
SUPPLEMENT

In this supplement, we first provide details on the datasets in Ap-
pendix A. We then discuss standard and topology-based evaluation
metrics in Appendix B, followed by parameter configurations for base
and augmented compressors in Appendix C. Next, we include analysis
of reconstruction quality in Appendix D.

We describe algorithmic details in Appendix E, followed by addi-
tional information on run time analysis in Appendix F. We provide
additional renderings for visual comparison in Appendix G. We discuss
edge cases involved in cell correction in Appendix H. Finally, for read-
ers who are mathematically inclined, we offer proofs for the lemmas
and theorems in Appendix I and Appendix J; these can be skipped
during the initial reading.

A AN OVERVIEW OF DATASETS

We provide details on the datasets used in our experiments. Each dataset
contains a set of 2D slices, obtained by slicing a corresponding 3D
dataset along the z-axis and discarding information associated with the
z direction. Any slices where the tensor field was entirely zero were
removed.

The Stress A and Stress B datasets come from the public dataset
associated with the work by Patel and Laidlaw [6]. The datasets are
publicly accessible from the IEEE DataPort [7]; Stress A dataset corre-
sponds to the first, whereas Stress B dataset corresponds to the third
dataset in the DataPort.

The Brain A dataset comes from the public dataset of brain MRI
scans from Tian et al. [9]. We use the data from patient 23. We then
employ Diffusion Imaging in Python (DIPY) to extract the diffusion
tensor field from the data.

The Brain B dataset is a scan of Dr. Gordan Kindlmann’s brain
that he released for public use. The dataset can be accessed from his
personal homepage [5]. The dataset also comes with a mask indicating
which areas are part of the brain. We set the tensors equal to zero in all
areas outside of the brain (i.e. where the mask is not equal to 1).

The asymmetric tensor fields are all derived from 2D flow fields
v : R2 → R2. We compute the gradient at each point of a flow field,
producing a 2D matrix. Now we describe the computation for ∂vx

∂x
,

which proceeds analogously for the other partial derivatives. Each flow
field is defined on a regular grid [n] × [m] for some m,n ∈ N. We
describe the computation for a point p = (px, py) at one of the grid
points. The gradients are computed differently based on its location in
the interior or at the boundary:

• 1 < px < n: ∂vx
∂x

∣∣
p
← vx(px + 1, py)− vx(px − 1, py).

• px = 1: ∂vx
∂x

∣∣
p
← vx(2, py)− vx(1, py).

• px = n: ∂vx
∂x

∣∣
p
← vx(n, py)− vx(n− 1, py).

The Ocean dataset comes from the Global Ocean Physics Reanal-
ysis dataset from the E.U. Copernicus Marine Service [4]. For the
flow field, we use the uo and vo fields from the daily data (file name:
“cmems_mod_glo_phy_my_0.083deg_P1D-m”), which is then sliced
in the range x : 100-200, y : 10-110 z : 0-26, where z corresponds to
depth (all ranges are inclusive). We use the data on June 2, 2019.

The Miranda dataset comes from the hydrodynamics code for large
turbulence simulations conducted by Lawrence Livermore National
Laboratory. We use the x velocity and y velocity fields to derive the
flow field. It can be accessed through the SDR Bench [2, 11].

The Vortex Street dataset comes from the Cylinder Flow with von
Karman Vortex Street simulation [3, 8]. The Heated Cylinder dataset
comes from the Heated Cylinder with Boussinesq Approximation simu-
lation [3,8]. Both datasets are accessed through the Computer Graphics
Laboratory at ETH Zurich [1].

For each dataset, we eliminate any slices where all data points had
the same value.

B EVALUATION METRICS

We now discuss evaluation metrics. During compression, we compress
each slice of each dataset separately, but report evaluation metrics
aggregated across all datasets.

The compression ratio is the size of the ground truth data file divided
by the size of the compressed file. To report the compression ratio for a
dataset, we report the total size of every ground truth data slice divided
by the total size of every compressed slice.

The bit-rate is the average number of bits used to encode each tensor.
For each slice, we compute the bit-rate by dividing the compressed file
size (in bits) by the number of tensors. We compute the bit-rate for a
dataset by taking the average bit-rate across all slices.

Peak-Signal to Noise Ratio (PSNR) is typically defined for the com-
pression of a single scalar field. If MSE is the mean squared error,
and R is the range of the data, then PSNR for a scalar field is defined as

PSNR = 10 log10

(
R2

MSE

)
.

Our PSNR calculation for tensor fields is a bit more complex. Let D be
a dataset containing a set of slices. If s ∈ D is a slice, let fs : R2 → T
be the ground truth tensor field and f ′

s : R2 → T the reconstructed
tensor field. Let v(s) be the set of vertices of each slice s. To compute
the PSNR, we first compute two values for each slice s: a mean squared
error MSEs, and a range Rs. For asymmetric tensor fields, we define
MSEs by

MSEs =
1

4|v(s)|
∑

x∈v(s)

∑
(i,j)∈[1,2]2

(f(x)− f ′(x))2i,j .

For a symmetric tensor field, we define MSEs similarly, except that we
ignore the T21 entry of each tensor T in our computation, because it is
equal to the T12 entry. Corresponding to this omission, we divide by
3|v(s)| instead of 4|v(s)|.

For a slice s, the range Rs is defined as the maximum entry across
all tensors in s minus the minimum entry across all tensors of s. More
formally, we define it as

Rs = max
x∈v(s)

(i,j)∈[1,2]2

{f(x)i,j} − min
x∈v(s)

(i,j)∈[1,2]2

{f(x)i,j}.

Let N be the number of slices. We then define the PSNR as:

PSNR = 10 log10

(
1

N

∑
s∈D

R2
s

MSEs

)
.

We define the PSNR in this way to account for the fact that certain
slices may have different ranges.

C PARAMETER CONFIGURATIONS

We include the parameter configurations for our experiments. In Tab. 5,
we include the error bounds used to generate the plots in Fig. 10 and
Fig. 11. We use the same error bounds for the base and augmented
compressors.

In Tab. 6, we include the error bounds used to generate Tab. 2. Each
row represents a pair of trials, one using a base compressor, and the
other using TFZ. For each row, we run the base compressor (listed
under ‘BC’), as well as TFZ augmenting that base compressor on the
given dataset. For the base compressor, we use the error bound listed
under ‘BC-EB’. For TFZ, we use the error bound listed under ‘A-EB’.

We include a similar table, Tab. 7, describing the error bounds used
to generate Fig. 1, Fig. 8, Fig. 9, Fig. 17, Fig. 18, and Fig. 19.

D RECONSTRUCTION QUALITY

In this section, we give further analysis of reconstruction quality. We
analyze the tradeoff between bit-rate and PSNR for asymmetric tensor
fields in Appendix D.1. We provide error maps in Appendix D.2. We
give a distribution of the errors imposed by the base compressors (and
fixed during augmentation) in Appendix D.3. Finally, we analyze the
causes of visual artifacts in Appendix D.4



Table 5: Parameter configurations used to generate Fig. 10 and Fig. 11.
BC: Base Compressor.

Dataset BC Error Bounds (ξ)
Stress A SZ3 0.006, 0.0195, 0.033, 0.0465, 0.06
Stress A SPERR 0.006, 0.0195, 0.033, 0.0465, 0.06
Stress B SZ3 0.006, 0.0195, 0.033, 0.0465, 0.06
Stress B SPERR 0.006, 0.0195, 0.033, 0.0465, 0.06
Brain A SZ3 0.006, 0.0195, 0.033, 0.0465, 0.06
Brain A SPERR 0.006, 0.0195, 0.033, 0.0465, 0.06
Brain B SZ3 0.006, 0.0195, 0.033, 0.0465, 0.06
Brain B SPERR 0.006, 0.0195, 0.033, 0.0465, 0.06
Ocean SZ3 0.003, 0.00975, 0.0165, 0.02325,

0.03
Ocean SPERR 0.003, 0.00975, 0.0165, 0.02325,

0.03
Miranda SZ3 0.0003, 0.000975, 0.00165,

0.002325, 0.003
Miranda SPERR 1× 10−5, 3× 10−5, 9.75× 10−5,

0.000165, 0.0002325
Vortex Street SZ3 5 × 10−5, 0.0001625, 0.000275,

0.0003975, 0.0005
Vortex Street SPERR 1×10−5, 3.25×10−5, 5.5×10−5,

7.05× 10−5, 0.0001
Heated Cylinder SZ3 5 × 10−5, 0.0001625, 0.000275,

0.0003975, 0.0005
Heated Cylinder SPERR 5 × 10−5, 0.0001625, 0.000275,

0.0003975, 0.0005

Table 6: Parameter configurations used to generate Tab. 2. BC: Base
compressor used in each trial. A-EB: Error bound for an augmented
compressor. BC-EB: Error bound for the base compressor that produces
a similar compression ratio to the augmented counterpart (i.e., when the
augmented compressor uses the error bound listed under A-EB).

Dataset BC A-EB BC-EB
Stress A SZ3 0.01 0.00953125
Stress A SPERR 0.01 0.009609375
Stress B SZ3 0.01 0.0090625
Stress B SPERR 0.01 0.009140625
Brain A SZ3 0.01 0.00265625
Brain A SPERR 0.01 0.00203125
Brain B SZ3 0.01 0.00111328125
Brain B SPERR 0.01 0.00056640625
Ocean SZ3 0.001 0.00075
Ocean SPERR 0.001 0.00065625

Miranda SZ3 0.001 5.078125× 10−5

Miranda SPERR 0.001 9.765625× 10−6

Vortex Street SZ3 0.001 6.4453125× 10−5

Vortex Street SPERR 0.001 3.466796875× 10−5

Heated Cylinder SZ3 0.001 0.00013671875
Heated Cylinder SPERR 0.001 0.0001484375

D.1 Compression of Asymmetric Tensor Fields
In addition to the experiments highlighted in Sec. 5, we study the trade-
off between bit-rate and PSNR for TFZ when compressing asymmetric
tensor fields. We preserve the topology of either the eigenvector or the
eigenvalue partition, but not both, as illustrated in Fig. 11. In Fig. 11,
we plot the tradeoff between bit-rate and PSNR for SZ3, SPERR, aug-
mented SZ3 and augmented SPERR. We show the same tradeoff for
augmented SZ3, which preserves the topology of either the eigenvalue
or the eigenvector partition (but not both), denoted as A-SZ3 (val) or
A-SZ3 (vec). We also show the corresponding curves for augmented
SPERR.

In Fig. 11, we observe that preserving only one type of partition
results in lower storage overhead compared to preserving both. In
general, preserving the topology of the eigenvalue partition requires
less storage than preserving the topology of the eigenvector partition.

Table 7: Parameter configurations used to generate Fig. 1, Fig. 8, Fig. 9,
Fig. 17, Fig. 18, and Fig. 19. BC: Base compressor used in each trial.
A-EB: Error bound used for an augmented compressor. BC-EB: Error
bound for the base compressor that produces a similar compression ratio
to the augmented counterpart (i.e., when the augmented compressor
uses the error bound listed under A-EB.)

Dataset BC A-EB BC-EB
Stress A SZ3 0.06 0.028798828125
Stress A SPERR 0.06 0.052265625
Stress B SZ3 0.01 0.03609375
Stress B SPERR 0.01 0.038671875
Brain A SZ3 0.06 0.0196875
Brain A SPERR 0.06 0.0234375
Brain B SZ3 0.03 0.00228515625
Brain B SPERR 0.03 0.001875
Ocean SZ3 0.01 0.003984375
Ocean SPERR 0.01 0.00359375

Miranda SZ3 0.003 5.859375× 10−5

Miranda SPERR 0.0002325 1.1806640625× 10−5

Vortex Street SZ3 0.0005 6.4453125× 10−5

Vortex Street SPERR 0.0001 2.8515625× 10−5

Fig. 11: Plots showing the tradeoff between bit-rate and PSNR for SZ3
and SPERR on each dataset, as well as the augmented compressors.
SZ3 (val) and SPERR (val) respectively preserve the topology of the
eigenvalue partition only. SZ3 (vec) and SPERR (vec) respectively
preserve the topology of the eigenvector partition only.

Specifically, for the Miranda dataset, preserving the topology of the
eigenvalue partition incurs almost no storage overhead, whereas sig-
nificant overhead is needed to preserve the topology of its eigenvector
partition.

D.2 Error Maps
In Fig. 12, We include an error map of the Vortex Street dataset com-
pressed with the SZ3 compressor both (A) before augmentation with
TFZ and (B) after augmentation. Here, we can see that the error profile
of the dataset is generally the same before and after augmentation. How-
ever, there are a few areas where augmentation increases or decreases
the error in order to correct the topology.

In Fig. 13, we include an error map of the Stress B dataset. In the
top row, we include an error map similar to that showed in Fig. 12
compressed with SZ3 (A) before augmentation and (B) after augmenta-
tion with ξ = 0.01. We show a 65× 65 pixel grid, where each pixel
corresponds to a tensor. We can see that the error profile is nearly
identical in both cases. In the bottom row, we show an error profile
for the eigenvector directions of the Stress B dataset (C) before aug-
mentation and (D) after augmentation with ξ = 0.01. We show a
linearly interpolated view, rather than a pixel grid as before, due to the
nontrivial fashion in which the tensorlines behave under interpolation.
We can see that the error profile is nearly identical before and after
augmentation, except that, in a few areas of where the base compressor
has significantly distorted the eigenvector directions, TFZ corrects the
error in those regions during augmentation.

D.3 Errors Corrected
In Fig. 14, we give distributions of the different errors achieved on
each asymmetric dataset by each base compressor before augmentation
with TFZ. Here, we can see that the percentage of points that are



Fig. 12: Error maps of Vortex Street dataset compressed with SZ3 both
(A) before augmentation and (B) after augmentation. The error value is
given as the maximum error across the four entries of each tensor as a
percentage of the range. We used ξ = 0.001 for compression.

Fig. 13: Error maps of the stress B dataset compressed with SZ3 and
augmented SZ3. Top row: error map of the maximum error across the
four entries of each tensor as a percentage of the range (A) before
augmentation and (B) after augmentation. Each pixel represents a
tensor. Bottom row: error map of the angle of the tensorlines (C) before
augmentation and (D) after augmentation. We interpolate the tensor
field to show distortions in the interior of cells. We used ξ = 0.01 for
compression.

misclassified according to the eigenvector and eigenvalue partitions
are less than the total number of cells whose topology is distorted
according to the eigenvector and eigenvalue partitions, respectively.
This is logical, because whenever a point has the wrong classification
type according to the eigenvalue or eigenvector partition, it distorts the
topology of all six surrounding cells. Likewise, we found that, in most
cases, correcting the vertices of a cell is sufficient to correct the internal
topology of the cell, and further correction of the internal topology
of a cell is not needed. We can see that there are typically very few
errors related to degenerate points. To generate these numbers, we
used the largest error bound for each combination of a dataset and base
compressor listed in Tab. 5.

D.4 Visual Artifacts

One limitation of TFZ is that the decompressed data may exhibit visual
artifacts, notably when using tensorline LIC visualization for symmetric
data, and eigenvector/eigenvalue partition visualization for asymmetric
data. In the symmetric case, such artifacts primarily originate from the
base compressor, rather than our augmentation layer. One can verify
mathematically that the eigenvector directions are determined entirely
by the value θ in the decomposition equation. Our augmentation layer
can only improve the value of θ produced from the base compressor,
and thus will not further distort the eigenvector directions. As shown

Fig. 14: Histograms demonstrating the percentage of points and cells
in each asymmetric dataset that exhibit certain types of errors before
augmentation with TFZ. P. Val: Incorrect point classification in eigenvalue
partition. P. Vec: Incorrect point classification in eigenvector partition. C.
Val: Incorrect cell classification in eigenvalue partition. C. Vec: Incorrect
cell classification in eigenvector partition (excluding degenerate points).
DP: Errors pertaining to degenerate points within each cell.

in Fig. 13, our strategy produces an error profile for the eigenvector
directions that is very similar to the base compressor, except for a few
areas where TFZ has corrected some distortions. We observed that
distortions are most prominent in regions where tensors magnitudes are
low compared to the absolute error bound, allowing for greater relative
distortion.

In the asymmetric case, our strategy can cause visual artifacts. We
particularly notice jagged artifacts, such as those in the zoomed-in
region of Fig. 1. These artifacts are most prominent in regions where
the decomposition coefficients (γd, γr, γs) are small compared to the
absolute error bound ξ. In such cases, if our strategy replaces e.g.
γ′
d ← γ′

d + ξ, then the magnitude of γ′
d can be significantly increased.

If one coefficient of a tensor is increased in this manner while a neigh-
boring tensor still has very small coefficients, the resulting discrepancy
can produce jagged artifacts. However, our strategy ensures that the
boundaries of partition regions will not shift by more than the width of
a cell. Thus, in high resolution datasets, such as Fig. 9, these artifacts
will be less noticeable.

E ALGORITHM DETAILS

In this section, we provide additional details about our topology-
preserving compression algorithm, for both symmetric (Appendix E.1)
and asymmetric (Appendix E.2) cases.

E.1 Compression of Symmetric Tensor Fields

Let σ be a (triangular) cell. Let T1, T2, and T3 be the tensors at
the vertices of σ for the ground truth data, and T ′

1, T ′
2 and T ′

3 be
the corresponding tensors in the reconstructed data. Following the
decomposition in Eq. (3), we obtain coefficients γd,1 for T1, γ′

d,1 for
T ′
1 and so forth.

Suppose that we have handled case 1 of the cell correction step
identified in Sec. 4.2. It is possible that, due to the limited precision
afforded by linear-scaling quantization, the cell topology will not be
preserved. In this case, we store the deviators of each tensor losslessly,
one at a time, until the cell topology is preserved. In particular, for i ∈
{1, 2, 3}, we store ∆i = γs,i cos(θ) and Fi = γs,i sin(θ) losslessly.
During decompression, we compose a tensor according to

T ′′
i ← γ′

d,i +

(
∆i Fi

Fi −∆i

)
. (9)

In extremely rare cases, even storing all three deviators losslessly will
not preserve the cell topology or respect the error bound, in which case
we preserve the tensors completely losslessly. Likewise, it is possible
that after adjusting one of the θ′i using linear-scaling quantization, the
error bound will not be respected. If this occurs, we store the deviator
losslessly (and store the tensor losslessly if necessary).



E.2 Compression of Asymmetric Tensor Fields

In rare cases, it is possible for the vertex correction step in Sec. 4.3.1 to
fail. There are two ways that it can fail.

First, although each coefficient individually respects the error bound,
it is possible—though unlikely—that T ′′ (the reconstructed tensor)
does not. In such cases, if θ′ is not currently quantized, we quantize it
using the same strategy as in the symmetric case. Otherwise, we revert
θ′ to its unquantized value and apply logarithmic-scaling quantization
to γ′

d, γ′
r , and γ′

s, using their values from the intermediate data prior
to the procedure described in Sec. 4.3.1. By Lemma 3, these values
deviate from their respective ground truth values by at most ξ, ξ, and√
2 ξ, respectively. We then use logarithmic-scaling quantization to

halve these error bounds and repeat the logic from the vertex correction
step. This process of quantizing θ′ and halving each error bound is
repeated up to ten times, after which T is stored losslessly.

Second, two coefficients may have equal magnitude in the recon-
structed data but not in the ground truth, potentially causing classifica-
tion issues. In such cases, as well as when an error is detected in the
internal cell topology during the topology preservation step, we apply
the process described above.

F ADDITIONAL DESCRIPTION ON RUN TIME ANALYSIS

In this section, we provide additional information pertaining to the run
times of TFZ. We explore the tradeoff between the total compression
time, augmentation time, and the error bound ξ in Appendix F.1. We
report in Appendix F.2 the run times for asymmetric data when preserv-
ing one type of partition (but not both). We give a disaggregation of the
run times during the cell correction step; see Appendix F.3. We give
statistics on how many times cells are visited in Appendix F.4. Finally,
we demonstrate the abilities of TFZ to compress data with larger 2D
slices in Appendix F.5.

Fig. 15: Plots showing throughput (in MB/s) versus error bound ξ for
each dataset, using augmented SZ3 and augmented TTHRESH: (A)
throughput of compression; (B) throughput of decompression.

F.1 Run Time Versus Error Bound
In Fig. 15, we provide plots demonstrating the throughput in MB/s ver-
sus error bound ξ for both augmented SZ3 and augmented TTHRESH
on all eight datasets. We display the throughput for compression in
(a) and decompression in (b). In general, there is no clear trend be-
tween the error bound and the throughput of either compression or
decompression.

F.2 Preserving Eigenvalue or Eigenvector Partitions
In Tab. 8, we provide the compression and decompression times for
SZ3, augmented SZ3, SPERR, and augmented SPERR. We also provide
the run times preserving eigenvalue or eigenvector partition (but not
both). All times reported are for ξ = 0.001.

Preserving the topology of only one partition (eigenvector or eigen-
value) can reduce compression time by up to about 45%, with more
time saved when preserving the eigenvector partition (as opposed to
the eigenvalue partition). Decompression time can be reduced by up
to about 40%. The gains in decompression time are generally smaller
than those for compression time, typically under 10%. However, the
time savings vary across datasets and (base) compressors.

F.3 Run Time Analysis of Cell Compression Step
For asymmetric data, the cell correction step consists of three main
parts: (1) correcting the vertex classifications, (2) preserving the de-
generate points of the dual-eigenvector fields, and (3) preserving the
topology of each cell. In Tab. 9, we present the run times (in seconds)
for each step across datasets and compressors. It is evident that pre-
serving cell topology requires the most time in each trial, although all
three steps contribute significantly to the overall run time of the cell
correction process.

F.4 Statistics on Iterations
In this section, we analyze how many times cells are visited to provide
insight into the overall running times. In Fig. 16, we show how many
times each cell is processed for each dataset for SZ3. The numbers are
similar for SPERR. Here, we can see that almost all points (90-95%)
are processed only once in general, while very few cells are processed
six or more times. The notable exception is the Vortex Street dataset,
where many points are processed six or more times. One can verify
that the Vortex Street dataset has the lowest throughput overall, and this
may be the cause.

To generate Fig. 16, we use the largest error bound for each dataset
given in Tab. 5 for augmented SZ3.

Fig. 16: Histograms demonstrating the distribution of how many times
cells were processed. For example, the “1” bar shows the number of
cells that were processed only once. “6+” gives the number of cells that
were processed six or more times.

F.5 Testing on Data With Large Slices
In most of our experiments, we use relatively small 2D slices—smaller
than those in typical use cases. Since our algorithm runs in linear time,
we believe these experiments are sufficient to demonstrate the frame-
work’s throughput. To verify that the throughput observed on smaller
datasets also scales to larger data, we run TFZ on datasets with larger



Table 8: Run times (compression and decompression times) for SZ3, augmented SZ3, SPERR, and augmented SPERR on each of the four
asymmetric datasets. We also provide the run times for augmented compressors preserving one type of partition, as A-SZ3 (val), A-SZ3 (vec), etc.
We provide similar run times for augmented SPERR. ξ = 0.001. Times are in seconds.

Dataset SZ3 A-SZ3 A-SZ3 (val) A-SZ3 (vec) SPERR A-SPERR A-SPERR (val) A-SPERR (vec)
Total Compression Time

Ocean 0.35 1.90 1.59 1.61 0.39 2.28 1.87 1.97
Miranda 7.00 274.14 161.84 213.26 9.53 287.16 171.51 221.46

Vortex Street 24.34 784.85 526.90 755.19 28.86 835.99 490.62 776.49
Heated Cylinder 37.98 762.21 655.79 717.39 48.23 713.11 609.04 692.66

Decompression Time
Ocean 0.34 0.38 0.39 0.38 0.36 0.42 0.42 0.42

Miranda 4.73 11.44 7.06 11.21 6.34 12.60 9.12 11.93
Vortex Street 19.78 33.76 32.99 32.96 22.81 35.13 34.57 34.97

Heated Cylinder 29.01 50.78 46.56 49.56 36.68 53.44 51.22 53.07

Table 9: Run times (in seconds) during cell correction for three asym-
metric datasets. We display the times for augmented SZ3 in the top
and augmented SPERR in the bottom. ‘Vertices’: correcting the vertex
classifications; ‘Degen. Pts.’: preserving the degenerate points of the
dual-eigenvector fields; ‘Cell Top.’: preserving the topology of each cell.

Dataset Vertices Degen. Pts. Cell Top.
Augmented SZ3

Ocean 0.23 0.17 0.68
Miranda 53.00 31.52 153.31

Vortex Street 192.46 125.35 368.00
Heated Cylinder 179.34 102.34 334.12

Augmented SPERR
Ocean 0.25 0.17 0.79

Miranda 54.19 32.12 156.66
Vortex Street 207.51 139.99 372.44

Heated Cylinder 166.35 91.92 283.27

2D slices. Specifically, we derive an asymmetric tensor field from
the E.U. Copernicus Marine Service Global Ocean Physics Reanalysis
dataset (the source of our main ocean dataset). We select the largest
rectangular slice available that does not significantly overlap with land.
Our slice is taken from the South Pacific, bounded by the following co-
ordinates: North: 6.870530532659802, East: −80.59961032889228,
South: −71.2633145566259, and West: −181.429859882464. The
depth ranges from 1.54 m at the top to 2533.3359375 m at the bottom.
We derive the asymmetric tensor field using the same strategy applied
to the other asymmetric datasets, and obtain a symmetric tensor field
by taking the symmetric part of the tensor field.

Overall, our tensor fields have 42 slices of size 1210 × 938. The
symmetric tensor field has a file size of 1144MB, while the asymmet-
ric tensor field is 1525MB. We compress the symmetric dataset with
ξ = 0.01 and the asymmetric dataset with ξ = 0.001. We obtain
compression times of 121.7s for the symmetric tensor field, and 416.9s
for the asymmetric tensor field, yielding respective throughput of 9.4
MB/s and 3.6 MB/s. These numbers are comparable to those yielded by
the smaller datasets. The symmetric dataset has a bit-rate of 4.9 and a
PSNR of 47.3, while the asymmetric dataset has a bit-rate of 13.6. and
a PSNR of 65.7. These numbers are consistent with the reconstruction
qualities reported on the smaller datasets.

G ADDITIONAL RENDERINGS FOR VISUAL COMPARISON

In this section, we provide additional renderings of our experimental
datasets for visual comparison. In Fig. 17, we visualize Stress A and
Brain A datasets compressed with SZ3, augmented SZ3, SPERR, and
augmented SPERR, respectively. We chose an error bounds ξ such that
each augmented compressor achieves a similar compression ratio to its
corresponding base compressor. For the Stress A dataset, we highlight a
region of interest. And for the Brain A dataset, we provide a zoomed-in
view to mark the discrepancies between the base compressors and the
ground truth, not visible in the augmented compressors. In Fig. 18,
we provide a similar view for the Vortex Street and Heated Cylinder
datasets. In Fig. 19, we include a variation of Fig. 1 using SPERR and

augmented SPERR (instead of SZ3 and augmented SZ3). We report
the error bounds ξ used to generate each figure in Appendix C.

H EDGE CASES DURING ASYMMETRIC CELL CORRECTION

We handle various edge cases that arise in our topology-preserving
framework. We describe edge cases pertaining to vertex correction in
Appendix H.1 and cell topology preservation in Appendix H.2. We
describe how we handle issues arising from floating point precision in
Appendix H.3.

H.1 Vertex Correction
We assign values to the variables D, R, RS, and Dm to ensure that, for
each vertex of the mesh, the following conditions hold if and only if
they hold in the ground truth:

• |γ′
r| = γ′

s

• γ′
r = 0

• |γ′
d| = |γ′

r| > γ′
s

• |γ′
d| = γ′

s > |γr|
• |γ′

r| = |γ′
d| = |γs|

To accomplish this, we adjust the decompressed data using strategies
similar to those in Sec. 4.3.1.

H.2 Cell Topology Preservation
Sometimes, edge cases arise when computing the topological invari-
ant for preserving cell topology using TFZ. Each edge case yields
a number of sub-cases. We describe non-transverse intersections in
Appendix H.2.1, junction points on cell boundaries in Appendix H.2.2,
and intersections with cell vertices in Appendix H.2.3. Finally, we
describe how we handle degenerate conics in Appendix H.2.4.

H.2.1 Non-Transverse Intersections
When computing the topological invariant, we trace the curves γ2

d =
γ2
s and γ2

r = γ2
s . An edge case occurs when one of these curves

intersects the cell boundary or the other curve non-transversally (i.e, an
intersection that does not satisfy the transversality condition). It is also
possible for the two conics to have significant overlap but not be equal.
We handle each case using a virtual perturbation. We describe these
cases in Tab. 10. In the left column, we provide a description of the
case and how we handle it. In the middle column, we visualize the case.
In the right column, we visualize the virtual perturbation.

There are also a few other cases of non-transverse intersections that
cannot be easily visualized. We describe them below:

• If, for the entire cell, |γd| = |γr|, then we proceed as though |γr| >
|γd|.

• If, for the entire cell, |γd| = γs, then we proceed as though γs >
|γd|.

• If, for the entire cell, |γr| = γs, then we proceed as though γs >
|γr|.

• If there exists a point z ∈ σ where γd(z) = γr(z) = γs(z) = 0,
we note this in our invariant. We also note whether it occurs in the
interior, on an edge, or on a vertex.

• If, for the entire cell, γd = γr = γs = 0, then we note this as part of
our invariant, and save the cell losslessly.



Fig. 17: LIC visualization of the eigenvector fields of two 2D symmetric second-order tensor fields compressed with SZ3, augmented SZ3, SPERR,
and augmented SPERR, along with the ground truth. Trisectors are in white, wedges are in pink. Top: Stress A data slice 13. Bottom: Brain A
data slice 50. In the top row, we highlight a region of interest in black boxes. In the bottom row, we provide a zoomed-in view of a region of interest
encloded by black boxes. The Z position of each point corresponds to the Frobenius norm with smoothing applied.

Fig. 18: Visualizing the eigenvalue partition of the Vortex Street (top) and Heated Cylinder (bottom) datasets (slices 1000 and 800 resp.) compressed
with SZ3, augmented SZ3, SPER, and augmented SPERR, along with the ground truth. We provide zoomed-in views (of black and blue boxes) that
highlight the differences between the compressors and the ground truth. For the heated cylinder dataset, one zoomed in view corresponds to the
eigenvector partition. We also label compression ratio and PSNR. We use the same colormap as Fig. 3. The Z position of each point corresponds to
the Frobenius norm with smoothing applied.



Fig. 19: Visualizing the eigenvector partition of the Ocean dataset compressed with SPERR and augmented SPERR. Left: input data visualized
with degenerate points of the dual-eigenvector field. Trisectors are in white, wedges are in pink. Middle: reconstructed data using SPERR, labeled
with compression ratio and PSNR. Right: reconstructed data using augmented SPERR along with compression ratio and PSNR. We also provide
zoomed-in views that highlight the differences between the classic and augmented SPERR results. We use the same colormap as Fig. 3. The Z
position of each point corresponds to the Frobenius norm with smoothing applied.

Finally, consider the case where the curves |γr| = γs and |γd| = γs
are the same curve, but |γd| ≠ |γr| for the entire cell. Because γr and
γd are both PL functions over σ, this can occur only if |γr| = γs is a
line. In such a case, one of |γr| or |γd| will be smaller on the entire
cell; we ignore whichever is smaller.

Table 10: Descriptions and images of edge cases that arise in internal cell
topology computation from non-transverse intersections. We describe
each case and how it is handled in the first column. In the second column,
we provide a visualization of the case. In the third column, we provide an
image of the virtual perturbation used to handle the case.

Case Image Perturbation
Non-transverse edge in-
tersection: If one of
the conics intersects the
edge non-transversally,
then we apply a virtual
perturbation such that
the intersection never oc-
curs.
Non-transverse inter-
section between conics:
If two of the conics in-
tersect non-transversally,
then we apply a virtual
perturbation such that
the intersection never oc-
curs.
Partial overlap of con-
ics: If the conics are de-
generate (e.g., intersect-
ing lines, parallel lines,
etc.), they may not be
exactly identical but can
still exhibit substantial
overlap. In this case,
we perturb the conics so
that their intersection has
measure zero.

H.2.2 Junction Point at Cell Boundary

If a junction point occurs on the boundary of a cell, this can lead to
ambiguity. There are many variations of this case. We handle them all
using virtual perturbations. We describe how we handle such cases in
Tab. 11.

Table 11: Descriptions and images of edge cases that arise in internal cell
topology computation when a junction point occurs on the cell boundary.
We describe each case and how it is handled in the first column. In
the second column, we provide a visualization of the case. In the third
column, we provide an image of the virtual perturbation used to handle
the case.

Case Image Perturbation
Junction point at an
edge with transverse in-
tersection: If a junc-
tion point occurs at an
edge, and the two conics
both intersect the edge
transversally, then we ap-
ply a virtual perturbation
such that the junction
point does not occur.
Junction point at an
edge with single non-
transverse conic-edge
intersection: If a junc-
tion point occurs at an
edge, and exactly one
conic intersects the edge
non-transversally at the
junction point, then we
apply a virtual perturba-
tion so that the nontrans-
verse intersection does
not occur.
Junction point at
an edge with only
non-transverse inter-
sections: If a junction
point occurs at an edge,
and all intersections are
non-transverse, then we
apply a virtual perturba-
tion so that none of the
intersections occur.



Table 12: Descriptions and images of edge cases that arise in internal
cell topology computation when a conic section intersects a vertex. In
the first column we describe each case and how it is handled. In the
second column we provide a visualization of the case.

Case Image
Conic intersects a vertex (no topolog-
ical effect): If one conic section inter-
sects a vertex, but that intersection does
not mark the location of any topological
change, then we ignore it.

Conic intersects a vertex (topologically
significant intersection): If one conic sec-
tion intersects a vertex, and that intersec-
tion does affect the topology, then we track
this intersection in our invariant.

Two conics intersect at a vertex: If two
conic intersects intersect at a vertex, we
ignore the junction point that occurs at the
vertex. We treat each of the two conics
as separately intersecting the vertex and
handle them according to the two previous
cases.

H.2.3 Intersections at Vertices

If one of the conics intersects a vertex of the cell, this can lead to
ambiguity. We describe how such cases are handled in Tab. 12. In
the left column, we describe the case and how we handle it. In the
right column, we provide a visualization. We also handle these cases
in a similar fashion if the curves |γr| = |γd| or γr = 0 intersects any
vertex.

H.2.4 Degenerate Conic Sections

A conic section is typically a circle, ellipse, parabola, or hyperbola.
However, it can also take degenerate forms, such as a single line, two
parallel lines, two intersecting lines, or a single point.

If one of the conic sections, γ2
d = γ2

s or γ2
r = γ2

s , is degenerate, it
can cause issues when computing the invariant. Unless the conic is two
parallel lines, our algorithm’s output may be affected.

For a single point, TFZ can be influenced because, although the point
has no topological impact, the algorithm still detects its presence. For a
single line, problems may arise if γd = γs forms a line but γs > |γd|
holds on both sides, leading TFZ to misinterpret the topology. A similar
issue can occur with the curve γr = γs. When the conic consists of
two intersecting lines, our algorithm struggles because the intersection
point alters the cell topology, yet it is neither a junction point nor
an intersection with the cell boundary, making it difficult to handle
directly.

We describe how we handle these cases in Tab. 13. In the left column,
we describe each case and how it is handled. In the right column, we
provide an illustration.

H.3 Numerical Precision
The finite precision of floating-point values can cause difficulties for
TFZ in certain cases. To mitigate these issues, we introduce several
fixes. Admittedly, TFZ may still make mistakes in extreme scenarios, in
which case it might be better implemented using integer representations
of floating-point numbers.
Close values. We consider two numbers x and y to be equal if |x−y| <
10−10 max(|x|, |y|). Similarly, we consider x to be greater than y if
x − y > 10−10 max(|x|, |y|) and consider x to be less than y if
x− y < −10−10 max(|x|, |y|).

When computing the classification according to the eigenvector
manifold, we consider γr to be equal to zero if |γr| < 10−10. Similarly,
if the number u is the dot product of two unit vectors, the output of

Table 13: Descriptions and images of edge cases that arise in internal
cell topology computation from degenerate conic sections. In the first
column we describe each case and how it is handled. In the second
column we provide a visualization of the case.

Case Image
One conic is a single point: In this case,
we apply a virtual perturbation so that the
conic disappears.

One conic does not separate two regions
appropriately: In particular, if the conic
γd = γs has γs > |γd| on both sides, or if
the conic γr = γs has γs > |γr| on both
sides, we ignore the conic.

One conic consists of two intersecting
lines. The intersection point does not lie
on the boundary of two regions: If the
intersection point does not divide regions
of different classifications, we ignore the
intersection point. In future cases, assume
that any conic that is two intersecting lines
lies on the boundary between different re-
gions.
One conic consists of two intersecting
lines. The intersection point lies on the
boundary of two regions: In this case,
we track the location of the intersection
point relative to any edge intersections and
junction points in the invariant.
One conic consists of two intersecting
lines. The intersection point is on an
edge: In this case, we track the location of
the intersection point relative to any edge
intersections and junction points in our in-
variant, noting the edge on which it occurs.
One conic consists of two intersecting
lines. The intersection point is on a ver-
tex: In this case, we track the location of
the intersection point relative to any edge
intersections and junction points in our in-
variant, noting the vertex on which it oc-
curs.
Both conics, each composed of two inter-
secting lines that share the same point of
intersection: In this case, we do not track
any junction point. We handle each conic
separately according to the previous cases.

a trigonometric equation, or the x or y position of a point in the unit
square, we consider u to be equal to zero if |u| < 10−10.
Tensor normalization. When computing the topology of a cell σ with
tensors T1, T2 and T3 at the vertices, we compute:

x = min{|y| : y is an entry of T1, T2 or T3 and |y| > 10−10}.

Set T ′
1 ← 1

|x|T1, T ′
2 ← 1

|x|T
′
2 and T3 ← 1

|x|T
′
3. We then proceed to

compute the topology of σ using T ′
1, T ′

2, and T ′
3.

Quadratic formula stability. We have found that the quadratic formula
can become unstable with very large or small values. Suppose that
we are computing the roots of ax2 + bx+ c. First, we compute k =
max(|a|, |b|, |c|). If k = 0, then there are infinitely many solutions.
Otherwise, we set a′ ← a

k
, b′ ← b

k
and c′ ← c

k
. Then, if any of a′, b′,

or c′ has a magnitude less than 10−10, we set it equal to zero. We then



compute the roots with the standard quadratic formula using a′, b′ and
c′.

When computing the discriminant (b′)2−4a′c′, if |(b′)2−4a′c′|
(|a′|+|b′|+|c′|)2 <

10−10 (i.e., the discriminant is very small compared to the largest
coefficient) then we treat it as being equal to zero.
Relative error bound. After decompressing the data, it is possible
that some entries of a tensor will be very large or small in magnitude
compared to one another. For example, it is possible one entry will be
10−8 while another is 10−2. Such variability can exacerbate numerical
precision issues. To resolve this issue, we enforce a relative error bound
of 20 on all entries of a given tensor. That is, if x is an entry of a tensor,
and x′ is a guess for x, if x′ ̸= 0 and x ̸= 0, we require that |x|

|x′| < 20

and |x′|
|x| < 20.

I PROOFS OF THEORETICAL RESULTS

In this section, we prove most of the lemmas from the background
section. The proofs of Lemma 6 and Lemma 7 are substantially more
involved, and are therefore given separately in Appendix J. We begin
with several supporting lemmas before proving the main lemmas from
Sec. 4. With a slight abuse of notation, we write M = 0 for a matrix
M if all of its entries are zero.

Lemma 8. Let M be a symmetric matrix. Then M is degenerate if and
only if D(M) = 0.

Proof. According to [10], the eigenvalues of M are γd ± γs. Thus, M
is degenerate if and only if γs = 0. Following Eq. (5), we have

D(M) = γs

(
cos(θ) sin(θ)
sin(θ) − cos(θ)

)
.

Thus, D(M) = 0 if and only if γs = 0, which occurs if and only if M
is degenerate.

Lemma 9. Let M1 and M2 be two symmetric matrices such that
D(M1) ̸= 0 and D(M2) ̸= 0. Then l1,2 = 0 if and only if there exists
some k ∈ R such that D(M1) = kD(M2).

Proof. Denote the entries of D(M1) by

D(M1) =

(
∆1 F1

F1 −∆1

)
Denote the entries of D(M2) similarly.

First, suppose that D(M1) = kD(M2). Then ∆1 = k∆2 and
F1 = kF2. Thus, F2∆1 − F1∆2 = F2(k∆2) − (kF2)∆2 = 0, so
l1,2 = 0.

Now suppose that l1,2 = 0. Then F2∆1 − F1∆2 = 0. We check
two cases:
Case 1: ∆2 ̸= 0. Set k = ∆1

∆2
. Notice that F1∆2 = F2∆1 meaning

that F1 = ∆1
∆2

F2 = kF2. And clearly, ∆1 = ∆1
∆2

∆2 = k∆2. Thus,
D(M1) = kD(M2)
Case 2: ∆2 = 0. Since D(M2) ̸= 0 and ∆2 = 0, we must have
F2 ̸= 0. Thus, set k = F1

F2
and proceed similarly to case 1.

Lemma 10. Suppose that x, y ∈ R and x′, y′ ∈ R are respec-
tively guesses for x and y. Let ξ be an error bound such that
|x − x′| ≤ ξ and |y − y′| ≤ ξ. Then (a)

∣∣∣x+y
2
− x′+y′

2

∣∣∣ ≤ ξ (b)∣∣∣√x2 + y2 −
√

(x′)2 + (y′)2
∣∣∣ ≤ ξ

√
2

Proof. This can be verified with simple algebra.

Lemma 1. Let T1 and T2 be two 2×2 symmetric tensors with nonzero
deviators. Let l1,2 be defined following Eq. (2). Then l1,2 depends only
on θ1 and θ2, where each θi is taken from the decomposition in Eq. (5).

Proof. Let γd1 , γs,1 and θ1 be the coefficients from decomposing M1

according to Eq. (5). Let γd,2, γs,2 and θ2 be the coefficients from
decomposing M2. The deviator of M1 is:

D(M1) = γs,1

(
cos(θ1) sin(θ1)
sin(θ1) − cos(θ1)

)
Let ∆1 and F1 be the entries of D(M1). Then ∆1 = γs,1 cos(θ1)

and F1 = γd,1 sin(θ1). Similarly, we have ∆2 = γs,2 cos(θ2) and
F2 = γs,2 sin(θ2).

Now observe that:

l1,2 = ∆2F1 −∆1F2

= (γs,2 cos(θ2))(γs,1 sin(θ1))− (γs,1 cos(θ1))(γs,2 sin(θ2))

= γs,1γs,2(cos(θ2) sin(θ1)− cos(θ1) sin(θ2))

By definition, γs,1 and γs,2 are both nonnegative. By assumption, both
deviators are nonzero, meaning that γs,1 ̸= 0 and γs,2 ̸= 0. Thus, the
sign of l1,2 only depends on θ1 and θ2.

Lemma 2. Let x1, x2, and x3 be the vertices of a cell.
(a) Suppose that exactly one vertex has a tensor T with a deviator

D(T ) equal to zero. (w.l.o.g., suppose D(f(x1)) = 0).
(i) If l2,3 ̸= 0, then x1 is the only degenerate point in the cell.

(ii) If l2,3 = 0, then there exists some k such that D(f(x2)) =
kD(f(x3)). If k > 0 then x1 is the only degenerate point in
the cell. If k < 0 then the cell contains a degenerate line.

(b) If exactly two vertices have a tensor with a deviator equal to zero,
then the cell contains a degenerate line connecting them.

Proof. Denote the cell as σ. We first show (a). Suppose that there exists
some x ∈ σ with x ̸= x1 but D(x) = 0. There exists t1, t2, t3 ∈ [0, 1]
such that x = t1f(x1)+ t2f(x2)+ t3f(x3). Because the deviator is a
linear operator, D(f(x)) = t1D(f(x1))+t2D(f(x2))+t3D(f(x3)).

Since D(f(x)) = 0, and D(f(x1)) = 0, but D(f(x2)) ̸= 0, x
cannot lie on the edge between x1 and x2. Similarly, x cannot lie on
the edge between x1 and x3. Thus, t2 ̸= 0 and t3 ̸= 0.

Because D(f(x)) = t2D(f(x2)) + t3D(f(x3)) = 0, it fol-
lows that D(f(x2)) = −t3

t2
D(f(x3)). So there exists k such that

D(f(x2)) = kD(f(x3)). By Lemma 9, this implies that l2,3 = 0,
proving (a) (i).

For (a) (ii), Lemma 9 tells us that if l2,3 = 0 there exists k such that
D(f(x2)) = kD(f(x3)). We just showed that if there exists some
internal point x ∈ C with D(x) = 0, then D(x2) = kD(x3) with
k < 0.

To finish (a) (ii), we must show that if k < 0 then there exists
some y ̸= x1 such that D(f(y)) = 0. Suppose that k < 0 and let
t1 = 0, let t2 = 1

1−k
and t3 = −k

1−k
. Then t1, t2, t3 ∈ (0, 1) and

t1 + t2 + t3 = 1. Let y = t1x1 + t2x2 + t3x3, so y ∈ σ. Similar to
before, D(f(x)) = t2D(f(x2)) + t3D(f(x3)).

Notice that t2D(f(x2)) + t3D(f(x3)) = 1
1−k

D(f(x2)) +
−k
1−k

D(f(x3)) = 1
1−k

(D(f(x2)) − kD(f(x3))) = 0, so y is de-
generate. This finishes the proof for (a) (ii).

To prove (b), note that since the two degenerate vertices have a
deviator equal to zero and the deviator is a linear operator, all tensors
interpolated between them will also be degenerate.

Lemma 3. Suppose T ′ and T are 2× 2 tensors, where each entry of
T ′ differs from the corresponding entry of T by at most ξ, i.e., |T1,1 −
T ′
1,1| ≤ ξ, and so on. Denote their coefficients from the decomposition

as γd, γr , γs, γ′
d, γ′

r , and γ′
s, respectively. Then |γd − γ′

d| ≤ ξ,
|γr − γ′

r| ≤ ξ, and |γs − γ′
s| ≤

√
2ξ.

Proof. This follows from Lemma 10.

Lemma 4. Suppose that x ∈ R and x′ is a guess of x within an error
bound ξ, i.e., |x− x′| ≤ ξ.



• If x > 0 but x′ < 0. Then x′ + ξ > 0 and |x− (x′ + ξ)| ≤ ξ. That
is, x′ + ξ is a valid guess for x that is within an error bound ξ and
has the same sign as x.

• If x < 0 but x′ > 0, then x′ − ξ is analogously valid.

Proof. Let x > 0 and x′ < 0. Then we have |x− x′| = x− x′. Thus,
x− x′ < ξ, so x′ + ξ > x > 0.

Since (x+ ξ) > x, it follows that |x− (x′ + ξ)| = (x′ + ξ)− x =
ξ + (x′ − x). Because x′ − x < 0, it follows that ξ + (x′ − x) < ξ.
Putting these inequalities together yields |x− (x′ + ξ)| < ξ.

The proof for the case where x < 0 is similar.

Lemma 5. Suppose that x, y ∈ R and x′ and y′ are guesses for x and
y, respectively, within an error bound ξ, such that |x − x′| ≤ ξ and
|y − y′| ≤ ξ. Suppose that |x| > |y| but |x′| < |y′|.

Let x′′ = sign(x′)|y′|, y′′ = sign(y′)|x′|. Then |x− x′′| ≤ ξ and
|y− y′′| ≤ ξ, and |x′′| > |y′′|. That is, by swapping the magnitudes of
x′ and y′, we can obtain two valid guesses x′′ and y′′ with |x′′| > |y′′|.

Proof. We show that |x − y′′| ≤ ξ. The proof that |y − x′′| ≤ ξ is
similar. Recall that ||x|−|x′|| ≤ |x−x′| so ||x|−|x′|| ≤ ξ. Similarly,
||y| − |y′|| ≤ ξ. We check two cases for |x|:
Case 1: |y′| ≤ |x|: Then |x′| < |y′| ≤ |x|. Since ||x| − |x′|| ≤ ξ, it
must follow that ||x| − |y′|| ≤ ξ.
Case 2: |y′| > |x|: Then |y| < |x| < |y′|. Since ||y| − |y′|| ≤ ξ, it
must follow that ||x| − |y′|| ≤ ξ.

In either case, it follows that ||x|− |y′|| ≤ ξ. If x > 0, then x = |x|
and y′′ = |y′|, so |x− y′′| ≤ ξ. If x < 0, the proof is similar.

J CORRECTNESS PROOFS OF TOPOLOGICAL INVARIANT

In this section, we build toward the proofs of Lemma 6 and Lemma 7.
We provide definitions and assumptions in Appendix J.1. We prove
preliminary lemmas in Appendix J.2. We prove Lemma 6 and Lemma 7
in Appendix J.3. Finally, we prove how we handle edge cases in
Appendix J.4. For the eigenvector partition, we ignore degenerate
points of the dual eigenvector field, and only focus on partition regions.

J.1 Definitions and Assumptions
In this section, we specify all of the notations and assumptions that we
will be using for the remainder of the section.
Function Definitions. Let σ ⊂ R2 be a 2D triangular cell, and let
f : σ → T be a PL tensor field on σ. With an abuse of notation, define
the function γd : σ → R as the function that maps each point p ∈ σ to
the value of γd at p. Define similar functions for γr , γs, and θ.

Let c : σ → R and s : σ → R be defined by

c(p) = γd(p) cos(θ(p)) s(p) = γd(p) sin(θ(p))

Then notice that
γs(p) =

√
c(p)2 + s(p)2

Since f is PL, all of its coordinate functions are affine in σ ⊂ R2. Thus,
f can be extended to all of R2. All of the other functions that we have
just defined can thus also be extended to R2.
Subsets and Regions. We first define some subsets of σ.
Eigenvalue partition: Let

D+ = {p ∈ σ : γd > |γr| and γd > γs}
D− = {p ∈ σ : −γd > |γr| and − γd > γs}

Define R+, and R− similarly. Let S be the region where γs > |γd|
and γs > |γr|.
Eigenvector partition: Define rr+ as the subset of σ where γr > γs
and rr− as the subset where−γr > γs. Define sr+ as the subset where
γs > γr > 0 and sr− as the subset where γs > −γr > 0.
Other subsets: While not part of either partition, let dd+ be the subset
of σ where γd > γs and dd− be the subset where −γd > γs. Notice
that, by definition,

• D+ ⊂ dd+
• D− ⊂ dd−

interior

p

Fig. 20: (A) A connected region with the interior shaded. Arrows denote
clockwise orientation. (B) Two connected regions overlap. At point p,
they intersect. Here, the curve bounding the red region enters the blue
region. The curve bounding the blue region leaves the red region.

• R+ ⊂ rr+
• R− ⊂ rr−.

We define a region of σ as a connected subset of σ. We say that a
region R is of type D+ if R ⊂ D+. Extend this defintition of type to
the other subsets that we have defined. We say that two regions border
each other if their boundaries intersect.
Topologically Significant Intersections. If e is an edge of σ, and
p lies on the intersection of e with the curve γd = γs, say that p is
topologically significant if it lies on the boundary between D+ and S.
Define topological significance analogously for −γd = γs, γr = γs,
and −γr = γs.

We say that an intersection between γ2
d = γ2

s and e is topologically
significant if it separates a region of type S from a region of either type
D+ or D−. Define topologically significant intersections analogously
for γ2

r = γ2
s .

Edge Cases. For now, we make the following assumptions in order
to avoid edge cases. Some of these cases are avoided by TFZ using
a symbolic perturbation (see Appendix H), and thus we can assume
that they never occur. Other cases can occur. In Appendix J.4, we
demonstrate that when such cases occur that our strategy still works.
We assume that:

(i) γ2
d = γ2

s and γ2
r = γ2

s only intersect each other and each edge of
σ transversally.

(ii) No junction points occur on the edges of σ.
(iii) No two of the functions |γd|, |γr|, or γs are exactly equal on all

of R2.
(iv) The conic sections γ2

d = γ2
s and γ2

r = γ2
s are either empty or

have infinitely many points.
(v) The curve γd = γs will border one region of type dd+ and another

where γs > |γd|. Make similar assumptions about −γd = γs,
γr = γs, and −γr = γs.

(vi) |γd|, |γr| and γs are never equal on a vertex of σ.
(vii) There are no vertices of σ where γr = 0.

(viii) There are no points in σ where γd = γs = 0 or γr = γs = 0.

Clockwise Orientation. Suppose that c is a closed curve that divides
the plane into two regions. Suppose that one of them is labeled as the
“interior.” Then we define clockwise orientation or c to be such that,
when traveling along c, the “interior” of c is on the right of c. We
demonstrate this orientation in Fig. 20(A).

If a curve c divides the plane into two regions R1 and R2, and c
is said to be clockwise oriented, then label one of R1 or R2 to be the
interior of c consistent with the previous definition.

Suppose that c1 and c2 are two clockwise oriented curves. Let p be
a point where they intersect transversally. We say that c1 enters the
interior of c2 at p if the oriented vector tangent to c1 at p points into
the interior of c2. In Fig. 20(B), we illustrate the case where one curve
enters another. At point p, the curve bounding the red region enters the
blue region, while the curve bounding the blue region leaves the red
region.

We assume that γr = γs separates a region of type dd+ from a
region where γs > |γd|. In this case, we denote that dd+ is the interior
of γd = γs, and orient γd = γs using clockwise orientation. We
proceed similarly for the curves −γd = γs, γr = γs, and −γr = γs.



J.2 Supporting Lemmas

In order to prove Lemma 6 and Lemma 7, we first prove some interme-
diate results.

Lemma 11. The functions γd and γr , c and s are affine over σ ⊂ R2.

Proof. For p ∈ σ, recall that

• γd(p) =
1
2
(f(p)1,1 + f(p)2,2)

• γr(p) =
1
2
(f(p)2,1 − f(p)1,2)

• c(p) = 1
2
(f(p)1,1 − f(p)2,2)

• s(p) = 1
2
(f(p)1,2 + f(p)2,1)

Because each fi,j is affine, so are the functions above.

Lemma 12. The function γs is convex.

Proof. Fix p1, p2 ∈ σ. Denote θ1 := θ(p1) and θ2 := θ(p2). Notice
that

c(p1)c(p2) + s(p1)s(p2)

= γs(p1) cos(θ1)γs(p2) cos(θ2) + γs(p1) sin(θ1)γs(p2) sin(θ2)

= γs(p1)γs(p2)(cos(θ1) cos(θ2) + sin(θ1) sin(θ2))

= γs(p1)γs(p2) cos(θ1 − θ2)

≤ γs(p1)γs(p2)

Thus, c(p1)c(p2) + s(p1)s(p2) ≤ γs(p1)γs(p2). Using this fact, let
t ∈ [0, 1] and observe that

γs(tp1 + (1− t)p2)
2

= c(tp1 + (1− t)p2)
2 + s(tp1 + (1− t)p2)

2

= (tc(p1) + (1− t)c(p2))
2 + (ts(p1) + (1− t)s(p2))

2

= t2(c(p1)
2 + s(p1)

2) + 2t(1− t)(c(p1)c(p2) + s(p1)s(p2))

+ (1− t)2(c(p2)
2 + s(p2)

2)

= t2γs(p1)
2 + 2t(1− t)(c(p1)c(p2) + s(p1)s(p2))

+ (1− t)2γs(p2)
2

≤ t2γs(p1)
2 + 2t(1− t)γs(p1)γs(p2) + (1− t)2γs(p2)

= (tγs(p1) + (1− t)γs(p2))
2

Thus, γs(tp1 + (1− t)p2)
2 ≤ (tγs(p1) + (1− t)γs(p2))

2. Because
γs is nonnegative, this implies that γs(tp1 + (1− t)p2) ≤ tγs(p1) +
(1− t)γs(p2). Thus, γs is convex.

Lemma 13. D+, D−, R+, R−, rr+, rr−, dd+, and dd− are convex.

Proof. We provide a proof for D+. The other region types follow
similarly. Let p1, p2 ∈ D+. Let p3 lie on the segment between p1
and p2. Since γd is affine, and |γr| and γs are convex, it must hold
that γd(p) > |γr(p)| and γd(p) > γs(p). Thus, p ∈ D+, so D+ is
convex.

Corollary 1. Each of D+, D−, R+, R−, rr+, rr−, dd+, and dd−
have only one connected component each.

Because each of the subsets in Corollary 1 have one connected
component, we may refer to them hereafter as regions.

Lemma 14. The following pairs of regions cannot border each other:

(i) dd+ cannot border dd−
(ii) rr+ cannot border rr−

(iii) D+ cannot border D−
(iv) R+ cannot border R−

Proof. We show (i) and (iii), where (ii) and (iv) follow similarly. Sup-
pose, to the contrary, that dd+ bordered dd−. Let x be a point that
separates them. Since γd > 0 one one side of x, and γd < 0 on
the other, it must follow that γd(x) = 0. Since |γd| > γs for all
points nearby to x, it must follow that |γd(x)| ≥ γs(x), implying that
γd(x) = γs(x) = 0. However, we previously assumed that this is
impossible. This gives (i).

Because (i) is true and D+ ⊂ dd+ and D− ⊂ dd−, (iii) must
follow.

Lemma 15. rr+ cannot border sr− and rr− cannot border sr+.

Proof. The proof is similar to that of Lemma 14.

Lemma 16. The following statements are true:
(1) If γ2

d = γ2
s is an ellipse contained entirely within σ, then either

dd+ = ∅ or dd− = ∅.
(2) If γd = γs is an ellipse contained within σ, then dd− = ∅. If
−γd = γs is an ellipse contained within σ, then dd+ = ∅.

Analogous claims are true about γ2
r = γ2

s .

Proof. We prove the claims for γ2
d = γ2

s . Notice that because there
are no points where γd = γs = 0, the curves γd = γs and −γd = γs
must be disjoint.

We first show (1). The curve γ2
d = γ2

s must border dd+ or dd−, so
one of those sets is not empty. Without loss of generality, suppose that
dd+ ̸= ∅. Since dd+ ̸= ∅, the region dd+ must have, as its boundary,
the curve γd = γs. So the curve γd = γs is not empty.

Notice that γ2
d = γ2

s will be the union of the curves γd = γs
and −γd = γs. Since γ2

d = γ2
s is an ellipse, it has one connected

component. Since −γd = γs cannot intersect γd = γs, and γd = γs is
not empty, it must follow that −γd = γs is empty.

If dd− ̸= ∅, then it would need to be bounded by the non-empty
curve −γd = γs. Thus, dd− = ∅. This gives (1).

We now show (2). Without loss of generality, suppose that γd = γs
is an ellipse contained within σ. The conic section γ2

d = γ2
s is a conic

section that contains the curve γd = γs and the curve−γd = γs. Thus,
γ2
d = γ2

s contains an ellipse. The only possible conic section that
γ2
d = γ2

s could be, then, is an ellipse. Invoking (1) gives dd− = ∅.

Lemma 17. If the conic section γ2
d = γ2

s is an ellipse contained
entirely within σ, then the interior of γ2

d = γ2
s must intersect rr+ or

rr−. The analogous claim for γ2
r = γ2

s is also true.

Proof. Extend f to R2. The conic section γ2
d = γ2

s is the union of
the curve γd = γs and −γd = γs. Since there is no point where
γd = γs = 0, these curves do not intersect. Since γ2

d = γ2
s has only

one connected component, it must be equal to γd = γs or −γd = γs.
Without loss of generality, assume that the conic section γ2

d = γ2
s is

equal to the curve γd = γs.
By assumption, the curve γd = γs separates a region of type dd+

from a region where γs > |γd|. Because dd+ is convex, and γd = γs
is an ellipse, dd+ must lie in the interior of the ellipse.

We claim that the gradient directions of c and s are linearly indepen-
dent. Suppose, to the contrary, that they were not. Then there exists
some unit vector v perpendicular to the gradients of c and s. Since c
and s are affine, they both have constant gradients. Thus, c and s are
constant in direction v, and thus so is γs.

Let p ∈ dd+. Let l be the line through p in direction v. Since γd is
affine, we can move along line l in one direction w (either w = v or
w = −v) so that γd does not decrease. Also, γs is constant along l.
Thus, the ray in direction w rooted at p satisfies γd > γs, and the entire
ray belongs to dd+. This violates the assumption that dd+ is contained
within the ellipse.

Thus, the gradient directions of c and s are independent. So the
curves c(x, y) = 0 and s(x, y) = 0 are two lines that are not parallel.
Thus, they will intersect, and there is a point q where c(q) = s(q) =
γs(q) = 0. By Lemma 16, dd− = ∅ so γd(q) ≥ 0. By assumption
, γd(q) ̸= γs(q) = 0. Hence, γd(q) > γs(q) = 0, so q ∈ dd+ and q
lies in the interior of the ellipse γ2

d = γ2
s .
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y = |γd(x)|
y = |γr(x)|

−γd > |γr| −γr > |γd| γd > |γr|

Fig. 21: The two functions |γd| and γr| can intersect at most twice.
Further, every region where |γd| > |γr| will border every region where
|γr| > |γd

Trivially, |γr(q)| > γs(q) so either q ∈ rr+ or q ∈ rr−. In either
case, the claim is proven.

Lemma 18. Let e be a line segment. If dd+ ∩ e ̸= ∅ and dd− ∩ e ̸= ∅,
then one vertex of e is of type dd+ and the other is of type dd−. The
analogous claim for rr+ and rr− is also true.

Proof. Extend f to R2. Let ϕ : R → R2 parametrize the line con-
taining e, such that ϕ([0, 1]) = e. One can verify that the functions
(γd ◦ ϕ)2 and (γs ◦ ϕ)2 are quadratic functions [0, 1]→ R.

Since rr+ ∩ e cannot border rr− ∩ e, there must be some interval
I := (t1, t2) ∈ [0, 1] such that ϕ(I) lies between rr+ ∩ e and rr− ∩ e,
and γs ◦ ϕ > |γd ◦ ϕ| on all of I . Further, (γd ◦ ϕ)2 and (γs ◦ ϕ)2
must intersect at t1 and t2. Since those functions are quadratic, they
can only intersect at most twice.

Thus, outside of I , there will be no other points where |γd| = γs.
This implies that the only region of e where γs > |γd| that borders
dd+ ∩ e or dd− ∩ e is ϕ(I), which lies between dd+ and dd−. So one
vertex of e must lie within dd+ and the other within dd−.

v1 e v2

e1

v3

e2

γr = γd

−γr = γd

p

γr = γs

q

rq′

q

q

q′

Fig. 22: Sample eigenvector partitions of σ as used in Lemma 20. The
regions are Orange: D+. Red: R+. Blue: R−. White S. (A) We label
the edges and vertices of σ, along with the line γr = γd, which separates
D+ from R+, and the line −γr = γd, which separates D+ from R−.
(B) We demonstrate the path from p up to v3. The path goes towards
v2, then up the curve γr = γs until hitting e1. It then continues from e1
to v3. In this case, v3 ∈ D+. (C) Here, q is a junction point between
γr = γs and γd = γs. We label the point r where γr = γs intersects e.
We also label the oriented tangent vectors of each curve at point p. Here
γr = γs enters D+. (D) Here q is a topologically significant intersection
point between γd = γs and e1. We show the oriented tangent vector of
γd = γs at q, where it points into σ. (E) Here q separates D+ from R−,
and lies on the line −γr = γd. We also label the point q′ used in the
proof.

Lemma 19. Let e be a line segment. Let E1 = {p ∈ e : γd(p) >
|γr(p)|} and E2 = {p ∈ e : γr(p) > |γd(p)|}. If E1 and E2 are not
empty, then they will border each other. The analogous claims using
−γd or −γr are also true.

Proof. Let ϕ : [0, 1] → e parametrize e. Notice that the functions
|γd ◦ϕ| and |γr ◦ϕ| are the absolute values of affine functions on [0, 1].
Thus, every region where |γd ◦ ϕ| ≥ |γr ◦ ϕ| will border every region
where |γd ◦ ϕ| ≤ |γr ◦ ϕ|. We illustrate an example in Fig. 21.

Corollary 2. Let e be a line segment. Then at least one of the following
sets must be empty

• {p ∈ e : γd(p) > |γr(p)|}
• {p ∈ e : −γd(p) > |γr(p)|}
• {p ∈ e : γr(p) > |γd(p)|}
• {p ∈ e : −γr(p) > |γd(p)|}

Corollary 3. The regions D+, D−, R+ and R− cannot all intersect a
segment e.

Lemma 20. Let e be an edge of σ with vertices v1 and v2. Suppose
that v1 comes after v2 when traversing σ clockwise. Let v3 be the
remaining vertex of σ. Let e1 be the edge connecting v1 to v3, and let
e2 be the edge connecting v2 to v3. (See Fig. 22(A) for a diagram.)

Suppose that D+ is not empty, yet does not contain either v1 or
v2, and the curve γd = γs does not have any topologically significant
intersections with e. Then D+ will intersect edge e if and only if the
following are true:

(a) One of v1 or v2 is of type R+ and the other is R−. (assume,
w.l.o.g. that v1 ∈ R+).

(b) γ2
r = γ2

s has no topologically significant intersections with e
(c) At least one of the following is true:

(i) The curve γd = γs never intersects e1 or γr = γs and v3
is of type D+.

(ii) The curve γd = γs never intersects e2 or −γr = γs and
v3 is of type D+.

(iii) There is exactly one junction point p between γd = γs and
γr = γs. At that junction point, γr = γs enters dd+.

(iv) There is exactly one junction point p between γd = γs and
−γr = γs. At that junction point, −γr = γs leaves dd+.

(v) The curve γd = γs has exactly one topologically significant
intersection with e1, where it enters σ. γd = γs never
intersects γr = γs.

(vi) The curve γd = γs has exactly one topologically significant
intersection with e2 where it leaves σ. γd = γs never
intersects −γr = γs.

(vii) The curve γd = γs has no junction points or topologically
significant intersections with any edge of σ. v3 is of type
R−.

Proof. Suppose that D+ borders e but γd = γs has no topologically
significant intersections with e, and neither vertex of e is D+. We first
show that if D+ borders e, then (a) (b) and (c) must be true.

Because neither vertex is of type D+, the region D+ ∩ e must be an
interval in the interior of e bordered by a different region on either side.
D+ ∩ e cannot border D− ∩ e. Because γd = γs has no topologically
significant intersections with e, D+ ∩ e cannot border S ∩ e. Thus,
D+ ∩ e can only border R+ ∩ e and R− ∩ e.

Because R+ and R− are convex, so are R+ ∩ e and R− ∩ e. Thus,
R+ ∩ e and R− ∩ e have one connected component each, and D+ ∩ e
will border R+ one one side and R− on the other side.

Since R+ and R− both border e, by Lemma 18, one vertex must lie
in rr+ and the other in rr−. Without loss of generality, suppose that
v1 ∈ rr+. By assumption, neither vertex is type D+. By Corollary 3,
neither vertex is type D−. Also, neither vertex can be type S because
|γr| > |γs| at both vertices. Thus, we must have that v1 is type R+

and v2 is type R−. This gives (a).
Because (a) is true, both R+ ∩ e and R− ∩ e must only border

D+, meaning that γ2
r = γ2

s will have no topologically significant
intersections with e, giving (b).

We now show (c). Because γr(v1) > 0 and γr(v2) < 0, there must
be a point p ∈ e such that γr(p) = 0. Since e only intersects R+, D+

and D−, it must hold that p ∈ R+. Because γs(p) ≥ 0, it follows



that γr(p) ≤ γs(p). However, γr(v1) > γs(v1). Thus, if we move
towards v1 from p, we must encounter the curve γr = γs.

Thus, γr = γs intersects edge e. Using similar reasoning,−γr = γs
must intersect e. Since the conic γ2

r = γ2
s cannot intersect e more than

twice, the curves γr = γs and −γr = γs intersect e once each.
Because γr = γs transversally intersects the boundary of σ at edge e,

and ∂σ is a closed loop, the curve γr = γs must intersect the boundary
of σ somewhere else. Because γr = γs only intersects edge e once, it
must intersect e1 or e2. We check both cases:
case 1: γr = γs intersects e1: In this case, we travel along the path
from p to γr = γs, then up γr = γs until reaching e1, and then along
e1 until hitting vertex v3. We illustrate this path in Fig. 22(B).

When traveling along this path, one will either stay in the region
D+ the entire time, or it will leave D+. If we stay in D+ the entire
time, then v3 will be of type D+. Further, because the entire path lies
within D+, no junction point was encountered betewen γd = γs and
γr = γs, giving (c)(i). In this case, σ will look similar to the depiction
in Fig. 22(B). Otherwise, there will be some point q where this path
leaves D+. We check three cases for q, and illustrate each case as
Fig. 22.
Case 1.a: q lies on γr = γs: We illustrate this case in Fig. 22(C). In
this case, q will be a junction point between γd = γs and γr = γs.
Since v1 ∈ rr+, the orientation of γr = γs must be such that v1 is on
the right side of γr = γs. As a result, at the point r where γr = γs
intersects e (see Fig. 22(C)), the oriented tangent vector of γr = γs
must point outside of σ.

Thus, γr = γs is oriented in the opposite direction as the path that
we trace. Therefore, at junction point q, the oriented vector tangent to
γr = γs must point into the interior of the curve γd = γs, so γr = γs
enters dd+ at q. We now show that q can be the only junction point
between γd and γr .

Since γd(p) > γr(p), but γr(v1) > γd(v1), then there must be
some point q′ ∈ e between p and v1 such that γd(q′) = γr(q

′). Notice
that the line γd = γr runs through q and q′. Denote that line by l. Any
junction point must lie on line l.

Let ϕ : R → l parametrize l such that ϕ(0) = q′ and ϕ(1) = q.
Suppose that there existed some t ̸= 1 such that ϕ(t) was a junction
point. We check three subcases:
Case 1.a.i: t < 0: Since ϕ(0) lies on the boundary of σ, and ϕ(1) lies
in the interior, then ϕ(t) must lie outside of σ. Thus, ϕ(t) cannot be a
junction point.
Case 1.a.ii: 0 ≤ t < 1: Notice that

(γd ◦ ϕ)(t) = (γd ◦ ϕ)((1− t)(0) + (t)(1))

= (1− t)(γd ◦ ϕ)(0) + t(γd ◦ ϕ)(1)
> (1− t)(γs ◦ ϕ)(0) + t(γs ◦ ϕ)(1)
≥ (γs ◦ ϕ)((1− t)(0) + t(1))

= (γs ◦ ϕ)(t)

Thus, (γd ◦ ϕ)(t) > (γs ◦ ϕ)(t), so ϕ(t) cannot be a junction point.
Case 1.a.iii: t > 1: In this case, γd(t) = γs(t). Notice that

1 =

(
1− 1

t

)
(0) +

(
1

t

)
(t)

And therefore

(γd ◦ ϕ)(1) = (γd ◦ ϕ)
((

1− 1

t

)
(0) +

(
1

t

)
(t)

)
=

(
1− 1

t

)
(γd ◦ ϕ)(0) +

(
1

t

)
γd(t)

>

(
1− 1

t

)
(γs ◦ ϕ)(0) +

(
1

t

)
(γs ◦ ϕ)(t)

≥ (γs ◦ ϕ)(1)

Thus, (γd ◦ ϕ)(1) > (γs ◦ ϕ)(1), which is a contradiction. Thus, ϕ(1)
is the only junction point between γd = γs and γr = γs. This proves
(c)(iii).

Case 1.b: q lies on e1 and q separates D+ from S: We illustrate
this case in Fig. 22(C). Similar reasoning to the previous case gives
(c)(v).

Case 1.c: q lies on the border between D+ and R−: In this case
D+ ∩ e1 will not border S ∩ e1, as it borders R+ ∩ e1 and R− ∩ e1.
Thus, there must be no topologically significant intersections between
γd = γs and edge e1. By assumption, there can be no junction points
between γd = γs and γr = γs. We illustrate this case in Fig. 22(D).

By assumption, γd(q) = −γr(q). Let q′ be the point on edge e
where γd(q

′) = −γr(q′). Let l denote the line connecting q to q′.
Because γd and γr are affine, then γd = −γr on all of l. Thus, l is the
line γd = −γr and all junction points between γd = γs and−γr = γs
must occur on l.

By assumption, γd(q) > γs(q) and γd(q
′) > γs(q

′). Because γd is
affine and γs is convex, it follows that γd > γs on all of l. Thus, there
can be no junction points between γd = γs and −γr = γs.

Because v1 ∈ R+, and R− intersects e1, it follows from Lemma 18
that v3 ∈ rr−. Thus, either v3 ∈ R− or v3 ∈ D−. But because
D+ borders e1, from Corollary 3, it cannot hold that v3 ∈ D−. So
v3 ∈ R−. Since v2 ∈ R−, the entire edge e2 ⊂ R−. Thus, there
are no topologically significant intersections between γd = γs and e3.
This gives (c)(vii).

Thus, in all of case 1, we will either have (c)(i), (c)(iii), (c)(v), or
(c)(vii).
Case 2: γr = γs intersects e2: In this case, we can proceed analo-
gously to case 1, but instead of moving from p towards v1, we move
from p towards v2. We then travel up the curve −γd = γs, which will
intersect e2. Arguing analogously to the previous case will give either
(c)(ii), (c)(iv), (c)(vi), or (c)(vii).

Thus, if D+ borders edge e, then conditions (a), (b), and (c) will be
true. Now suppose that (a), (b), and (c) are true. If one of (c)(i) - (c)(vi)
are true, we can find a point p ∈ D+. By arguing in reverse, we can
find a path to the edge e that never leaves D+, so D+ will intersect e.

Now suppose that (c)(vii) is true. On edge e, R+ ∩ e cannot border
R− ∩ e. Since γ2

r = γ2
s has no topologically significant intersections

with e, then R+ ∩ e and R− ∩ e cannot border any region of type S.
Thus, each of R+ ∩ e or R− ∩ e must border D+ ∩ e or D− ∩ e. We
show that D− ∩ e = ∅.

Instead, suppose that D− ∩ e ̸= ∅. Then define the following sets.

• E1 = {p ∈ σ : γd(p) > γr(p) and γd(p) > −γr(p)}
• E2 = {p ∈ σ : −γd(p) > γr(p) and −γd(p) > −γr(p)}
• E3 = {p ∈ σ : γr > γd and γr > −γd}
• E4 = {p ∈ σ : −γr > γd and −γr > −γd}

Notice that D+ ⊂ E1, D− ⊂ E2, R+ ⊂ E3, and R− ⊂ E4. Thus,
none of the Ei are empty. It is easy to verify that each Ei is connected,
and the {Ei} are disjoint. Further, whenever two of the Ei border
each other, the boundary will lie along one of the lines γr = γd, or
−γr = γd.

In order for this to occur, the lines γr = γd and −γr = γd must
divide σ into at least four regions (one for each of the Ei). This
can only happen if γr = γs intersects −γr = γs within σ. Let
q be the intersection point. Then γr(q) = −γr(q), implying that
γr(q) = γd(q) = 0. By assumption, it cannot hold that γs(q) = 0, so
q ∈ S.

Let p ∈ D+. Let s be the segment between p and q. Then S∩s ̸= ∅
and D+ ∩ s ̸= ∅. Because γd(p) > γr(p) and γd(q) = γr(q), and
γd and γr are both affine, there will be no point on s where γr > γd,
so R+ ∩ s = ∅. Similarly, R− ∩ s = ∅. Also, it is not possible for
D+ ∩ s to border D− ∩ s. Thus, D+ ∩ s will border S ∩ s, meaning
that D+ borders S.

Because D+ borders S it follows that the curve γd = γs is not
empty. Further, a portion of the curve γd = γs separates D+ from
S. Because γd = γs has no junction points and no topologically
significant intersections with any edge, it follows that γd = γs must be
a circle or ellipse in the interior of σ. By Lemma 16, this would imply
that D− = ∅.

Thus, D− cannot intersect σ at all. Therefore, R+ ∩ e borders
D+ ∩ e, implying that D+ borders e.



Lemma 21. Within σ, D+ will border R+ if and only if D+ ̸= ∅,
R+ ̸= ∅, and one of the following is true:

(a) There is a junction point between γd = γs and γr = γs.
(b) There exists an edge e of σ, such that D+∩e ̸= ∅ and R+∩e ̸= ∅

and one of the following statements is true:
(i) One vertex of e is of type D+, and γd = γs has no topolog-

ically significant intersections with e.
(ii) One vertex of e is of type R+ and γr = γs has no topologi-

cally significant intersections with e.
(iii) Neither vertex is of type R+ or D+, and γd = γs and

γr = γs each have at most one topologically significant
intersection with e.

Analogous lemmas can be made with each pair in {D+, D−} ×
{R+, R−}.

ϕ(td) ϕ(t) ϕ(tr) ϕ(td) ϕ(t) ϕ(tr)

Fig. 23: We demonstrate various cases in Lemma 21. Here the edge e
corresponds to the bottom edge of the triangle. The orange region is D+

while the red region is R+. (A) Case 1 of the proof, where one vertex is
of type D+. (B) Case 2 of the proof, where one vertex is of type R+. (C)
Case 3 of the proof, where neither vertex is of type R+ or D+.

Proof. We first show that if D+ border R+, then one of statements (a)
or (b) must be true. If D+ borders R+, then consider the line γr = γd.
Choose some point p ∈ σ on that line that is on the border between
D+ and R+, and trace the line. When tracing along the line, one will
either encounter a region of type S, whereby a junction point is reached,
giving (a), or one will hit an edge e.

If an edge e is hit, then trivially D+ ∩ e ̸= ∅ and R+ ∩ e ̸= ∅. Let
ϕ : [0, 1] → e be a parametrization. Let t ∈ [0, 1] be such that ϕ(t)
is the point where γd = γr intersects e. Then there will be intervals
IR, ID ∈ [0, 1] that have t as an endpoint such that ϕ(I1) = R+ ∩ e
and ϕ(I2) = D+ ∩ e. Let tr, td ∈ [0, 1] be such that IR = [tr, t] and
ID = [t, td].

We now check three cases for the vertices of e. We illustrate each
case in Fig. 23, where the bottom edge of the triangle corresponds to e..
Case 1: One vertex is of type D+: We illustrate this case in Fig. 23(A).
This case implies that td = 1. Thus, the only region that D+∩e borders
is R+∩e with boundary at ϕ(t). Thus, D+∩e will never border S∩e,
so γd = γs will have no topologically significant intersections with e.
This gives (b)(i).
Case 2: One vertex is of type R+: We illustrate this case in Fig. 23(B).
This case is similar to case 1 and gives (b)(ii)
Case 3: Neither vertex is of type D+ or R+: We illustrate this case in
Fig. 23(C). In this case, D+ ∩ e and R+ ∩ e border each other at ϕ(t).
Thus, γd = γs could only have a topologically significant intersection
at ϕ(td) and γr = γs could only have a topologically significant
intersection at ϕ(tr). Thus, each curve could only have at most one
topologically significant intersection. This gives (b)(iii).

Thus, we have shown that R+ bordering D+ implies that (a) or
(b) is true. We now prove the opposite direction. We show that each
condition implies that D+ borders R+. It is trivial that (a) implies
that D+ borders R+. We now show this for (b). Let ϕ : [0, 1] → e
parametrize e.
(b)(i): By Lemma 19, the region E1 := {p ∈ e : γd > |γr|} will
border the region E2 := {p ∈ e : γr(p) > |γd(p)|}. Because D+

contains a vertex v of e, E1 contains a vertex v of e (w.l.o.g. suppose
that E1 contains ϕ(0)). Thus, there exists some t ∈ [0, 1] so that
E1 = ϕ([0, x]). Because E1 contains a vertex of e, it can only border

rr+

S1

rr−

S2
C

rr+ S1 rr− S2

l

rr+

sr+ sr−

rr−

γr = γs

γr = 0

−γr = γs

Fig. 24: (A) We show regions rr+, rr−, S1 and S2 from the proof of
Lemma 23. It is not possible to fill in the region C to prevent rr+ from
bordering rr− and S1 from bordering S2. (B) We show regions rr+,
rr−, S1 and S2 from the proof of Lemma 23. In this case, the line l
would intersect γ2

r = γ2
s three times (marked in purple). (C) A partition

corresponding to the only possible eigenvector graph if rr+ ̸= ∅ and
rr− ̸= ∅.

one of E2 or E3 := {p ∈ e : −γr(p) > |γd(p)|} at ϕ(x). Because
E1 borders E2, it thus cannot border E3.

Because γd = γs does not have any topologically significant inter-
sections with e, the region D+ must border either R+ or R−. Notice
that D+ ⊂ E1, R+ ⊂ E2, and R− ⊂ E3. Because E1 does not
border E3, then D+ cannot border R−. Thus, D+ borders R+.
(b)(ii): This is similar to (b)(i).
(b)(iii): Because neither vertex is of class D+, the region D+ ∩ e must
border a different region on both sides. Since γd = γs has at most one
topologically significant intersection with e, then one of the regions
that borders D+ must be R+ or R−. We check two cases:
case 1: R− ∩ e = ∅: In this case, D+ cannot border R− so D+ borders
R+.
case 2: R− ∩ e ̸= ∅: In this case, by Corollary 3, we must have D− ∩
e = ∅. Arguing symmetrically, we can find that R+ must border D+

or D−. Since D− = ∅, it must follow that R+ borders D+.

Lemma 22. Suppose that rr+ and rr− both intersect σ. Excluding
degenerate points, the eigenvector graph of σ will be a linear graph of
the structure rr+–sr+–sr−–rr−.

Proof. Let S = sr+ ∪ sr−. We claim that S has only one connected
component. Suppose, to the contrary, that S had two connected compo-
nents, which we will call S1 and S2.

It is not possible for both rr+ and rr− to border both S1 and S2.
Because rr+ and rr− do not border each other, and S1 and S2 do not
border each other, such a case would be geometrically impossible, as
we demonstrate in Fig. 24(A). In Fig. 24(A), there is no way to fill
in the region C such that rr+ does not border rr− and sr+ does not
border sr−. Thus, at least one of rr+ or rr− borders only one of S1 or
S2. Without loss of generality, suppose that rr+ borders S1, but not
S2.

Let l be a line connecting rr+ to S2. Since rr+ does not border rr−
or S2, it follows that, after exiting rr+, the line l must enter S1. Thus,
the line l passes between S1 and S2. Because rr+ and rr− are convex,
and l has already left rr+, l must pass through rr− between S1 and
S2. In total, when traveling from rr+ to S2, the line l passes through
rr+ → S1 → rr− → S2. We illustrate this case in Fig. 24(B), where
we highlight the intersectiosn between γ2

r = γ2
s and l in purple.

Whenever l passes from a region where γ2
r > γ2

s to one where
γ2
s > γ2

r (or vice versa), l must intersect the curve γ2
r = γ2

s . In the
path from rr+ → S1 → rr− → S2, then, the line l must intersect
γ2
r = γ2

s exactly three times. However, since γ2
r = γ2

s is a conic
section, it is impossible for a line to intersect it exactly three times.
Thus, there is only one connected component of type S.

Therefore, γ2
r = γ2

s will divide σ into three regions: rr+, rr−, and
S. Since there is no point where γr = γs = 0, the line γr = 0 must
not intersect γs

r = γ2
s . Thus, the line γr = 0 will divide S into two

connected components corresponding to sr+ and sr−. We illustrate
the final partition in Fig. 24(C). Trivially, sr+ borders sr−. rr+ must
only border sr+, and rr− must only border sr−. Thus, we σ will have
en eigenvector graph of the structure rr+–sr+–sr−–rr−.



Fig. 25: We depict the two possible ways that a region of type S can com-
pletely surround another region. (A) The case where D+ (or whichever
region is surrounded) has no junction points. (B) The case where D+

has exactly two junction points with R+ (where either D+ or R+ can be
substituted for D− or R−).

Lemma 23. Let e be an edge of σ. Then rr+ will border e if and only
if rr+ contains a vertex of e, or if γr = γs intersects e. The analogous
claim for rr− is also true.

Proof. It is trivial that these conditions are sufficent for rr+ to border
e. We now show that they are necessary. Suppose that rr+ borders
e. If rr+ borders a vertex of e, then the condition is met. Otherwise,
rr+∩e ̸= e. From Lemma 14 and Lemma 15, this implies that rr+∩e
must border sr+ ∩ e in which case rr+ ∩ e will be separated from its
neighbor along the curve γ2

r = γ2
s , whereby γr = γs will intersect

e.

Lemma 24. Let e be an edge of σ. Suppose that sr+ has only one
connected component. Then sr+ will intersect e if and only if sr+
contains a vertex of e, if γr = γs intersects e, or if γr = 0 intersects e.
The analogous claim for sr− is also true.

Proof. The proof is very similar to that of Lemma 23.

Lemma 25. We say that that a region R ⊂ σ of type S completely
surrounds D+ if D+ ̸= ∅ and all paths starting from any point in D+

will encounter S before an edge of σ.
(1) This situation will occur if and only if all of the following are

true:
(a) D+ intersects the interior of σ.
(b) γd = γs has no topologically significant intersections with

any edges of σ.
(c) All vertices of σ are of type S.
(d) D+ has no junction points, or the following are true:

(i) The curve γd = γs has exactly two junction points.
The junction points are either both with γr = γs, or
both with −γr = γs (w.l.o.g. suppose they are with
γr = γs).

(ii) The curve γr = γs has exactly two junction points.
Both junction points are with γd = γs.

(iii) The curve γr = γs has no topologically significant
intersections with any edge of σ.

(2) If a region R of type S completely surrounds D+, then the eigen-
vector partition of σ will only be one region of type S, and any
regions completely surrounded by S.

Analogous lemmas can be shown for D−, R+, and R−.

Proof. In Fig. 25, we illustrate the two ways that a region of type S can
completely surround a region of another type. Fig. 25(A) corresponds
to the case where D+ has no junction points, whereas (B) corresponds
to the case where D+ has exactly two junction points with R+.

We first show (1). First, suppose that R completely surrounds D+.
(a) is trivial. Also, D+ cannot intersect any edges, giving (b).

In order for R, which is type S, to surround D+, it must follow that
dd+ is also completely surrounded by R. As such, the curve γd = γs
is a connected component of a conic section that does not intersect any
edges of σ, so it must be a circle or ellipse whose interior is of type dd+.
By Lemma 17, either rr+ or rr− must intersect γd = γr . Without loss
of generality, suppose that rr+ intersects γd = γr .

By definition, rr+ ∩ S = ∅. By assumption, every path starting at
dd+ that passes through rr+ must intersect S before intersecting an
edge of σ. Since dd+ intersects rr+, it follows that S also completely
surrounds rr+. Thus, the curve γr = γs is also a circle or ellipse in the
interior of R. From Lemma 16, dd− = ∅ and rr− = ∅, implying that
D− = ∅ and R− = ∅. Since dd+ nor rr+ are ellipses in the interior
of σ, and dd− = ∅ and rr− = ∅, it follows that all three vertices of σ
must be of type S, giving (c).

If γr = γs lies completely inside of γd = γs, then any points in
rr− must lie in the interior of D+. However, since D+ is convex, this
forces R+ = ∅. Thus, D+ will not border any other regions, giving
(d).

Now suppose that γr = γs does not lie completely inside of γd =
γs. Then the two curves will intersect at points along the line where
γd = γr . Since γd = γs and γr = γs are both subsets of conic
sections, the line γd = γr can only intersect each curve at most twice.
Thus, γd = γs and γr = γs will intersect exactly two times. Since
dd− = ∅ and rr− = ∅, these will be the only junction points along
either curve. This fact gives (d)(i) and (d)(ii).

Also, because γr = γs is an ellipse in the interior of σ, (d)(iii) must
follow, so we have (d).

Thus, if R contains D+ in its interior, then (a), (b), (c), and (d) must
follow.

Now suppose that conditions (a), (b), (c), and (d) are true. Without
loss of generality, assume that γd = γs has no junction points with
−γr = γs.

We claim that D+ will not border any edge e. Suppose, to the
contrary, that it did. Since no vertex is of type D+, D+ ∩ e will border
two other regions within e. If either region is of type S, then γd = γs
will have a topologically significant intersection between that region
and D+, which we assume cannot occur. Thus, D+∩e can only border
R+ ∩ e and R− ∩ e. Since R+ ∩ e and R− ∩ e are connected, D+ ∩ e
will border both R+ ∩ e and R− ∩ e, intersecting one region on each
side. In that case, by Lemma 18, then, one vertex of e is of type rr+
and the other is of type rr−. In that case, neither vertex can be of type
S, violating assumption (c). Thus, D+ does not border any edge e.

We also claim that D+ cannot border R−. Suppose that it did. By
Lemma 21, if D+ did border R−, then either γd = γs and −γr = γs
would share a junction point, or D+ and R− would both intersect some
edge e of σ. However, neither case is possible by assumption. Thus,
D+ does not border R−.

We now check two cases:
Case 1: γd = γs has no junction points: Then, by Lemma 21, D+

will not border R+. Thus, D+ can only border a region R of type S,
and does not border any vertices or edges of σ. Therefore, D+ must be
completely surrounded by R.

Case 2: γd = γs has exactly two junction points with γr = γs: In
this case, then clearly D+ will border R+. Using similar reasoning to
before, we can show that R+ will only border D+ and a region of type
S. We can also show that R+ will not border any edges of σ. Thus,
R+ ∪D+ will only border regions of type S, and will not border any
edges of σ. This is possible only if R+ ∪D+ is completely surrounded
by a single region R of type S, meaning that both R+ and D+ lie
within the interior of R. This completes the proof of (1).

To show (2), in the reasoning above, we demonstrated that if D+

lies in the interior of a region R of type S, then the curves γd = γs and
γr = γs are both ellipses contained in the interior of σ. Further, either
R+ = ∅, or R+ and D+ are both completely surrounded by R.

By Lemma 16, it follows that dd− = ∅ and rr− = ∅. Thus, the only
regions within σ will be D+, R+ (if it is not empty), and R, which has
type S.

J.3 Proofs of Main Results

We now prove the main results. For Lemma 6, the goal is to use our
invariant to recover the structure of the eigenvector graph of σ. We
also wish to recover: for each node n of the eigenvector graph, which
vertices and edges of σ border the regions within σ corresponding to n.



Fig. 26: We demonstrate the different possible ways that γd = γs can
divide σ into multi regions. The red region is the interior of γd = γs, and
the orange region is the outside. (A) γd = γs does not intersect σ. (B)
γd = γs does not intersect the boundary of σ, but forms a region within
its interior. (C) γd = γs intersects the boundary of σ twice, forming two
regions. (D) γd = γs intersects the boundary of σ four times, forming
three regions. (E) γd = γs intersects the boundary of σ six times, forming
four regions.

Lemma 6. Except in special cases, the topology of the eigenvector
partition of σ is determined by the following conditions:

(a) Whether each of the curves γr = γs and −γr = γs intersects the
interior of σ.

(b) How many times the curves γr = γs and −γr = γs intersect
each edge of σ.

(c) The classification of each vertex of σ according to the eigenvector
partition.

Proof. If rr+ and rr− are both inside of σ, then by Lemma 22, there
is only one possible eigenvector graph. That eigenvector graph will
have one node of each type rr+, sr+, sr− and rr−. Which regions
border which vertices can be determined from the classifications of
each vertex, and Lemma 23 gives which edges are bordered by rr+ and
rr−. From the vertex classification, we know whether γr > 0 for each
vertex. From that information, we can deduce which edges intersect
the line γr = 0. Then, Lemma 24 allows us to deduce which edges
border sr+ and sr−.

Now suppose that rr+ and rr− do not both intersect σ. Without
loss of generality, suppose that rr− does not intersect σ. Since rr+ is
convex, its boundary, given by γr = γs, will intersect the boundary of
σ either zero, two, four, or six times. In doing so, γr = γs will divide
σ into, respectively, one, two, three, or four regions. If γr = γs never
intersects the boundary of σ, it can also possibly be an ellipse in the
interior of σ, thus dividing σ into two regions. We illustrate each of
these cases in Fig. 26. Further, the line γr = 0 We now check each
case.

Case 1: γr = γs intersects σ zero times: We check four subcases:
Case 1(i): ∂rr+ = ∅; all vertices are the same classification: In this

case, every vertex must be of the same class, either rr+, sr+ or sr−.
The eigenvector graph will be a single node, and its corresponding
region will border every vertex and edge of σ.

Case 1(ii): ∂rr+ = ∅; some vertices have different classifications:
In this case, σ will have regions of multiple classifications. None of
them can be rr+, as otherwise ∂rr+ would separate rr+ from another
region. Thus, some vertices will be sr+ and others sr−. By inspecting
the vertex classifications, we can find which edges will intersect the
line γr = 0. The line γr = 0 will divide σ into two regions, one of
type sr+ and the other of type sr−. Using Lemma 24, we can deduce
which edges intersect each of the two regions.

Case 1(iii): ∂rr+ ̸= ∅; all vertices are the same classification: In
this case, rr+ will be a convex region contained within the interior
of σ. Because rr+ can only border sr+, it must be contained within

the interior of sr+. Thus, every vertex must be sr+. As a result, the
eigenvector graph will have two nodes, one of type rr+ and the other
of type sr+. The region of type sr+ will border every vertex and edge.

Case 1(iv): ∂rr+ ̸= ∅; not all vertices are the same classification:
In this case, rr+ will be a convex region in the interior of σ. As before,
it must be contained within sr+. In this case, some vertices must be of
type sr+ and others of type sr−. The topology can be found by using
similar reasoning to before.

Case 2: γr = γs intersects ∂σ twice: In this case, γr = γs will di-
vide σ into two regions. We can determine which is which by inspecting
the classifications of the vertices.

We can inspect the classifications of the vertices to detect if the line
γr = 0 runs through σ. If it does, it will divide the region where
γr < γs into two regions, one of type sr+ and the other sr−, where
rr+ will border sr+. If γr = 0 does not run through σ, then σ will be
divided into two regions, one of type sr+ and the other of type rr+. In
either case, we can compute the eigenvector graph. Then, which regions
intersect which vertices and edges can be computed from Lemma 23
and Lemma 24.

Case 3: γr = γs intersects ∂σ four times: In this case, γr = γs will
divide σ into three regions. In two regions, γs > γr . The third region,
which lies between the other two, will satisfy γr > γs.

Because rr+ is convex, any region where γs > γr (that lies outside
of rr+) must contain at least one vertex of σ. One can verify that two
regions where γs > γr will be connected if and only if both regions
border some edge e that does not intersect γr = γs. By inspecting
which vertices and edges are intersected by γr = γs, we can uniquely
identify the different regions where γr > γs.

Using similar reasoning previous cases, we can compute the regions
that intersect the line γr = 0. Any region where γs > γr not inter-
sected by the line γr = 0 will be entirely classified as sr+. Any region
where γs > γr intersected by γr = 0 will be divided into two regions,
one of type sr+ and the other sr−. The region of type sr+ border rr+,
while sr− will not border rr+.

Which vertices intersect rr+ follow from their classifications, and
Lemma 23 determines which edges border rr+. For any region where
γs > γr , if that region borders an edge e, then it must border some
vertex v of e. Thus, we can identify all edges and vertices bordering
that region. For any region where γs > γr that intersects the line
γr = 0, by inspecting the position of the line we can determine which
edges intersect the sub-regions of type sr+ and sr−.

Case 4: γr = γs intersects ∂σ six times: In this case, γr = γs will
divde σ into four regions. There will be three regions where γs > γr .
From here, computing the topology follows closely to the previous
case.

Lemma 7. Except in special cases, the topology of the eigenvalue
partition of σ is determned by the following conditions:

(a) The classification of each vertex in the eigenvalue partition.
(b) For each of the curves γd = γs, −γd = γs, γr = γs, and
−γr = γs, determine the order in which the following points are
encountered when traveling counterclockwise around the curve.

(i) Each boundary point (i.e, a point on the boundary between
two regions of the eigenvalue partition) where the curve
enters or leaves σ, and the orientation of the curve at that
point.

(ii) Each junction point, along with the orientations of the
curves that intersect at that point.

(c) For each edge e of σ, for each point identified in (b.i) that lies on
e, determine which point is closest to each vertex of e.

(d) For each region type in the eigenvalue partition, except where
γs > |γd| and γs > |γr|, if its boundary curve does not intersect
any edges or other curves, check whether that region is present in
the eigenvalue partition of σ.

Proof. We assume that every region of the eigenvalue partition does
not completely surround any other region. Because D+, D−, R+, and
R− are convex, the only type of region that could surround another
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Fig. 27: If p is the vertex of the region of type S, we identify the next
vertex along the boundary of S when traveling clockwise. (A) pi is a point
where a conic section enters σ. (B) pi is a junction point. (C) pi is a point
where a conic section leaves σ. (D) pi is a vertex of σ.

region is the region of type S. Lemma 25(1) gives a necessary and
sufficient condition for such a situation to occur that can be determined
from (a), (b), (c), and (d). Further, Lemma 25(2) demonstrates that,
when such a case arises, the topology is very easy to recover from (a)
(b) (c) and (d).

We first claim that the number of nodes in the eigenvector graph of
each region type can be recovered.

If any vertex is of type D+, as in (a), or if γd = γs has any junction
points or topologically significant intersections with edges of σ, as
described in (b), then clearly D+ ∩ σ ̸= ∅. If γd = γs does not
have any intersections, then from (d) we will know whether or not
D+ ∩ σ = ∅. The same is true for D−, R+, and R−. Thus, we will
know whether there is at least one node of each of these types in the
eigenvalue graph. By Lemma 13, D+, D−, R+, and R− each have at
most one connected component, so there can be at most one node of
each of these types in the eigenvalue graph. Thus, we can recover the
number of nodes in the eigenvalue graph of types D+, D−, R+, and
R−.

We are only left to find the number of type S. We will compute
the number of nodes of type S by tracing the boundary of each region
within the eigenvalue partition of σ using the points from (b).

Let P = {p1, p2, . . . , pn} be all of the points from (b), along with
the vertices of σ that are of type S (which we can identify from (a)). It
is easy to show that each p ∈ P borders one region of type S.

The boundary of each region R of type S must consist of sections
of the conics γ2

d = γ2
s and γ2

r = γ2
s , as well as sections of edges of σ.

Any time that two of these segments meet on the boundary of R, they
will intersect at some point p ∈ P . Thus, for each region of type S, by
traversing the boundary one will encounter a loop of points in P .

Now let pi ∈ P be a vertex of the boundary of some region R of
type S. We claim that (b) and (c) allow us to compute the next vertex
p′i that immediately follows pi when tracing R clockwise. We check
four cases. We illustrate each case in Fig. 27.
Case 1: A conic section l leaves σ at pi: In this case, p′i will be the next
point in P that l intersects when traveling counterclockwise along l.
We can find this point p′i from (b). We illustrate this case in Fig. 27(A).
Case 2: pi is a junction point: Denote the two curves that meet at the
junction point as l1 and l2. At the intersection, one of the conics will
be entering the interior of the other at pi. Without loss of generality,
suppose that l1 enters the interior of l2. Then we find the point p′i along
l1 that comes after pi when traveling counterclockwise along l1. we
illustrate this case in Fig. 27(B).

Case 3: A conic section l enters σ at pi: Let e be the edge where l en-
ters σ. Let v1 and v2 be the vertices of e, such that v1 comes after v2
when traversing σ clockwise. In this case, then the boundary of R will
travel towards v1. Then, p′i will be the closest point in P to pi along
e when traveling towards v1. We can identify p′i by identifying the
relative positions of each point in P ∩ e relative to vertices v1 and v2.
We illustrate this case in Fig. 27(C).
Case 4: pi is a vertex of σ: In this case, let e be the edge that comes
after pi when traversing σ in clockwise order. Then p′i will be the point
on e closest to pi. We illustrate this case in Fig. 26(D).

Across all cases, we can find the next point p′i that follows after
point pi. This allows us to define a permutation on the points in P .
Each cycle of the permutation will correspond to a different connected
component of the boundary of some region R of type S. Since no
region of type S surrounds any other region, the boundary of each
region R of type S will be connected. Thus, we can uniquely identify
each region of type S.

Next, we find which edges and vertices are adjacent to each region.
Clearly, the construction of each region of type S will yield which
vertices and edges it borders.

For the other types of regions, we can inspect the vertex classifica-
tions and edge intersections to identify which regions intersect each
edge. For D+, if a vertex v is of type D+, then D+ will border v as
well as the two edges the join at v. Also, D+ must border an edge e
if γd = γs has a topologically significant intersection with e. If, for
some edge e, D+ does not intersect either vertex of e, and γd = γs
has no topologically significant intersections with e, then Lemma 20
gives a necessary and sufficient condition for D+ to border e that can
be determined from (a), (b), (c), and (d). We can use the same approach
for D−, R+, and R−.

Finally, we must determine which regions of the eigenvalue partition
border one another. The construction of each region of type S will
yield which other regions it borders. Lemma 21 provides a necessary
and sufficient condition for two regions of types D+, D−, R+, or R−
to border each other that can be computed from (a), (b), (c), (d), and
which edges and vertices each region borders.

J.4 Handling of Edge Cases
In the previous proofs, we made the following assumptions:

(i) γ2
d = γ2

s and γ2
r = γ2

s only intersect each other and each edge of
σ transversally.

(ii) No junction points occur on the edges of σ.
(iii) No two of the functions |γd|, |γr|, or γs are exactly equal on all

of R2.
(iv) The conic sections γ2

d = γ2
s and γ2

r = γ2
s are either empty or

have infinitely many points.
(v) The curve γd = γs will border one region of type dd+ and another

where γs > |γd|. Make similar assumptions about −γd = γs,
γr = γs, and −γr = γs.

(vi) |γd|, |γr| and γs are never equal on a vertex of σ.
(vii) There are no vertices of σ where γr = 0.

(viii) There are no points in σ where γd = γs = 0 or γr = γs = 0.

In Appendix H, we ensure (i)-(v) using symbolic perturbations. Thus,
these are fair assumptions to make in our proofs.

For (vi) or (vii), it is possible that |γd| = |γr| or |γd| = γs or
|γr| = γs or γr = 0 on some vertex of σ. In that case, we track it
in our topological invariant. It is not difficult to modify our existing
proofs to accommodate these cases.

(viii) is more difficult to handle. If assumption (viii) does not hold,
and there exists some z ∈ σ satisfying γd(z) = γs(z) = 0, but
|γr(z)| > 0, then the point z will lie within R+ or R− and will not lie
on the boundary between any different regions. Thus, we can apply a
small perturbation to γd or γs to ensure that γd(z) ̸= 0 or γs(z) ̸= 0
(ensuring that (viii) holds) without altering the topology. It is similar if
γr(z) = γs(z) = 0 < |γd(z)|.

Thus, we are only left to handle the case where there is a point z
where γd(z) = γr(z) = γs(z) = 0. To handle the topology, we
employ the following lemmas:



Lemma 26. Suppose that z ∈ σ is a point where γd(z) = γr(z) =
γs(z) = 0. Let p lie on the boundary of σ. Suppose that p ∈ D+. Let
q lie on the segment between p and z. Then q ∈ D+.

Similar lemmas are true for D−, R+, R−, rr−, rr+ and rr−.

Proof. This follows from the fact that γd and γr are affine, and γs is
convex.

Lemma 27. Suppose that z ∈ σ is a point where γd(z) = γr(z) =
γs(z) = 0. Let p lie on the boundary of σ. Suppose that p ∈ sr+. Let
q lie on the segment between p and z. Then q ∈ sr+.

Similar lemmas are true for sr− and S.

Proof. Let l be the line connecting p to z. Let ϕ parametrize l with
ϕ(0) = z and ϕ(1) = p. Notice that (γr ◦ ϕ)2 and (γs ◦ ϕ)2 are both
quadratic functions. Both of these functions will have a vertex at t = 0,
where they intersect. Since (γr ◦ϕ)(1)2 < (γs ◦ϕ)(1)2, it follows that
(γr ◦ ϕ)(t)2 < (γs ◦ ϕ)(t)2 for every t > 0. Thus, γs(q)2 > γr(q)

2.
Additionally, because γr is affine, γr(p) > 0, and γr(z) = 0, it

follows that γr(q) > 0. Thus, q ∈ sr+.

Thus, for both the eigenvector and eigenvalue partitions, the toplogy
of σ is determined entirely based on the classifications of points along
the boundary. By analyzing where the curves γd = γs and γr = γs
have topologically significant intersections with the boundary of σ, as
well as the classifications of each vertex, we are able to determine the
topology around the boundary of σ. If there is a point z ∈ σ where
γd(z) = γr(z) = γs(z) = 0, we also note this in our invariant. Thus,
when there is a point where γd(z) = γr(z) = γs(z), our invariant is
enough to recover the topology of σ.
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