerate points in C. Second, the index of a degenerate point in T is half the
degree of its corresponding critical point in f . Third, the r-perturbation of f relates
to the perturbation of T via its projection D in a quantifiable way; an r-perturbation
in f corresponds to an r-perturbation in D.
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We have conjectured that the robustness of degenerate points x for tensor fields
T would resemble the robustness of its corresponding critical point f for the
anisotropy vector fields. Recall that, by definition, f is an anisotropy vector field,
f : R2→ R2, f0 = || f ||2 : R2→ R , Fr = f−1

0 (−∞,r]. Let h be another anisotropy
vector field h : R2→ R2. We would prove the following lemmas, whose proofs are
identical to the proofs used for results in [28] (Corollary 1.1 and Corollary 1.2 in
the supplemental material) with respect to vector field perturbation. We include the
proofs here for completeness.

Lemma 4 (Nonzero Degree Component for Tensor Field Perturbation). Let r be
a regular value of f0 and C a connected component of Fr such that deg(C) 6= 0. Then
for any δ -perturbation h of f , where δ < r, the sum of the degrees of the critical
points in h−1(0)∩C is deg(C).

Proof. Before we illustrate the details of the proof, we need to provide a rigorous
definition of the degree of a mapping.

Let C ⊆ Fr be a path-connected component of Fr. Function f restricted to C,
denoted f |C : (C,∂C)→ (Br,∂Br), maps C to the closed ball Br of radius r centered
at the origin, where ∂ is the boundary operator. f |C induces a homomorphism on the
homology level, f∗|C : H(C,∂C)→H(Br,∂Br). Let µC and µBr be the generators of
H(C,∂C) and H(Br,∂Br), respectively. The degree of C (more precisely the degree
of f |C), deg(C) = deg( f |C), is the unique integer such that f∗|C(µC) = deg(C) ·µBr .
Furthermore we have the function restricted to the boundary, that is, f |∂C : ∂C→ S1.
It was shown that deg( f |C) = deg( f |∂C) ([7], Lemma 1).

Consider the following diagram for any δ -perturbation h of f , where δ < r:

H(C,∂C)
i∗−→ H(C,C−h−1(0))

↓ f∗|C ↓ h∗|0
H(Br,∂Br)

j∗−→ H(Br,Br−{0}). (16)

i∗ and j∗ are homomorphisms induced by space-level inclusions i : (C,∂C) →
(C,C−h−1(0)) and j : (Br,∂Br)→ (Br,Br−{0}). j∗ is also an isomorphism. The
vertical maps f∗|C and h∗|0 are induced by f and h with restrictions, respectively.
Therefore the diagram commutes.

Suppose r is a regular value and deg(C) 6= 0. Then by commutativity, the sum of
degrees of the critical points in h−1(0)∩C is deg(C).

Lemma 5 (Zero Degree Component for Tensor Field Perturbation). Let r be a
regular value of f0 and C a connected component of Fr such that deg(C) = 0. Then
there exists an r-perturbation h of f such that h has no degenerate points in C,
h−1(0)∩C = /0. In addition, h equals f except possibly within the interior of C.

Proof. The proof follows the commutative diagram above (Eq. 16) for any r-
perturbation h of f . Suppose r is a regular value. Then well groups U(r − δ )
and U(r + δ ) are isomorphic for all sufficiently small δ > 0. Suppose deg(C) =
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deg( f |C) = deg( f |∂C) = 0. Then following the Hopf Extension Theorem ([13], page
145), if the function f |∂C : ∂C→ S1 has degree zero, then f can be extended to a
globally defined map g : C→ S1 such that g equals f when both are restricted to
∂C. Now we define a perturbation h : R2→R2 such that h = 0.5 · f +0.5 ·g. h is the
midpoint on a straight line homotopy between f and g. By definition d(h, f )≤ r, so
h is an r-perturbation of f . In addition, h−1(0)∩C is empty.

Remark. One important aspect of well group theory is that the well group is defined
to be the intersection of the images of jh for all r-perturbation h of f (Eq. 1). Given
f as an anisotropy vector field, we introduce an r-perturbation h of f . We would
need to make sure that any such h is itself a valid anisotropy vector field. That is,
for any r-perturbation h of f , there exists a corresponding tensor field T from which
an anisotropy vector field h can be derived. This is true based on derivations in
Section 4.

6 Discussion

There are a few challenges in extending our framework to a 3D symmetric tensor
field. The notion of deviator can be generalized to 3D, but the notion of anisotropy
vector field does not generalize to 3D. The lack of such a notion poses a challenge
in studying robustness for 3D symmetric tensor field topology via transformation of
the data to the anisotropy vector field. We suspect a possible solution is to define
perturbations with respect to the bidirectional anisotropy vector field derived from
eigenvector fields.

An important contribution of this paper is the conversion from a tensor field T
to its corresponding anisotropy vector field f . There is a one-to-one correspondence
between the degenerate points of T and the critical points of f . However, as shown
in Fig. 6, the topology of T and that of f obviously do not agree. Understanding
their differences and the consequences will be an interesting direction.

The main motivation of extending robustness to 2D symmetric tensor field is that
it would lead to simplification schemes for tensor field data. In general, topology-
based simplification techniques pair the topological features for simplification via
the computation of topological skeleton, which can be numerically unstable. In con-
trast, the proposed robustness-based method is independent of the topological skele-
ton and, thus, is insensitive to numerical error.
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Appendix A Notations

Symbol Description
T Space of 2D symmetric second-order tensors
D ⊂T Space of 2D symmetric second-order deviators
RP1 or P1 Real projective line
T , D Tensors
T,D : R2→T Tensor fields
vi Eigenvectors
ei Normalized (unit) eigenvectors
λi, µi Eigenvalues
A (e.g. = |λ1−λ2|) Anisotropy measure
[ei] ∈ P1 Equivalence class of unit eigenvectors
ψψψ i : R2→ P1, i = 1,2, Major (i = 1) and minor (i = 2) eigenvector fields

(direction fields, no magnitude)
ψψψ = ψψψ1 : R2→ P1 (Major) eigenvector field
ω Bidirectional anisotropy vector
Ω : T → P1×R≥0 Mapping that assigns a bidirectional anisotropy

vector to the tensor
ωωω : R2→ P1×R≥0 Bidirectional anisotropy vector field (direction

fields with magnitude, not a traditional vector
field)

Ω̃ : T → R2 Mapping that assigns an anisotropy vector to a ten-
sor

ω̃ωω : R2→ R2 Anisotropy vector field (traditional vector field)
ω̃(x) ∈ R2 Anisotropy vector
φ : (P1 ' (S1/∼))→ S1 Degree 2 mapping
ξ = φ ◦ψ : R2→ S1 Mapping used for defining the index of degenerate

points

Appendix B Triangle Inequality for the Distance Measure
Between Bidirectional Anisotropy Vectors (Eq. 6)

Let ω , ω ′ and ω ′′ be bidirectional anisotropy vectors as defined in Eq. (5) with
vector representatives v, w, and u respectively. Recall the distance measure is defined
as d(ω,ω ′) = min(‖v−w‖2,‖v+w‖2). Therefore we have:
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d(ω,ω ′)+d(ω ′,ω ′′)
= min( ‖v−w‖2,‖v+w‖2)+min(‖w−u‖2,‖w+u‖2)

≥ min( ‖v−w‖2 +‖w−u‖2,‖v−w‖2 +‖w+u‖2,

‖v+w‖2 +‖w−u‖2,‖v+w‖2 +‖w+u‖2 )

= min( ‖v−w‖2 +‖w−u‖2,‖v−w‖2 +‖w− (−u)‖2,

‖v− (−w)‖2 +‖(−w)− (−u)‖2,‖v− (−w)‖2−‖(−w)−u‖2 )

≥ min( ‖v−u‖2,‖v− (−u)‖2,‖v− (−u)‖2,‖v−u‖2 )

= min( ‖v−u‖2,‖v+u‖2 )

= d(ω,ω ′′)

Appendix C Derivations for Eq. 12 and Eq. 13

α
e1

e2

f1

f2

cosα

sinα

v1

v2

||v1||-||v2||

geometric mean
(||v1||.||v2||)1/2

α

 sin   /2α

α /2

Fig. 9: Left: eigenvectors of D and D′ and angle α by definition. Right: geometric
interpretation of the vector distance decomposed in radial and directional parts.

The inner product of two symmetric tensors T and T ′ is defined as T : T ′ =
∑i j ti jt ′i j. It can be expressed in terms of eigenvectors and eigenvalues ∑ks λkµs(ek ·
fs)

2 (see e.g., [4]). Here · denotes the standard scalar product of vectors. For 2D
deviatoric tensors D and D′ with eigenvalues ( 1√

2
λ , −1√

2
λ ) and ( 1√

2
µ, −1√

2
µ), respec-

tively, and their corresponding eigenvectors ei and fi (for i = 1,2), this yields

(D : D′)=
1
2

λ µ
(
(e1 · f1)

2− (e1 · f2)
2− (e2 · f1)

2 +(e2 · f2)
2)= λ µ

(
cos2

α− sin2
α
)
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d2
F(D,D′) = ‖D−D′‖2

F = ‖D‖2 +‖D′‖2−2(D : D′)

= ‖D‖2 +‖D′‖2−2λ µ
(
cos2

α− sin2
α
)

= λ
2 +µ

2−2λ µ
(
1−2sin2

α
)

= (λ −µ)2−4λ µ sin2
α

A similar construction for 2D vectors v1 and v2 using the trigonometric equality
1− cos(2β ) = 2sin2(β ) gives:

d2(v1,v2) = ‖v1‖2 +‖v2‖2−2(v1v̇2)

= (‖v1‖+‖v2‖)2−2‖v1‖ ‖v2‖−2(v1 · v2)

= (‖v1‖+‖v2‖)2−2‖v1‖ ‖v2‖(1−2cosα)

= (‖v1‖+‖v2‖)2−4‖v1‖ ‖v2‖sin2(α/2)
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