
TFZ: Topology-Preserving Compression of 2D Symmetric and
Asymmetric Second-Order Tensor Fields

Nathaniel Gorski , Xin Liang , Hanqi Guo , and Bei Wang

Fig. 1: Visualizing the eigenvector partition of a 2D asymmetric second-order tensor field compressed with classic SZ3 and Augmented
SZ3 compressors with topological controls. Left: input data visualized with degenerate points of the dual-eigenvector field. Trisectors
are in white, wedges are in pink. Middle: reconstructed data using SZ3, labeled with compression ratio and Peak Signal-To-Noise Ratio
(PSNR). Right: reconstructed data using Augmented SZ3 along with compression ratio and PSNR. We provide zoomed-in views that
highlight the differences between the classic and Augmented SZ3 results. The colormap is based on a partition of eigenvector manifold.
The position of each point on the Z axis corresponds to the Frobenius norm with smoothing applied.

Abstract— In this paper, we present a novel compression framework, TFZ, that preserves the topology of 2D symmetric and asymmetric
second-order tensor fields defined on flat triangular meshes. A tensor field assigns a tensor—a multi-dimensional array of numbers—to
each point in space. Tensor fields, such as the stress and strain tensors, and the Riemann curvature tensor, are essential to both
science and engineering. The topology of tensor fields captures the core structure of data, and is useful in various disciplines, such
as graphics (for manipulating shapes and textures) and neuroscience (for analyzing brain structures from diffusion MRI). Lossy data
compression may distort the topology of tensor fields, thus hindering downstream analysis and visualization tasks. TFZ ensures
that certain topological features are preserved during lossy compression. Specifically, TFZ preserves degenerate points essential
to the topology of symmetric tensor fields and retains eigenvector and eigenvalue graphs that represent the topology of asymmetric
tensor fields. TFZ scans through each cell, preserving the local topology of each cell, and thereby ensuring certain global topological
guarantees. We showcase the effectiveness of our framework in enhancing the lossy scientific data compressors SZ3 and SPERR.

Index Terms—Lossy compression, tensor fields, topology preservation, topological data analysis, topology in visualization

1 INTRODUCTION

The concept of a tensor is intricate and has evolved across various disci-
plines from differential geometry to machine learning [13]. Intuitively,
a tensor is a mathematical entity that generalizes scalars, vectors, and
matrices to higher dimensions while adhering to specific transformation
rules. It can be represented as a multidimensional array of numbers.
A tensor field is a function that assigns a tensor to each point in a
space. Tensor fields naturally arise across a variety of scientific do-
mains. In fluid dynamics, the velocity gradient tensor field describes
how the fluid’s velocity changes from one point to another within the
flow, providing information about the deformation and rotation of fluid
elements [14, 36]. In general relativity, the energy-momentum ten-
sor field describes the matter and energy content of the universe [5],

• Nathaniel Gorski is with the University of Utah. E-mail:
gorski@sci.utah.edu.

• Xin Liang is with the University of Kentucky. E-mail: xliang@uky.edu.
• Hanqi Guo is with the Ohio State University. E-mail: guo.2154@osu.edu.
• Bei Wang is with the University of Utah. E-mail: beiwang@sci.utah.edu.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

whereas the Riemann curvature tensor field describes the geometry of
spacetime itself [1]. In materials science, the stress and strain tensor
fields are fundamental concepts that respectively describe the internal
forces within a material and how the material deforms under external
loads [41, 42]. In neuroscience, diffusion tensor fields (from diffusion
tensor imaging or DTI) captures the diffusion of water molecules in the
white matter for the study of neural pathways [27].

The topology of tensor fields reflects the core structure of data and
proves valuable across various fields, including graphics [2, 6, 48] (for
manipulating shapes and textures) and neuroscience [19] (for analyzing
brain structures through DTI). The topology of a tensor field depends
on the dimension of the domain, the size of the tensor, and whether
or not the tensors are symmetric. For instance, the stress tensor is
symmetric, while the velocity gradient tensor is asymmetric. In this
work, we consider 2D symmetric and asymmetric second-order tensor
fields, where each field maps points in R2 to 2× 2 matrices.

The topology of a 2D symmetric second-order tensor field is defined
by its corresponding eigenvector fields [19], which are obtained by cal-
culating the eigenvectors and eigenvalues of each tensor. The topology
includes degenerate points (where the eigenvalues are equal) and their
connections through tensorlines (lines aligned with the eigenvector
fields). The topology determines high-level patterns in the tensorlines,
which are one of the main tools used to analyze symmetric tensor fields.
It is also often used to derive various types of visualizations [19, 46].
Further, in certain scenarios, the degenerate points of tensor fields

https://orcid.org/0009-0001-8205-5640
https://orcid.org/0000-0002-0630-1600
https://orcid.org/0000-0001-7776-1834
https://orcid.org/0000-0002-9240-0700

have real physical interpretations [11, 25, 51]. On the other hand, the
topology of a 2D asymmetric second-order tensor field is derived from
certain partitions of the domain according to decompositions of asym-
metric tensors. Asymmetric tensor fields are very difficult to analyze,
and their topology is one of the only tools available for analysis and
visualization [3, 15, 20, 33, 38, 50].

Despite their utility, working with tensor fields is often constrained
by significant storage requirements. For instance, storing a tensor
field composed of 2× 2 matrices necessitates 256 bits of storage per
data point (assuming double precision). Consequently, the storage
and transmission of tensor field data can present substantial challenges
within scientific workflows. One possible solution to address this issue
is to utilize lossy compressors developed specifically for scientific
data, which typically ensure strict pointwise error bounds. However,
applying these compressors to tensor fields often distorts high-level
geometric or topological patterns in the data, even with minimal error
bounds, thereby hindering downstream analysis and visualization. This
is especially problematic if topological analysis is prioritized.

In this paper, we introduce TFZ, a novel framework that augments
any error-bounded lossy compressor to preserve the topology of 2D
symmetric and asymmetric second-order tensor fields defined on flat
triangular meshes. It iterates through the cells in the mesh, enforcing
specific local properties that, when preserved across all cells, ensure
that global topological properties are preserved. In summary:

• TFZ could be used to enhance any error-bounded lossy compressor
to provide topological guarantees. For symmetric tensor fields, it pre-
serves the degenerate points in the eigenvector fields. For asymmetric
tensor fields, it maintains the integrity of eigenvector and eigenvalue
graphs. Additionally, TFZ guarantees a strict pointwise error bound
for each entry of every tensor.

• As a secondary contribution, we present a new topological invariant
that characterizes the topology of a mesh cell in a 2D asymmetric
tensor field.

• We demonstrate the effectiveness of our framework through a com-
prehensive evaluation, enhancing two lossy scientific data compres-
sors—SZ3 and SPERR—while ensuring topological guarantees.

2 RELATED WORK

We review error-bounded lossy compression for scientific data, the
topology and visualization of tensor fields, and topology-preserving
compression.
Lossy data compression. Lossless compression ensures perfect data
recovery but achieves limited compression ratios for scientific data,
typically less than 2× according to [44]. Given the massive size of
scientific datasets, lossy compression is generally preferred, and error-
bounded lossy compression has been developed for applications that
require guarantees on data distortion. See [9] for a survey.

There are two main types of error-bounded lossy compressors:
prediction-based and transformation-based. Prediction-based meth-
ods use interpolation strategies to generate an initial guess for the data.
They also compute and encode any corrections that must be made
to the initial guess to ensure that a strict error bound is maintained.
ISABELA [24], one of the first error-controlled prediction-based com-
pressors, uses B-splines to predict data. SZ3 [31, 32, 52], the most
recent general release in the SZ compressor family, uses a Lorenzo
predictor [18], cubic spline interpolation, and linear interpolation.

Recently, deep learning models have been employed as predictors
for data compression, such as the autoencoder [26] and implicit neural
representation (INR) [35]. An autoencoder is a neural network with
two components: an encoder and a decoder. The encoder produces
low-dimensional representations of the input data, while the decoder
reconstructs the original input data from the output of the encoder. An
INR trains a small neural network that can be used to approximate the
ground truth. The neural network itself is shipped as a compressed
file, and to decompress it, one must simply evaluate the network on an
appropriate input. One notable INR model for volumetric scalar fields
is Neurcomp [35]. However, neural-based compression is computation-
ally expensive and suffers from limited performance.

Transform-based lossy compressors rely on domain transformations
for data decorrelation. For instance, ZFP [34] divides data into small
blocks. Each block is separately compressed using exponent alignment
for fixed point conversion, a near-orthogonal domain transform, and
embedded encoding. TTHRESH [4] treats the entire dataset as one
tensor, and uses singular value decomposition (SVD) to improve the
decorrelation efficiency for high-dimensional data. SPERR [28] uses
wavelet transforms and SPECK coding [39] to compress data.
Tensor compression. Data are typically stored in multidimensional
arrays across a variety of domains. As such, tensor compression
strategies have been developed to compress multidimensional arrays.
However, these strategies are not designed for compressing tensor
fields specifically. Rather, they compress large individual multidimen-
sional arrays. Some strategies use tensor decompositions such as SVD,
canonical polyadic decomposition or Tucker decomposition. One ex-
ample is TTHRESH [4], which uses SVD. Recently, deep-learning
based approaches have been proposed for tensor compression, such as
NeuKron [22], TensorCodec [23], and ELiCiT [21]. While tensor com-
pressors are not fundamentally different from scientific compressors,
scientific compressors are not typically labeled as tensor compressors
due to differences in terminology across domains.
Topology and visualization of 2D tensor fields. 2D tensor fields are
inherently difficult to visualize. Visualization typically involves glyphs
[10], color plots, [33], or streamlines [53]; see [15] for a survey. The
topology of 2D symmetric tensor fields was first applied to visualization
by Delmarcelle [7]. Since then, the topology of 2D symmetric tensor
fields has been applied to numerous problems in computer graphics such
as remeshing [2], street layout generation [6] and scene reconstruction
[48]. It has also been used in the visualization of tensor fields [19, 46]
and rotation fields [37]. Outside of visualization, the degenerate points
have been shown to have meaningful physical interpretations in certain
domains [11, 25, 51]. The topology of asymmetric tensor fields has
been utilized to support their visualization [20, 33, 38].
Topology-preserving compression. Recently, a number of topology-
preserving data compression techniques have been developed. Most
of the work thus far has pertained to scalar fields; to our knowledge,
no topology-preserving compression technique has been developed for
tensor field data. Soler et al. [43] developed a compressor that preserves
the persistence diagram of a scalar field, up to a user-specified persis-
tence threshold. Yan et al. [49] developed TopoSZ, which preserves the
contour tree of a scalar field, up to a user-specified persistence thresh-
old. Gorski et al. [12] developed a contour tree preserving compression
strategy with improved performance compared to TopoSZ. Li et al.
developed mSZ [29], which preserves the Morse–Smale segmentation
of a scalar field. For vector fields, Liang et al. [30] developed cpSZ,
which preserves the critical points of a vector field. Later, Xia et al. [47]
developed TspSZ, which preserves the entire topological skeleton.

3 TECHNICAL BACKGROUND

3.1 Tensors and Tensor Fields

A tensor may be represented as a multidimensional array. The rank
of a tensor indicates the number of indices required to specify its
components: a scalar has rank 0, a vector has rank 1, and a matrix has
rank 2. Tensors play a significant role in science and engineering, such
as the Riemann curvature tensor from general relativity, the stress and
strain tensors in mechanics, and diffusion tensor imaging in medicine.
We consider 2D symmetric and asymmetric second-order tensor fields,
which we refer to simply as tensor fields when the context is clear. In
this paper, a tensor T is a linear operator that maps any vector v to
another vector u = Tv, where both v and u belong to the vector space
R2. With a chosen basis of R2, T can be represented by a 2× 2 matrix

T =

(
T11 T12

T12 T22

)
.

T is symmetric when Tij = Tji and asymmetric otherwise. Let T
denote the space of second-order tensors. A tensor field f : X → T
assigns each point x from a domain X to a tensor f(x) ∈ T.

Consistent with previous work [19, 33], we work with piecewise-
linear (PL) tensor fields. For TFZ, X is a flat 2D triangular mesh (i.e.
all vertices have zero Gaussian curvature). f is stored at vertices of the
mesh and PL interpolated. Specifically, let σ be a triangular cell with
vertices v1, v2, and v3. Any point x ∈ σ can be written uniquely based
on barycentric coordinates, that is, x = a1v1 + a2v2 + a3v3 where
ai ≥ 0 and

∑
i ai = 1. We set f(x) = a1f(v1)+a2f(v2)+a3f(v3).

When studying the topology of tensor fields, Khan et al. claimed that
this interpolation scheme can lead to discontinuities when vertices have
nonzero Gaussian curvature [20]. Thus, we restrict X to be flat.

3.2 Topology of Tensor Fields
The topology of a tensor field varies significantly depending on the
order, dimension, and symmetry of the tensor field (e.g., [16, 17, 19, 40,
50]). We focus on the topology of 2D second-order tensor fields.

3.2.1 Topology of Second-Order Symmetric Tensor Fields
The topology of a second-order symmetric tensor field f consists of
degenerate points (i.e., points with equal eigenvalues) and their con-
nections via tensorlines (i.e., lines that follow the direction of the
eigenvector fields) [8]. At a fixed location x, let f(x) = T . A sym-
metric tensor T has two linearly independent real eigenvectors v1 and
v2 that correspond to real eigenvalues λ1 and λ2 respectively. If we
order the eigenvalues such that λ1 ≥ λ2, then v1 are v2 are the major
and minor eigenvectors, respectively. The major (resp., minor) eigen-
vector field of f , denoted as e1 (resp., e2), maps each x to the major
(resp., minor) eigenvector of f(x). Integrating the eigenvector fields
yields two families of continuous curves, referred to as the major and
minor tensorlines.

A degenerate point of f is a point where the eigenvalues are identical
and the eigenvectors are no longer defined uniquely, that is, λ1 = λ2.
Degenerate points behave like the zeros of a vector field. The topology
of f is defined in terms of its degenerate points, and the tensorlines
that connect them. In the PL setting, there are two types of degenerate
points that can occur within a cell: a trisector and a wedge, as shown
in Fig. 2(A) and (B) respectively. They can be classified and detected
according to the behavior of the eigenvector fields around them.

Fig. 2: Degenerate points of a 2D second-order symmetric tensor field.
The major eigenvector field is visualized using the Line Integral Convolu-
tion (LIC) together with major tensorlines passing through the degenerate
points; trisectors (A) are in white, wedges (B) are in pink.

We detect a degenerate point within a cell σ using the concept
of a deviator following Jankowai et al. [19]. Given a cell σ, let T1,
T2, and T3 be tensors (represented as matrices) associated with its
vertices in a clockwise order. Define the deviator of a tensor T by
D(T) := T − 1

2
tr(T), where tr(T) is the trace. It has been shown

that D(T) has the same eigenvectors as T , and tr(D(T)) = 0 by
construction [19]. For each Ti, denote the entries of its deviator by

D(Ti) :=

(
∆i Fi

Fi −∆i

)
. (1)

For a pair Ti and Tj , let

li,j := sign(Fj∆i − Fi∆j). (2)

Then σ contains a wedge if l1,2 = l2,3 = l3,1 = 1, and a trisector if
l1,2 = l2,3 = l3,1 = −1; otherwise, if li,j ̸= 0 for all pairs, σ contains
no degenerate points. Jankowai et al. [19] did not consider the scenario
where li,j = 0 and instead applied small perturbations to prevent it
from occurring. We address such a scenario explicitly in Sec. 4.2.

3.2.2 Topology of Second-Order Asymmetric Tensor Fields
Zhang et al. [50] introduced the tensor decomposition of any second-
order tensor T ,

T = γd

(
1 0
0 1

)
+ γr

(
0 −1
1 0

)
+ γs

(
cos(θ) sin(θ)
sin(θ) − cos(θ)

)
, (3)

where γd = T11+T22
2

, γr = T21−T12
2

, and

γs =

√
(T11 − T22)2 + (T12 + T21)2

2
.

γd, γr , and γs reflect the strengths of isotropic scaling, rotation, and
anisotropic stretching, respectively [50]; where γs ≥ 0 and γd, γr ∈ R.
θ ∈ [0, 2π) is the angular component of the vector(

T11 − T22

T12 + T21

)
.

In a PL setting, γd and γr interpolate linearly, whereas the interpola-
tion of γs is more involved; see [50] for details.
Dual-eigenvector field. Although the eigenvectors of an asymmetric
tensor can be complex, Zheng and Pang [54] introduced the major and
minor dual-eigenvector fields, which are real-valued eigenvector fields
derived from an asymmetric tensor field f . For an asymmetric tensor
T , the major and minor dual-eigenvectors of T are the major and minor
eigenvectors of a symmetric tensor [50, Theorem 4.2]:

PT =
γr
|γr|

γs

(
cos

(
θ + π

2

)
sin

(
θ + π

2

)
sin

(
θ + π

2

)
− cos

(
θ + π

2

)) . (4)

Thus the dual-eigenvector fields are the major and minor eigenvector
fields of the symmetric tensor field x 7→ Pf(x).

Recall that any square matrix T can be written as T = TS + TA,
where TS = 1

2
(T + T⊤) is the symmetric part of T and TA is the

antisymmetric part. The symmetric part of a tensor T is defined as the
average of the tensor with its transpose. Following Eq. (3),

TS = γd

(
1 0
0 1

)
+ γs

(
cos(θ) sin(θ)
sin(θ) − cos(θ)

)
. (5)

Accordingly, let fS be the symmetric part of f . A point is an isolated
degenerate point (and not part of a larger degenerate curve or region) in
the dual-eigenvector field of f if and only if it is an isolated degenerate
point in the eigenvector field of fS . Further, the type of that degenerate
point (trisector or wedge) remain the same [50, Theorem 4.4].
Eigenvector manifold and eigenvalue manifold. To illustrate the
structures in asymmetric tensor fields, Zhang et al. [50] introduced the
notions of eigenvalue manifold (a hemisphere) and eigenvector mani-
fold (a sphere), that encode the relative strengths of three components
in Eq. (3) affecting the eigenvalues and eigenvectors in the tensor. For
this purpose, we assume that γ2

d + γ2
r + γ2

s = 1. Following [50], the
eigenvector manifold is defined as a sphere

{(γr, γs, θ) | γ2
r + γ2

s = 1 and γs ≥ 0 and 0 ≤ θ < 2π}, (6)

whereas the eigenvalue manifold is defined as a hemisphere

{(γd, γr, γs) | γ2
d + γ2

r + γ2
s = 1 and γs ≥ 0}. (7)

Eigenvector partition. We visualize the eigenvector manifold of
Eq. (6) in Fig. 3(A). To construct the manifold, we first define a semi-
circle γ2

r + γ2
s = 1 (where γr ≥ 0). Then, we rotate such a semicircle

around a vertical axis to obtain a sphere. On this sphere, each longitude
line that runs from the North Pole to the South Pole corresponds to a
value of θ, and each latitude line corresponds to a value of γr .

Next, we partition the eigenvector manifold based on (a) whether
|γr| or γs is greater and (b) the sign of γr . Fig. 3(A) illustrates four
regions from such a partition using a categorical colormap, from the
top to bottom: the first region near the North Pole corresponds to the

<latexit sha1_base64="Jo3jEpTcU4Kd0ht4KBCEwG7Cp7A=">AAAB8XicbVA9TwJBEJ3DL8Qv1NLmIphYkTsKtCSxsUQjHxEuZG7Zgw27e5fdPRNC+Bc2Fhpj67+x89+4wBUKvmSSl/dmMjMvTDjTxvO+ndzG5tb2Tn63sLd/cHhUPD5p6ThVhDZJzGPVCVFTziRtGmY47SSKogg5bYfjm7nffqJKs1g+mElCA4FDySJG0FjpsdwbohDYV+V+seRVvAXcdeJnpAQZGv3iV28Qk1RQaQhHrbu+l5hgisowwums0Es1TZCMcUi7lkoUVAfTxcUz98IqAzeKlS1p3IX6e2KKQuuJCG2nQDPSq95c/M/rpia6DqZMJqmhkiwXRSl3TezO33cHTFFi+MQSJIrZW10yQoXE2JAKNgR/9eV10qpW/Fqldlct1e+zOPJwBudwCT5cQR1uoQFNICDhGV7hzdHOi/PufCxbc042cwp/4Hz+ANYEkG8=</latexit>�r

<latexit sha1_base64="yOnhDOzTiR01Q/9eJ2TmPdHKbas=">AAAB8XicbVA9TwJBEJ3DL8Qv1NLmIphYkTsKtCSxsUQjHxEuZG7Zgw27e5fdPRNC+Bc2Fhpj67+x89+4wBUKvmSSl/dmMjMvTDjTxvO+ndzG5tb2Tn63sLd/cHhUPD5p6ThVhDZJzGPVCVFTziRtGmY47SSKogg5bYfjm7nffqJKs1g+mElCA4FDySJG0FjpsdwbohDY1+V+seRVvAXcdeJnpAQZGv3iV28Qk1RQaQhHrbu+l5hgisowwums0Es1TZCMcUi7lkoUVAfTxcUz98IqAzeKlS1p3IX6e2KKQuuJCG2nQDPSq95c/M/rpia6DqZMJqmhkiwXRSl3TezO33cHTFFi+MQSJIrZW10yQoXE2JAKNgR/9eV10qpW/Fqldlct1e+zOPJwBudwCT5cQR1uoQFNICDhGV7hzdHOi/PufCxbc042cwp/4Hz+ANeJkHA=</latexit>�s
<latexit sha1_base64="yOnhDOzTiR01Q/9eJ2TmPdHKbas=">AAAB8XicbVA9TwJBEJ3DL8Qv1NLmIphYkTsKtCSxsUQjHxEuZG7Zgw27e5fdPRNC+Bc2Fhpj67+x89+4wBUKvmSSl/dmMjMvTDjTxvO+ndzG5tb2Tn63sLd/cHhUPD5p6ThVhDZJzGPVCVFTziRtGmY47SSKogg5bYfjm7nffqJKs1g+mElCA4FDySJG0FjpsdwbohDY1+V+seRVvAXcdeJnpAQZGv3iV28Qk1RQaQhHrbu+l5hgisowwums0Es1TZCMcUi7lkoUVAfTxcUz98IqAzeKlS1p3IX6e2KKQuuJCG2nQDPSq95c/M/rpia6DqZMJqmhkiwXRSl3TezO33cHTFFi+MQSJIrZW10yQoXE2JAKNgR/9eV10qpW/Fqldlct1e+zOPJwBudwCT5cQR1uoQFNICDhGV7hzdHOi/PufCxbc042cwp/4Hz+ANeJkHA=</latexit>�s

<latexit sha1_base64="Jo3jEpTcU4Kd0ht4KBCEwG7Cp7A=">AAAB8XicbVA9TwJBEJ3DL8Qv1NLmIphYkTsKtCSxsUQjHxEuZG7Zgw27e5fdPRNC+Bc2Fhpj67+x89+4wBUKvmSSl/dmMjMvTDjTxvO+ndzG5tb2Tn63sLd/cHhUPD5p6ThVhDZJzGPVCVFTziRtGmY47SSKogg5bYfjm7nffqJKs1g+mElCA4FDySJG0FjpsdwbohDYV+V+seRVvAXcdeJnpAQZGv3iV28Qk1RQaQhHrbu+l5hgisowwums0Es1TZCMcUi7lkoUVAfTxcUz98IqAzeKlS1p3IX6e2KKQuuJCG2nQDPSq95c/M/rpia6DqZMJqmhkiwXRSl3TezO33cHTFFi+MQSJIrZW10yQoXE2JAKNgR/9eV10qpW/Fqldlct1e+zOPJwBudwCT5cQR1uoQFNICDhGV7hzdHOi/PufCxbc042cwp/4Hz+ANYEkG8=</latexit>�r

<latexit sha1_base64="v4Dgy8HSpvh/1P2fk8drSnmeAF4=">AAAB8XicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsKtCSxsUQjHxEuZG9vDzbs7l1290zIhX9hY6Extv4bO/+NC1yh4EsmeXlvJjPzgoQzbVz32ylsbG5t7xR3S3v7B4dH5eOTjo5TRWibxDxWvQBrypmkbcMMp71EUSwCTrvB5Gbud5+o0iyWD2aaUF/gkWQRI9hY6bE6GGEh8DCsDssVt+YugNaJl5MK5GgNy1+DMCapoNIQjrXue25i/Awrwwins9Ig1TTBZIJHtG+pxIJqP1tcPEMXVglRFCtb0qCF+nsiw0LrqQhsp8BmrFe9ufif109NdO1nTCapoZIsF0UpRyZG8/dRyBQlhk8twUQxeysiY6wwMTakkg3BW315nXTqNa9Ra9zVK837PI4inME5XIIHV9CEW2hBGwhIeIZXeHO08+K8Ox/L1oKTz5zCHzifP8C+kGE=</latexit>�d

<latexit sha1_base64="1xvLk3iN2KBqkim7i+0bsbYrjh8=">AAACB3icbZDLSgMxFIYz9VbrbdSlIMFWaKGUmS6qG6HgxmUVe4F2GDJp2oYmmSHJCGXozo2v4saFIm59BXe+jWk7C239IfDxn3M4OX8QMaq043xbmbX1jc2t7HZuZ3dv/8A+PGqpMJaYNHHIQtkJkCKMCtLUVDPSiSRBPGCkHYyvZ/X2A5GKhuJeTyLicTQUdEAx0sby7dNCsTdEnCNflWFKsgSvYNEpu6WCb+edijMXXAU3hTxI1fDtr14/xDEnQmOGlOq6TqS9BElNMSPTXC9WJEJ4jIaka1AgTpSXzO+YwnPj9OEglOYJDefu74kEcaUmPDCdHOmRWq7NzP9q3VgPLr2EiijWRODFokHMoA7hLBTYp5JgzSYGEJbU/BXiEZIIaxNdzoTgLp+8Cq1qxa1VarfVfP0ujSMLTsAZKAIXXIA6uAEN0AQYPIJn8ArerCfrxXq3PhatGSudOQZ/ZH3+AIKwlpE=</latexit>

(�s, �r) = (0, 1)

<latexit sha1_base64="yJRNqykRsXHvATt7f4MYAeihV5g=">AAACCHicbZDLSgMxFIYzXmu9jbp0YbAVWqhlpovqRii4cVnFXqAdhkyatqFJZkgyQhm6dOOruHGhiFsfwZ1vY9rOQlt/CHz85xxOzh9EjCrtON/Wyura+sZmZiu7vbO7t28fHDZVGEtMGjhkoWwHSBFGBWloqhlpR5IgHjDSCkbX03rrgUhFQ3GvxxHxOBoI2qcYaWP59km+0B0gzpGvSjAlWYRXsOCUzt1i3rdzTtmZCS6Dm0IOpKr79le3F+KYE6ExQ0p1XCfSXoKkppiRSbYbKxIhPEID0jEoECfKS2aHTOCZcXqwH0rzhIYz9/dEgrhSYx6YTo70UC3WpuZ/tU6s+5deQkUUayLwfFE/ZlCHcJoK7FFJsGZjAwhLav4K8RBJhLXJLmtCcBdPXoZmpexWy9XbSq52l8aRAcfgFBSACy5ADdyAOmgADB7BM3gFb9aT9WK9Wx/z1hUrnTkCf2R9/gD0y5bI</latexit>

(�s, �r) = (0,�1)

<latexit sha1_base64="7Zas15ErZ1PNRehD0FOnZPUydVM=">AAAB/nicbZDLSsNAFIYn9VbrLSqu3Ay2gquSdFHdCAU3LqvYC7QhnEwn7dCZJMxMhBIKvoobF4q49Tnc+TZO2yy09YeBj/+cwznzBwlnSjvOt1VYW9/Y3Cpul3Z29/YP7MOjtopTSWiLxDyW3QAU5SyiLc00p91EUhABp51gfDOrdx6pVCyOHvQkoZ6AYcRCRkAby7dPKv0hCAG+wtc4R1nx7bJTdebCq+DmUEa5mr791R/EJBU00oSDUj3XSbSXgdSMcDot9VNFEyBjGNKewQgEVV42P3+Kz40zwGEszYs0nru/JzIQSk1EYDoF6JFars3M/2q9VIdXXsaiJNU0IotFYcqxjvEsCzxgkhLNJwaASGZuxWQEEog2iZVMCO7yl1ehXau69Wr9rlZu3OdxFNEpOkMXyEWXqIFuURO1EEEZekav6M16sl6sd+tj0Vqw8plj9EfW5w+xTJS8</latexit>�s = �r

<latexit sha1_base64="SGBWYPHxSXnvT2K1egomZhoq8z4=">AAAB/3icbZC7SgNBFIZn4y3G26pgYzOYCDaG3RTRRgjYWEYxF0iW5exkNhkys7vMzAohpvBVbCwUsfU17HwbJ8kWmvjDwMd/zuGc+YOEM6Ud59vKrayurW/kNwtb2zu7e/b+QVPFqSS0QWIey3YAinIW0YZmmtN2IimIgNNWMLye1lsPVCoWR/d6lFBPQD9iISOgjeXbR6VuH4QAX+ErfJ6xLPl20Sk7M+FlcDMookx13/7q9mKSChppwkGpjusk2huD1IxwOil0U0UTIEPo047BCARV3nh2/wSfGqeHw1iaF2k8c39PjEEoNRKB6RSgB2qxNjX/q3VSHV56YxYlqaYRmS8KU451jKdh4B6TlGg+MgBEMnMrJgOQQLSJrGBCcBe/vAzNStmtlqu3lWLtLosjj47RCTpDLrpANXSD6qiBCHpEz+gVvVlP1ov1bn3MW3NWNnOI/sj6/AEgIZTz</latexit>�s = ��r

Positive Scaling

Negative Scaling

C
ou

nt
er

cl
oc

kw
is

e
R

ot
at

io
n

C
lo

ck
w

is
e

R
ot

at
io

n

Anisotropic
Stretching

<latexit sha1_base64="g3Qj2nASazvmQkqy0mLk6yFjyQI=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsKtCSxsUQjHwlcyN6ywIa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMviKUw6LrfTm5jc2t7J79b2Ns/ODwqHp+0TJRoxpsskpHuBNRwKRRvokDJO7HmNAwkbweTm7nffuLaiEg94DTmfkhHSgwFo2ilTrmHY4603C+W3Iq7AFknXkZKkKHRL371BhFLQq6QSWpM13Nj9FOqUTDJZ4VeYnhM2YSOeNdSRUNu/HRx74xcWGVAhpG2pZAs1N8TKQ2NmYaB7Qwpjs2qNxf/87oJDq/9VKg4Qa7YctEwkQQjMn+eDITmDOXUEsq0sLcSNqaaMrQRFWwI3urL66RVrXi1Su2uWqrfZ3Hk4QzO4RI8uII63EIDmsBAwjO8wpvz6Lw4787HsjXnZDOn8AfO5w9mNI+d</latexit>

✓

(A) (B)

Fig. 3: (A) The eigenvector manifold colored according to its partition
based on γr and γs. (B) The eigenvalue manifold colored according to
its partition based on γd, γr , and γs.
(A) (B)

(C) (D)

Fig. 4: A portion of the Miranda dataset. (A) Eigenvector partition of
the domain following the colormap of Fig. 3(A); degenerate points of the
dual-eigenvector field are shown in white (trisectors) or pink (wedges).
(B) Eigenvalue partition of the domain following the colormap of Fig. 3(B).
(C) Eigenvector graph corresponding to the eigenvector partition in (A).
(D) Eigenvalue graph corresponding to the eigenvalue partition in (B).

parameter setting where γr > 0 and |γr| > γs; the second region
corresponds to γr > 0 and |γr| < γs; the third region corresponds
to γr < 0 and |γr| < γs; and the fourth region near the South Pole
corresponds to γr < 0 and |γr| > γs. The two regions near the
equator correspond to real eigenvalues, and the regions near the Poles
correspond to complex eigenvalues.

For a tensor field f , each tensor f(x) at a location x ∈ X maps to a
point within a partition of the eigenvector manifold. Therefore, we can
visualize the domain of f based on the partition of its corresponding
eigenvector manifold; this is referred to as the eigenvector partition,
as illustrated in Fig. 4(A). The north and south poles correspond to
isolated degenerate points of the dual eigenvector field, and such points
are typically part of the partition visualization.
Eigenvalue partition. The eigenvalue manifold of Eq. (7) is designed
to highlight the dominant operation between isotropic scaling (γd), ro-
tation (γr), and anisotropic stretching (γs). We visualize its correspond-
ing hemisphere in Fig. 3(B), where the point (γr, γd, γs) = (0, 0, 1)
corresponds to the point labeled “anisotropic stretching.”

We then partition the eigenvalue manifold according to (a) which
coefficient has the largest magnitude and (b) the sign of that coefficient.
Each region in the partition corresponds to a different type of linear
transformation. In Fig. 3(B): the top orange region (Positive Scaling)
corresponds to when γd has the largest magnitude and γd > 0; the red
region (Counterclockwise Rotation) corresponds to when γr has the
largest magnitude and γr > 0; the purple region (Negative Scaling)
corresponds to when γd has the largest magnitude and γd < 0; the blue
region (Clockwise Rotation) corresponds to when γr has the largest
magnitude and γr < 0; and finally, the white region in the middle
corresponds to when γs has the largest magnitude.

Similarly, a partition of the eigenvalue manifold could be used to
visualize the domain of a tensor field, referred to as the eigenvalue
partition, as illustrated in Fig. 4(B).
Eigenvector graph and eigenvalue graph. To describe the topology
of an asymmetric tensor field, Lin et al. [33] introduced the notion of an
eigenvector graph, that is, the dual graph of the eigenvector partition of

(A) (B) (C)

<latexit sha1_base64="fbQA/oG4h+6N0CIuU0O+6G+jS+c=">AAACAnicbVC7TsMwFHV4lvIKMCEWixaJqUoyFBakSiyMBdGH1KaR4zqtVduJbAepiioWfoWFAYRY+Qo2/ga3zQAtR7rS8Tn3yveeMGFUacf5tlZW19Y3Ngtbxe2d3b19++CwqeJUYtLAMYtlO0SKMCpIQ1PNSDuRBPGQkVY4up76rQciFY3FvR4nxOdoIGhEMdJGCuzjcneAOEeB7HnwCuYP1fPKgV1yKs4McJm4OSmBHPXA/ur2Y5xyIjRmSKmO6yTaz5DUFDMyKXZTRRKER2hAOoYKxInys9kJE3hmlD6MYmlKaDhTf09kiCs15qHp5EgP1aI3Ff/zOqmOLv2MiiTVROD5R1HKoI7hNA/Yp5JgzcaGICyp2RXiIZIIa5Na0YTgLp68TJpexa1WqrdeqXaXx1EAJ+AUnAMXXIAauAF10AAYPIJn8ArerCfrxXq3PuatK1Y+cwT+wPr8ARh+lgQ=</latexit>

�2
r = �2

s

<latexit sha1_base64="9fzDe92N139Q8b0tnup2JUBt8L0=">AAAB9XicbVA9TwJBEN3DL8Qv1NJmI5hYkTsKtDEhsbFEIx8JnGRu2YMNu3uX3T0NufA/bCw0xtb/Yue/cYErFHzJJC/vzWRmXhBzpo3rfju5tfWNza38dmFnd2//oHh41NJRoghtkohHqhOAppxJ2jTMcNqJFQURcNoOxtczv/1IlWaRvDeTmPoChpKFjICx0kO5NwQhoK/wFXbL/WLJrbhz4FXiZaSEMjT6xa/eICKJoNIQDlp3PTc2fgrKMMLptNBLNI2BjGFIu5ZKEFT76fzqKT6zygCHkbIlDZ6rvydSEFpPRGA7BZiRXvZm4n9eNzHhpZ8yGSeGSrJYFCYcmwjPIsADpigxfGIJEMXsrZiMQAExNqiCDcFbfnmVtKoVr1ap3VZL9bssjjw6QafoHHnoAtXRDWqgJiJIoWf0it6cJ+fFeXc+Fq05J5s5Rn/gfP4AfzGRRA==</latexit>

�r = 0

<latexit sha1_base64="vguExhuZ/4oYzosWMDyFcpu9Vxs=">AAACAnicbVC7TsMwFHV4lvIKMCEWixaJqUoyFBakSiyMBdGH1KaR4zqtVduJbAepiioWfoWFAYRY+Qo2/ga3zQAtR7rS8Tn3yveeMGFUacf5tlZW19Y3Ngtbxe2d3b19++CwqeJUYtLAMYtlO0SKMCpIQ1PNSDuRBPGQkVY4up76rQciFY3FvR4nxOdoIGhEMdJGCuzjcneAOEdBv+fBK5g/ZM8rB3bJqTgzwGXi5qQEctQD+6vbj3HKidCYIaU6rpNoP0NSU8zIpNhNFUkQHqEB6RgqECfKz2YnTOCZUfowiqUpoeFM/T2RIa7UmIemkyM9VIveVPzP66Q6uvQzKpJUE4HnH0UpgzqG0zxgn0qCNRsbgrCkZleIh0girE1qRROCu3jyMml6Fbdaqd56pdpdHkcBnIBTcA5ccAFq4AbUQQNg8AiewSt4s56sF+vd+pi3rlj5zBH4A+vzBwDflfU=</latexit>

�2
d = �2

r
<latexit sha1_base64="n29clcpuZNL+X+4KRrOCu3kixy4=">AAACAnicbVC7TsMwFHV4lvIKMCEWixaJqUoyFBakSiyMBdGH1KaR4zqtVduJbAepiioWfoWFAYRY+Qo2/ga3zQAtR7rS8Tn3yveeMGFUacf5tlZW19Y3Ngtbxe2d3b19++CwqeJUYtLAMYtlO0SKMCpIQ1PNSDuRBPGQkVY4up76rQciFY3FvR4nxOdoIGhEMdJGCuzjcneAOEdBv+fBK5g/VM8rB3bJqTgzwGXi5qQEctQD+6vbj3HKidCYIaU6rpNoP0NSU8zIpNhNFUkQHqEB6RgqECfKz2YnTOCZUfowiqUpoeFM/T2RIa7UmIemkyM9VIveVPzP66Q6uvQzKpJUE4HnH0UpgzqG0zxgn0qCNRsbgrCkZleIh0girE1qRROCu3jyMml6Fbdaqd56pdpdHkcBnIBTcA5ccAFq4AbUQQNg8AiewSt4s56sF+vd+pi3rlj5zBH4A+vzBwJmlfY=</latexit>

�2
d = �2

s

<latexit sha1_base64="fbQA/oG4h+6N0CIuU0O+6G+jS+c=">AAACAnicbVC7TsMwFHV4lvIKMCEWixaJqUoyFBakSiyMBdGH1KaR4zqtVduJbAepiioWfoWFAYRY+Qo2/ga3zQAtR7rS8Tn3yveeMGFUacf5tlZW19Y3Ngtbxe2d3b19++CwqeJUYtLAMYtlO0SKMCpIQ1PNSDuRBPGQkVY4up76rQciFY3FvR4nxOdoIGhEMdJGCuzjcneAOEeB7HnwCuYP1fPKgV1yKs4McJm4OSmBHPXA/ur2Y5xyIjRmSKmO6yTaz5DUFDMyKXZTRRKER2hAOoYKxInys9kJE3hmlD6MYmlKaDhTf09kiCs15qHp5EgP1aI3Ff/zOqmOLv2MiiTVROD5R1HKoI7hNA/Yp5JgzcaGICyp2RXiIZIIa5Na0YTgLp68TJpexa1WqrdeqXaXx1EAJ+AUnAMXXIAauAF10AAYPIJn8ArerCfrxXq3PuatK1Y+cwT+wPr8ARh+lgQ=</latexit>

�2
r = �2

s

Junction
Point

Fig. 5: (A) A cell is partitioned into three regions according to the eigen-
vector manifold by tracing boundary curves γ2

r = γ2
s and γr = 0. (B)

A cell is partitioned into six regions by tracing the boundary curves of
γ2
d = γ2

r , γ2
d = γ2

s and γ2
r = γ2

s that intersect at the junction point. The
regions are classified according to the eigenvalue partition. (C) Adjacent
regions of the same type based on eigenvalue partition in (B) are merged
inside a cell.

the domain. Each node corresponds to a region of the partition or one of
the poles of the eigenvector manifold, and is colored by the region type
(or the degenerate point type). Each edge encodes an adjacency relation
among a pair of regions (or a region and a degenerate point). We
visualize a tensor field based on its eigenvector partition in Fig. 4(A),
and its eigenvector graph in (C).

As illustrated in Fig. 5(A), to compute the eigenvector graph, we
first trace the boundary curves defined by γ2

r = γ2
s (a conic section)

and γr = 0 (a line) within each cell. These curves do not intersect
with each other and simply divide a cell according to the eigenvector
partition. Next, we iteratively merge adjacent regions of the same type
in neighboring cells. Finally, we detect each connected component of
the partition, from which we compute the eigenvector graph.

Analogously, Lin et al. [33] also introduced the eigenvalue graph as
the dual of the eigenvalue partition of the domain. We visualize a tensor
field based on its eigenvalue partition in Fig. 4(B), and its corresponding
eigenvalue graph in Fig. 4(D). Following [33], as illustrated in Fig. 5(B),
to compute the eigenvalue graph, we trace the boundary curves within
each cell: γ2

d = γ2
r (two intersecting lines), γ2

d = γ2
s (a conic section),

and γs
r = γ2

s (another conic section). We then merge adjacent regions
of the same type in the same cell (see Fig. 5(C)) and among neighboring
cells to construct the eigenvalue graph.

For compression purposes, we focus on preserving the topology in-
side each cell, that is, the cell-wise eigenvector (or eigenvalue) partition,
without explicitly constructing the eigenvector (or eigenvalue) graph.

3.3 Quantization in Lossy Compression

We review two quantization techniques, linear-scaling quantization and
logarithmic-scaling quantization, used by TFZ.
Linear-scaling quantization. A popular lossy data compressor, SZ1.4
[45], introduces linear-scaling quantization that ensures a pointwise
absolute error bound ξ is maintained. Suppose that f : X→ R (defined
on a finite domain X) is a scalar field to be compressed. Suppose that
g : X→ R is an initial guess for f (e.g., from a regression predictor).
Let f ′ : X→ R be the final decompressed data. Then for each x ∈ X,
we can shift g(x) by an integer multiple of 2ξ to obtain a final value of
f ′(x) such that |f ′(x) − f(x)| ≤ ξ. To conceptualize linear-scaling
quantization for a point x in Fig. 6, we divide the real line into intervals
of width 2ξ, one of which is centered on g(x). Then we compute how
many intervals to shift g(x) to obtain a value for f ′(x) that lies in the
same interval as f(x). By construction, if f(x) lies in an interval of
width 2ξ centered on f ′(x), it must hold that |f(x)− f ′(x)| ≤ ξ.

Fig. 6: A standard implementation of linear-scaling quantization.

During construction, we assign to each x ∈ X some integer nx such
that f ′(x) = g(x) + nx(2ξ), e.g., nx = −2 in Fig. 6. If the entropy
of the {nx} is low (e.g. the {nx} are mostly zero), then the {nx} can
be efficiently compressed using an entropy-based compressor, such as
the Huffman coding. More accurate predictions for g(x) generally lead
to distributions of {nx} with lower entropy.
Logarithmic-scaling quantization. In topology-preserving data com-
pression, it can be advantageous for certain data points to have predicted
values that are nearly identical to the ground truth. Gorski et al. [12]
introduced logarithmic-scaling quantization, enabling a compressor to
apply linear-scaling quantization with varying error bounds for differ-
ent points without needing to store additional information about the
specific error bound used. Each x ∈ X is assigned a precision px, so
that its error bound is 2ξ/(2px). The value of px is set independently
for each point. If the compressor determines that, for a point x, f ′(x)
must be very close to f(x), then it can set px to be high.

To encode a point using logarithmic-scaling quantization, we per-
form standard linear-scaling quantization on each x ∈ X using an error
bound of 2ξ/(2px) to obtain a quantization number nx, such that x
will have the decompressed value f ′(x) = g(x) + 2ξnx/(2

px). Let
P be the maximum value for px. When encoding the compressed data,
we store the integer ax ← nx × 2P−px . Then, when decompressing
the data, the decompressed value for x is f ′(x) = g(x) + 2ξax/(2

P).
Notice that x will have its correct decompressed value because

f ′(x) = g(x) +
2ξax

2P
= g(x) +

2ξnx2
P−px

2P
= g(x) +

2ξnx

2px
. (8)

4 METHOD

Although the topology and topological guarantees differ for symmetric
and asymmetric tensor fields, our overall compression pipeline re-
mains largely the same in both cases. We describe our general pipeline
in Sec. 4.1. We describe the specifics for symmetric tensor fields
in Sec. 4.2 and asymmetric tensor fields in Sec. 4.3.

4.1 An Overview of Compression Pipeline
We store an asymmetric tensor field as four scalar fields that correspond
to the four entries of a 2× 2 matrix. For a symmetric tensor field, we
only store three scalar fields due to symmetry (i.e., for any symmetric
tensor T , T1,2 = T2,1). In addition to providing topological guarantees,
our compression pipeline ensures that individual entries of a tensor do
not vary by more than a user-specified error bound ξ.

Following the previous work by Gorski et al. [12], we design an
augmentation layer that runs on top of an existing compressor (referred
to as a base compressor) and corrects the topology of the decompressed
output. TFZ can augment any error-bounded lossy compressor to
provide topological guarantees. Our pipeline is as follows:
Step 1. Base compressor. We compress each scalar field using the
base compressor with an error bound ξ. This operation ensures that
the error of individual entries of each tensor is at most ξ. We then
decompress the data to analyze any changes that must be made to
preserve topology. We refer to the compressed-then-decompressed
output of the base compressor as the intermediate data.
Step 2. Cell correction. TFZ ensures that the topology of each indi-
vidual cell is maintained. We scan across each cell, making corrections
to the tensors at the vertices of each cell as needed. We describe this
step in more detail in Sec. 4.2 and Sec. 4.3.

If, when processing a cell σ, we alter the tensor f(x) at some vertex
x, other cells that share x as a vertex may be altered topologically.
Thus, we re-process every previously processed cell σ′ that shares x as
a vertex, and track which cells must be re-processed using a stack. This
strategy can create cycles between adjacent cells. To prevent infinite
loops, we store a tensor losslessly if it is modified 20 times.
Step 3. Lossless compression. Our cell compression step outputs in-
teger values for each cell according to quantization strategies detailed
in Sec. 3.3. We also generate some integers that serve as flags. We
encode these integers using Huffman coding. We combine the output
of Huffman coding, any information stored losslessly, and the four
compressed fields from the base compressors into one tar archive, and
then compress the archive using ZSTD (a lossless compressor).

4.2 Compression of Symmetric Tensor Fields
Topological guarantees. TFZ ensures that each cell retains its classifi-
cation (i.e., degeneracy type): whether it contains no degenerate points,
a single degenerate point, a degenerate line (i.e., a line of degenerate
points), or is entirely degenerate (i.e., a cell of degenerate points). For
cells with a single degenerate point in their interior, we further distin-
guish between trisectors and wedges. Additionally, for cells containing
a degenerate line or a degenerate vertex, TFZ preserves the precise
location of the degenerate feature.
Theoretical basis. We provide the theoretical basis for the cell preser-
vation step, where the lemmas are proven in the supplement. In our first
lemma, we apply the decomposition in Eq. (3) to symmetric tensors.
In the symmetric case, we must have γr = 0. We then obtain the de-
composition of Eq. (5), where the γs term corresponds to the deviator.
Lemma 1. Let T1 and T2 be two 2×2 symmetric tensors with nonzero
deviators. Let l1,2 be defined following Eq. (2). Then l1,2 depends only
on θ1 and θ2, where each θi is taken from the decomposition in Eq. (5).
Lemma 2. Let x1, x2, and x3 be the vertices of a cell.

(a) Suppose that exactly one vertex has a tensor T with a deviator
D(T) equal to zero. (w.l.o.g., suppose D(f(x1)) = 0).

(i) If l2,3 ̸= 0, then x1 is the only degenerate point in the cell.
(ii) If l2,3 = 0, then there exists some k such that D(f(x2)) =

kD(f(x3)). If k > 0 then x1 is the only degenerate point in
the cell. If k < 0 then the cell contains a degenerate line.

(b) If exactly two vertices have a tensor with a deviator equal to zero,
then the cell contains a degenerate line connecting them.

Cell correction. We scan through each cell σ of the mesh. Let T1, T2,
and T3 be the tensors at the vertices of σ for the ground truth data, and
let T ′

1, T ′
2, and T ′

3 be the corresponding tensors in the intermediate data.
Following the tensor decomposition of Eq. (5), we obtain coefficients
γd,1 for T1, γ′

d,1 for T ′
1, etc. We compute l1,2, l2,3, and l3,1 for the

ground truth data at σ and evaluate the following two cases.
Case 1. All li,j ̸= 0. We first verify whether the degeneracy type

of σ (i.e., trisector, wedge, or non-degenerate) in the intermediate
data matches the ground truth. If it does, we proceed to the next cell.
Otherwise, we examine θ′1, θ′2, and θ′3 and identify the θ′i value that
deviates the most from the ground truth. This value is then corrected to
be θ′′i using linear-scaling quantization with an error bound of 2π/(26−
1), ensuring that the quantization number nx can be stored using six
bits. Once θ′′i is computed, we use it along with the coefficients γ′

d,i

and γ′
s,i to reconstruct a new tensor T ′′

i based on the decomposition.
According to Lemma 1, adjusting the values of θ′i is sufficient to

ensure that the li,j match between the ground truth and reconstructed
data. Likewise, Jankowai et al. [19] showed that the li,j determine the
degeneracy type of a cell σ. If adjusting one of the θ′i does not correct
the topology of the cell, we adjust the other two values as necessary.

In rare cases, due to limited precision, adjusting all three of the θ′i
using linear-scaling quantization does not preserve the topology. It is
also possible that the error bound may not be maintained. In such cases,
we store the deviator losslessly, and if necessary the entire tensor. We
provide specifics in the supplement.

Case 2. One of the li,j = 0. In this case, if none of the Ti are
equal to zero, we store the vertices of σ losslessly. Otherwise, we
store the Ti that equal zero losslessly, and compute the topology of σ
following Lemma 2 for both the ground truth and reconstructed data. If
the topology between the ground truth and the reconstructed data does
not match, we store the vertices of σ losslessly. If any of the Ti satisfy
D(Ti) = 0 but Ti ̸= 0, then we also store the vertices of σ losslessly.

4.3 Compression of Asymmetric Tensor Fields
Topological guarantees. For each cell σ, TFZ preserves the topologi-
cal structure of both the eigenvalue and eigenvector partitions. Conse-
quently, the eigenvector and eigenvalue graphs are maintained across
the entire domain. Since the isolated degenerate points of the dual-
eigenvector fields are part of the eigenvector graph, we also preserve
the topology of the dual-eigenvector fields using the same approach as
for symmetric tensor fields, operating on the symmetric component of
the tensor field. However, when the deviator would be stored losslessly,

we instead store θ losslessly. TFZ allows users to choose whether to
preserve topology based on the eigenvector manifold, eigenvalue mani-
fold, or both. While we describe the process for preserving both, it can
be easily adapted to maintain only one.

For any cell σ, preserving its topology involves two main steps.
First, we ensure that each vertex of σ is correctly classified within
the appropriate type of region in both the eigenvalue and eigenvector
partitions. Next, we preserve the internal topology of σ by maintaining
the locations and connectivity of the different partition regions. These
processes are detailed in Sec. 4.3.1 and Sec. 4.3.2, respectively. Ad-
ditionally, our method accounts for various special cases that require
careful handling, which we discuss in the supplement.

4.3.1 Asymmetric Cell Correction: Vertex Correction
In this portion of the algorithm, we ensure that if x is a vertex of a cell
σ, and then the classifications of f(x) and f ′(x) match according to
the eigenvalue and eigenvector partitions.
Theoretical basis. We provide the theoretic basis below, see the sup-
plement for proofs. We define a function sign : R → R that satisfies
sign(x) = 1 if x ≥ 0 and sign(x) = −1 otherwise.
Lemma 3. Suppose T and T ′ are 2× 2 tensors, where each entry of
T ′ differs from the corresponding entry of T by at most ξ, i.e., |T1,1 −
T ′
1,1| ≤ ξ, and so on. Denote their coefficients from the decomposition

as γd, γr , γs, γ′
d, γ′

r , and γ′
s, respectively. Then |γd − γ′

d| ≤ ξ,
|γr − γ′

r| ≤ ξ, and |γs − γ′
s| ≤

√
2ξ.

Lemma 4. Suppose that x ∈ R and x′ is a guess for x within an error
bound ξ, i.e., |x− x′| ≤ ξ.
• If x > 0 but x′ < 0. Then x′ + ξ > 0 and |x− (x′ + ξ)| ≤ ξ. That

is, x′ + ξ is a valid guess for x that is within an error bound ξ and
has the same sign as x.

• If x < 0 but x′ > 0, then x′ − ξ is analogously valid.
By applying Lemma 4, we can generate a guess x′ for x that shares

the same sign as x. In this context, if x′ and x already have the same
sign, no further adjustment is needed.
Lemma 5. Suppose that x, y ∈ R and x′ and y′ are guesses for x and
y, respectively, within an error bound ξ, such that |x − x′| ≤ ξ and
|y − y′| ≤ ξ. Suppose that |x| > |y| but |x′| < |y′|.

Let x′′ = sign(x′)|y′|, y′′ = sign(y′)|x′|. Then |x− x′′| ≤ ξ and
|y− y′′| ≤ ξ, and |x′′| > |y′′|. That is, by swapping the magnitudes of
x′ and y′, we can obtain two valid guesses x′′ and y′′ with |x′′| > |y′′|.
Vertex correction algorithm. Let T be a tensor from the ground truth
and T ′ be the corresponding tensor in the intermediate data. Denote
their coefficients from the decomposition as γd, γr , γs, γ′

d, γ′
r , and

γ′
s respectively. To ensure that the classifications of T ′ matches T ,

we must preserve four properties. For the eigenvector manifold, we
must preserve: (1) whether |γr| > γs, and (2) the sign of γr . For the
eigenvalue manifold, we must preserve: (3) which of |γr|, |γd|, or γs
is the largest, and (4) the sign of that coefficient. We also ensure that
each of γ′

d, γ′
r and γ′

s differs from its ground truth value by at most ξ.
For each T represented as a matrix, we check whether these four

properties have been preserved in T ′. If not, we correct T ′. To do so,
we introduce five variables, S, R, D, RS, and Dm. Each variable serves
as a flag indicating whether an adjustment is needed for γ′

d, γ′
r , or γ′

s

to ensure the preservation of the four properties. In particular,
• S is enabled when γ′

s needs adjustment to satisfy |γs − γ′
s| ≤ ξ.

According to Lemma 3, this can be achieved by adding or subtracting
(
√
2− 1)ξ from γ′

s.
• R is enabled when γ′

r requires a sign change. The sign is adjusted
using the approach outlined in Lemma 4.

• D is enabled when γ′
d requires a sign change, which is performed

using the strategy described in Lemma 4.
• RS is enabled if the ordering of |γ′

r| and γ′
s is incorrect (i.e., one is

larger than the other when it should be smaller). Their magnitudes
are swapped using the approach outlined in Lemma 5.

• Dm is enabled if |γ′
d| should have a larger magnitude than |γ′

r| and
|γ′

s|, but does not. We also set Dm if |γ′
d| has the largest magnitude,

but it should be smaller than |γ′
r| or |γ′

s|. In such cases, we swap the
magnitudes using the strategy in Lemma 5.

Once we have made appropriate adjustments to γ′
d, γ′

r and γ′
s, we

reassemble T ′ from the coefficients according to Eq. (3). Although
unlikely, it is possible that after doing so, T ′ may not adhere to the
element-wise error bound ξ. In such a case, we quantize γ′

d, γ′
r and

γ′
s using logarithmic-scaling quantization with increased precision and

repeat; we report specifics on these adjustments in the supplement.

4.3.2 Asymmetric Cell Correction: Cell Topology Correction
Preserving the classifications of the vertices is often (but not always)
sufficient to preserve the cell topology. In this step, we ensure the
topology of each cell σ is preserved.

First, we preserve the degeneracies of the symmetric component of
the tensor field using the same strategy applied to symmetric tensor
fields. However, when the procedure would allow the deviator to be
stored losslessly, we instead store the entire matrix losslessly.

Second, we preserve the topology of each cell σ to ensure that the
global eigenvector and eigenvalue graphs are maintained. These graphs
are computed by determining the topology of each cell individually and
then merging regions of the same type in adjacent cells. We preserve
both the eigenvector and eigenvalue graphs for σ, as well as the edges
and vertices of σ that border each region of the corresponding partitions.
This approach guarantees that the merging step in the global eigenvalue
and eigenvector graph computation will produce consistent results.
Theoretical basis. The following lemmas are relevant to computing
the cell topology of σ, whose proofs are in the supplement.
Lemma 6. Except in special cases, the topology of the eigenvector
partition of σ is determined by the following conditions:

(a) Whether each of the curves γr = γs and −γr = γs intersects the
interior of σ.

(b) How many times the curves γr = γs and −γr = γs intersect
each edge of σ.

(c) The classification of each vertex of σ according to the eigenvector
partition.

Lemma 7. Except in special cases, the topology of the eigenvalue
partition of σ is determined by the following conditions:

(a) The classification of each vertex in the eigenvalue partition.
(b) For each of the curves γd = γs, −γd = γs, γr = γs, and
−γr = γs, determine the order in which the following points are
encountered when traveling counterclockwise around the curve.

(i) Each boundary point (i.e, a point on the boundary between
two regions of the eigenvalue partition) where the curve
enters or leaves σ, and the orientation of the curve at that
point.

(ii) Each junction point, along with the orientations of the
curves that intersect at that point.

(c) For each edge e of σ, for each point identified in (b.i) that lies on
e, determine which point is closest to each vertex of e.

(d) For each region type in the eigenvalue partition, except where
γs > |γd| and γs > |γr|, if its boundary curve does not intersect
any edges or other curves, check whether that region is present in
the eigenvalue partition of σ.

Both Lemma 6 and Lemma 7 admit special cases proved and dis-
cussed in the supplement.
Cell topology preservation algorithm. To accomplish our goal, we
create a topological invariant that allows us to verify whether the topol-
ogy of σ in the intermediate data aligns with the ground truth. This
invariant is represented as a data structure containing information about
the cell. As part of the invariant, we include the classification of each
vertex based on the eigenvector and eigenvalue manifolds. Additionally,
we incorporate other relevant information, which we will describe next.
Eigenvector manifold invariant. By Lemma 6, the topology of the
eigenvector partition of σ is determined by the boundaries of the re-
gions where γr > γs and −γr > γs. We divide the curve γ2

r = γ2
s

into two connected components: γr = γs and −γr = γs. Next, in our
invariant, we track how many times each curve intersects each edge.
If the curves do not intersect any edges but intersect the interior of σ,
we also record this case in the invariant. In Fig. 7(A), we illustrate
one possible example. In this example, we would record that the curve

γr = γs intersects the hypotenuse once and the left edge once, while
the curve −γr = γs does not intersect the cell.

γr = γs

γr = γs

γd = γs

a

b
c

Fig. 7: (A) We find the edge intersections for the curve γr = γs. (B)
We compute the edge intersections and junction points for the curves
γd = γs and γr = γs. (C) We only retain cell intersections that are
topologically significant.

Eigenvalue manifold invariant. Following Lemma 7, to describe the
cell topology based on the eigenvalue manifold, we need to track where
each of γ2

d = γ2
s and γ2

r = γ2
s intersects each edge of the cell σ,

as well as where they intersect each other. To accomplish this, we
divide each curve into two components, resulting in four total curves:
γd = γs, −γd = γs, γr = γs, and −γr = γs. We then trace each
curve clockwise, recording the order in which it intersects an edge or
another curve, and noting the specific edge or curve it intersects in
each case, and the orientation. If an intersection does not affect the
topology, we omit it from our tracking. This process produces four lists
of intersections, which we incorporate into our invariant.

In Fig. 7(B), we provide an example showing the intersection points
we compute, which are four edge intersections and one junction point.
However, two of these intersections do not affect the topology, so
we exclude them from our tracking. In Fig. 7(C), we show the three
intersections that we do track. Ultimately, our invariant records that the
curve γd = γs starts by intersecting the hypotenuse at c and ends at a
junction point at b. The curve γr = γs starts at a junction point at b
and ends by intersecting the left edge at a. The curves −γd = γs and
−γr = γs do not contribute to the topology. In our invariant, we do
not track the specific locations a, b, and c; instead, we track whether
the intersection is a junction point, and if not, which edge it lies on.
Topology correction. We compute our invariant for σ for both the
ground truth and reconstructed data. If there is a mismatch, then we
procedurally quantize θ using linear-scaling quantization and lower the
error bounds of γd, γr , and γs using logarithmic-scaling quantization.
We provide details in the supplement. After the degenerate points are
preserved, it is possible that one will lie in the wrong region type in
the eigenvector partition. In such a case, we use the same adjustment
process used to correct degenerate point errors.
Encoding of adjustments. Finally, once the correction for each cell σ
is complete, we generate several lists of integers. Since many of our
variables require fewer than 8 bits, we combine multiple variables into
a single byte. For each matrix T , we combine S with the quantization
number for θ to create an 8-bit integer. We also group R, D, RS, and Dm

into another 8-bit integer. These integers, along with the quantization
numbers for γd, γr , and γs, are encoded using Huffman coding and
included in the final compressed file.

5 EXPERIMENTAL RESULTS

We provide an overview of our experiments in Sec. 5.1. We evaluate the
performance of TFZ with a comparison between augmented and base
compressors in Sec. 5.2. We include an analysis of run time in Sec. 5.3.
We aim to preserve both eigenvalue and eigenvector graphs; preserving
only one of them is included in the supplement, where we also provide
error maps, as well as statistics on the number of times that cells are
visited and on the topological errors made by the base compressors.
Highlighted results. We highlight our experimental results below.
• Applying SZ3 or SPERR to any of our eight datasets results in

numerous topological errors, whereas augmenting them with TFZ
eliminates topological errors in every case.

• Augmented SPERR produces a better tradeoff between bit-rate and
Peak Signal-To-Noise Ratio (PSNR) compared to augmented SZ3.

• TFZ takes O(nk) time, where n is the number of cells and k is the
maximum number of times a cell is processed before being stored

losslessly. In practice, most of the run time is spent on cell correction.

5.1 Overview of Experiments
We present an experimental study of our framework, TFZ, by aug-
menting two state-of-the-art error-bounded lossy compressors for 2D
scientific data: SZ3 [32] and SPERR [28]. We also experimented with
ZFP [34], TTHRESH [4], and Neurcomp [35]. However, augmented
ZFP [34] yielded poor compression ratios, while TTHRESH and Neur-
comp did not natively support 2D data; therefore these compressors
were excluded from our analysis.

We tested TFZ on four symmetric and four asymmetric tensor fields
(Tab. 1). Each contains a number of 2D slices, and we compress each
slice individually and report evaluation metrics that are aggregated
across all slices. The Stress datasets are stress tensor fields. The Brain
datasets are from brain MRI scans. The Ocean data is from an ocean
flow simulation, the Miranda data is from a turbulence simulation,
and the Vortex Street and the Heated Cylinder data come from fluid
dynamics simulations. See the supplement for details on the datasets.

When running a base compressor (SZ3 or SPERR) on each slice,
we compress each of the four fields separately, similar to TFZ. We
then combine the four compressed outputs into one tar archive, and
compress it losslessly with ZSTD. For the Brain datasets, empty regions
outside the brain are set to zero. In those regions, small perturbations
introduced by lossy compressors may lead to many topological errors.
When testing the lossy compressors on the brain datasets, we store all
zero tensors losslessly, introducing minimal overhead to the compressed
file while eliminating the topological errors outside of the brain. We
denote the choice of a dataset, base compressor, and error bound as
a trial. We run each trial on a personal computer with an Intel Core
i9-12900HK processor and 32GB of RAM. Our implementation is
written in Julia version 1.10.2, and does not include any parallelization.
Table 1: Scientific datasets used for compression analysis. “Sym.” means
symmetric and “Asym.” means asymmetric dataset respectively. “Slice
Dim." means the dimension of each 2D slice.

Dataset Type Slice Dim. #Slices Size (MB)
Stress A Sym. 65× 65 25 3.4
Stress B Sym. 65× 65 25 3.4
Brain A Sym. 66× 108 76 17.3
Brain B Sym. 148× 190 157 141.3
Ocean Asym. 101× 101 27 8.8

Miranda Asym. 384× 384 256 1208.0
Vortex Street Asym. 640× 80 1501 2459.2

Heated Cylinder Asym. 150× 450 2000 4320.0

Evaluation metrics. For each symmetric tensor field, we evaluate how
many cells have their degeneracy type (trisector, wedge, non-degenerate
etc.) preserved compared to the ground truth. For each asymmetric
tensor field, we evaluate how many cells have their eigenvector and
eigenvalue partitions preserved. We check the topology using the in-
variant described in Sec. 4.3.2. For each trial, we also study the tradeoff
between compressed size and reconstruction quality, by measuring the
standard compression metrics such as compression ratio, bit-rate and
PSNR. Recall the compression ratio is the original file size divided
by the compressed file size. Bit-rate is the average number of bits
used to encode each tensor. PSNR measures the reconstruction quality
(higher values are better). Finally, we quantify total compression and
augmentation time, and decompression time.
Parameter configurations. We define the range of a tensor field as the
largest entry in any tensor minus the smallest entry in any tensor. We
vary the pointwise error bound ξ, which represents the error bound as a
percentage of the range. For example, ξ = 0.01 means that the global
error bound is 1% of the range. We recompute ξ for each slice. We set
the pointwise error bound for SZ3 and SPERR to ξ.

5.2 Performance Evaluation
Topological guarantees. We empirically verify that TFZ perfectly
preserves the topology of each cell in each trial. By contrast, when we
run the base compressors SZ3 and SPERR with very low error bounds,
such that the resulting data has a comparable compressed size to TFZ,
we still notice a large number of topological errors.

Fig. 8: LIC visualization of the eigenvector fields of two 2D symmetric second-order tensor fields compressed with SZ3, augmented SZ3, SPERR,
and augmented SPERR, along with the ground truth. Trisectors are in white, wedges are in pink. Top: Stress B data slice 10. Bottom: Brain B data
slice 50. In the top row, we highlight a region of interest. In the bottom row, we highlight and provide a zoomed-in view of a region of interest. We
also provide an orange arrow highlighting a discrepancy from SZ3, and a pink arrow highlighting a discrepancy of SPERR. The Z position of each
point corresponds to the Frobenius norm with smoothing applied.

Fig. 9: Visualizing the eigenvector partition of the Miranda dataset slice 30 compressed with SZ3, augmented SZ3, SPER, and augmented SPERR,
along with the ground truth. We provide zoomed-in views that highlight the differences between the compressors and the ground truth. We also label
compression ratio and PSNR. We use the same colormap as Fig. 3. Z positions correspond to the Frobenius norm with smoothing applied.

Fig. 10: Curves showing the tradeoff between bit-rate and PSNR for SZ3
and SPERR on each dataset, as well as our augmented compressors
given as A-SZ3 and A-SPERR.

In Sec. 5.2, we list the number and percentage of cells topologically
misclassified by SZ3 and SPERR. We chose error bounds for SZ3 and
SPERR so that they achieve compression ratios similar to those from
TFZ with ξ = 0.01 for symmetric data and ξ = 0.001 for asymmetric
data. We provide these bounds in the supplement to ensure repro-
ducibility. We observe that the base compressors exhibit significant
topological errors when applied to asymmetric data. While the percent-
age (error rate) is relatively low for a symmetric dataset, the percentage
of cells that contain a degenerate point is typically very small. Thus,
having a relatively small percentage of incorrectly predicted cells can
produce a significant effect on the topology of the decompressed data.

In Fig. 8, we visualize the Stress B and Brain B datasets before and
after compression with SZ3, augmented SZ3, SPERR, and augmented
SPERR. We chose parameter configurations such that the compression

ratio achieved by both compressors is the same (see the supplement
for details). In each visualization, we highlight a region of interest,
and provide a zoomed-in view when needed. We display the Miranda
dataset in the same fashion in Fig. 9, and provide zoomed-in views of
the eigenvector and eigenvalue partitions. We also visualize the Ocean
dataset before and after compression with SZ3 and augmented SZ3
in Fig. 1. In the figures, we can see that SZ3 and SPERR make notice-
able topological errors, while TFZ perfectly preserves the topology.
Compressed file size. In Fig. 10, we visualize the tradeoff between bit-
rate and PSNR for both the augmented and base compressors. Consis-
tent with previous works on topology-preserving compression [12, 29],
we observe that when ξ is high, increasing ξ can lead to lower com-
pression ratios. When evaluating the tradeoff between bit-rate and
PSNR, we use low values of ξ such that increasing ξ increases com-
pression ratios. The values for ξ are different for each dataset and base
compressor; we report them in the supplement for reproducibility.

In Fig. 10, we can see that the tradeoff between bit-rate and PSNR
for the augmented compressors mirrors that of the base compressors
with some amount of overhead. Overall, augmented SPERR seems to
achieve better reconstruction quality than augmented SZ3.

5.3 Run Time Analysis

Compression and decompression times. TFZ processes each cell
independently and limits the number of processing iterations before
storing it losslessly. Let n be the number of cells and k the number of
iterations, TFZ runs in linear time O(nk). Recall k = 20.

Empirically, we measure the compression time for each dataset using
both base and augmented compressors; see the results in Tab. 3. For
asymmetric data, we report the compression time while preserving both
eigenvector and eigenvalue partitions, while cases where only one is
preserved are provided in the supplement.

Table 2: Number of cells whose topology is misclassified by SZ3 and SPERR when compressed to the same ratio as augmented SZ3 and augmented
SPERR, respectively. For symmetric data, we set the error bound of TFZ to be ξ = 0.01 and for asymmetric data we set ξ = 0.001. #Cells: number of
cells in the mesh. #SZ3: number of cells misclassified by SZ3. %SZ3: percent of cells misclassified by SZ3. #SPERR: number of cells misclassified
by SPERR. %SPERR: percent of cells misclassified by SPERR.

Dataset #Cells #SZ3 %SZ3 #A-SZ3 #SPERR %SPERR #A-SPERR
Stress A 204,800 85 0.04% 0 47 0.02% 0
Stress B 204,800 582 0.28% 0 381 0.19% 0
Brain A 1,057,160 2,144 0.20% 0 1,660 0.16% 0
Brain B 8,723,862 16,831 0.19% 0 6,609 0.08% 0
Ocean 540,000 17,185 3.2% 0 13,536 2.5% 0

Miranda 75,104,768 16,359,113 21.8% 0 2,464,647 3.3% 0
Vortex Street 151,543,962 32,160,009 21.2% 0 21,881,208 14.4% 0

Heated Cylinder 267,604,000 50,817,728 19.0% 0 32,859,532 12.3% 0

Table 3: Compression and decompression times for each dataset using
base and augmented compressors. A-SZ3 and A-SPERR denote aug-
mented SZ3 and augmented SPERR respectively.

Dataset SZ3 A-SZ3 SPERR A-SPERR
Total Compression Time (s)

Stress A 0.22 0.56 0.22 0.67
Stress B 0.22 0.57 0.22 0.66
Brain A 0.76 1.92 0.77 2.38
Brain B 2.11 9.17 2.22 10.93
Ocean 0.35 1.90 0.39 2.28

Miranda 7.00 274.14 9.53 287.16
Vortex Street 24.34 784.85 28.86 835.99

Heated Cylinder 37.98 762.21 48.23 713.11
Decompression Time (s)

Stress A 0.28 0.25 0.28 0.25
Stress B 0.28 0.25 0.28 0.26
Brain A 0.82 0.86 0.81 0.81
Brain B 2.15 2.31 2.08 2.47
Ocean 0.34 0.38 0.36 0.42

Miranda 4.73 11.44 6.34 12.60
Vortex Street 19.78 33.76 22.81 35.13

Heated Cylinder 29.01 50.78 36.68 53.44

We find that augmented SPERR generally achieves slightly worse
compression times than augmented SZ3. Varying the error bound ξ
does not have a significant effect on the run times; see the supplement.
Analysis of compression times. In Tab. 4, we provide a more detailed
breakdown of the run times reported in Tab. 3 for augmented SZ3
and augmented SPERR. As expected, the cell correction step (labeled
as “Cells”) accounts for the largest portion of the run time, typically
dominating the overall processing time. For symmetric data, this step
is dedicated entirely to preserving degenerate points. In contrast, for
asymmetric data, it involves correcting vertices, degenerate points, and
cell topology. Among these, cell topology correction is the most time-
consuming, though all three contribute significantly to the total run
time. We provide more detail in the supplement.

6 LIMITATIONS AND DISCUSSION

Our TFZ framework has its limitations. By enhancing a base compres-
sor and generating additional output files, the augmented compressor
typically achieves lower compression ratios and requires more time
compared to the base compressor. We highlight the key takeaways here
and report detailed analysis in the supplement.
Storage overhead. In Fig. 10, we can see that TFZ imposes up to 1×
storage overhead for symmetric data and 3× for asymmetric data (at
a fixed PSNR). These values are similar to other topology-preserving
compressors at similar compression ratios [29, 49]. For asymmetric
data, preserving only one of the eigenvector or eigenvalue partitions will
lower the overhead. For a fixed compression ratio, we argue improved
topological correctness can be more important than increased PSNR,
depending on the application. We believe that there is room to improve
the compression ratios by developing targeted strategies to preserve
the internal cell topology of asymmetric tensor fields, as well as more
efficient multiscale quantization schemes.
Time overhead. In Tab. 3, we observe that TFZ introduces a significant
compression time overhead compared to the base compressors. TFZ

Table 4: Breakdown of compression times for each dataset when com-
pressed with augmented SZ3 and augmented SPERR. Times are in
seconds. All trials use an error bound of ξ = 0.001. BC: Base com-
pressor. Cells: Cell correction step. LL: Lossless storage. Save: Save
compressed file. Clean: Remove intermediate files.

Dataset Setup BC Cells LL Save Clean Total
Augmented SZ3

Stress A 0.01 0.20 0.13 0.03 0.06 0.13 0.56
Stress B 0.02 0.20 0.14 0.03 0.06 0.12 0.57
Brain A 0.05 0.48 0.69 0.08 0.22 0.39 1.92
Brain B 0.34 1.34 5.42 0.51 0.71 0.85 9.17
Ocean 0.13 0.32 1.13 0.06 0.09 0.18 1.90

Miranda 10.64 7.02 245.17 6.90 1.75 1.94 274.14
Vortex Street 21.05 19.86 708.43 15.73 7.99 10.39 784.85

Heated Cylinder 31.67 33.11 644.57 24.78 11.28 14.32 762.21
Augmented SPERR

Stress A 0.02 0.30 0.13 0.03 0.06 0.13 0.67
Stress B 0.02 0.30 0.13 0.03 0.06 0.13 0.66
Brain A 0.05 0.82 0.80 0.08 0.22 0.41 2.38
Brain B 0.34 2.45 6.09 0.49 0.71 0.86 10.93
Ocean 0.08 0.57 1.27 0.07 0.09 0.18 2.28

Miranda 11.61 13.82 250.47 6.86 1.73 1.95 287.16
Vortex Street 21.27 37.22 744.16 13.64 7.78 10.54 835.99

Heated Cylinder 31.96 63.80 568.57 21.67 10.19 14.41 713.11

typically achieves a throughput of 3–6 MB/second. We also timed
TFZ compressing datasets with larger 2D slices and found similar
throughputs. The results are in the supplement. Our throughputs are
comparable to other topology-preserving methods [12, 29], but a direct
comparison is challenging due to variations in processor speed. Also,
scientific datasets are often compressed once, and the compressed file is
distributed many times, so this overhead may represent a one-time cost.
We report performance on a single CPU. TFZ could potentially benefit
from parallel or GPU implementations. Since TFZ processes each cell
independently, parallelization would be relatively straightforward.
Visual artifacts. Our strategy can produce visual artifacts, particu-
larly in the asymmetric case. Such artifacts are most noticeable in
areas where the magnitude of tensors is low compared to the absolute
error bound. We discuss the causes of such artifacts in detail in the
supplement. Managing these artifacts is a possible area of future work.
Other limitations. For symmetric tensor fields, TFZ makes no guar-
antees about the tensorlines that connect the degenerate points. The
tensorlines are part of the definition of the topology of a symmetric
tensor field, and one logical extension of our work is to preserve the
tensorlines. However, our strategy still benefits applications that use
the entire topology by preserving the degenerate points. Further, there
are use cases that do not require tensorlines [11, 25, 46, 51].

7 CONCLUSION

We introduce a novel framework, TFZ, designed to augment any error-
bounded lossy compressor in order to preserve the topology of 2D sym-
metric and asymmetric tensor fields. In both cases, we scan through
each cell and correct the topology one cell at a time. Our experi-
ments show that TFZ preserves the degenerate points of symmetric
data and the eigenvalue and eigenvector partitions of asymmetric data,
while introducing a reasonable overhead. Looking ahead, a common
asymmetric tensor field is the gradient of a vector field, and the decom-
position in Eq. (3) is used to visualize vector fields [3, 50]. TFZ could
be applied to vector fields to preserve the topology of the gradient.

ACKNOWLEDGMENTS

This work was supported in part by grants from National Science
Foundation OAC-2313122, OAC-2313123, and OAC-2313124.

REFERENCES

[1] Z. Ahsan. On the riemann curvature tensor in general relativity. Progress of
Theoretical Physics Supplement, 172:224–227, 2008. doi: 10.1143/PTPS.
172.224 1

[2] P. Alliez, D. Cohen-Steiner, O. Devillers, B. Lévy, and M. Desbrun.
Anisotropic polygonal remeshing. ACM Transactions on Graphics (TOG),
22(3):485–493, 2003. doi: 10.1145/882262.882296 1, 2

[3] C. Auer, J. Kasten, A. Kratz, E. Zhang, and I. Hotz. Automatic, tensor-
guided illustrative vector field visualization. In IEEE Pacific Visualization
Symposium (PacificVis), pp. 265–272. IEEE, 2013. doi: 10.1109/PacificVis
.2013.6596154 2, 9

[4] R. Ballester-Ripoll, P. Lindstrom, and R. Pajarola. TTHRESH: Tensor
compression for multidimensional visual data. IEEE Transactions on
Visualization and Computer Graphics (TVCG), 26(9):2891–2903, 2020.
doi: 10.1109/TVCG.2019.2904063 2, 7

[5] C. G. Callan Jr., S. Coleman, and R. Jackiw. A new improved energy-
momentum tensor. Annals of Physics, 59(1):42–73, 1970. doi: 10.1016/
0003-4916(70)90394-5 1

[6] G. Chen, G. Esch, P. Wonka, P. Müller, and E. Zhang. Interactive procedu-
ral street modeling. ACM Transactions on Graphics (TOG), 27(3):1–10,
2008. doi: 10.1145/1360612.1360702 1, 2

[7] T. Delmarcelle. The visualization of second-order tensor fields. PhD
thesis, Stanford University, 1995. 2

[8] T. Delmarcelle and L. Hesselink. The topology of symmetric, second-
order tensor fields. In IEEE Visualization Conference (VIS), pp. 140–147.
IEEE, 1994. doi: 10.1109/VISUAL.1994.346326 3

[9] S. Di, J. Liu, K. Zhao, X. Liang, R. Underwood, Z. Zhang, M. Shah,
Y. Huang, J. Huang, X. Yu, et al. A survey on error-bounded lossy
compression for scientific datasets. ACM Computing Surveys, 57(11):1–
38, 2024. doi: 10.1145/3733104 2

[10] D. B. Ennis, G. Kindlman, I. Rodriguez, P. A. Helm, and E. R. McVeigh.
Visualization of tensor fields using superquadric glyphs. Magnetic Res-
onance in Medicine, 53(1):169–176, 2005. doi: doi.org/10.1002/mrm.
20318 2

[11] X. Gao. Applying 2D tensor field topology to symmetric stress tensors.
Master’s thesis, Oregon State University, 2018. 2, 9

[12] N. Gorski, X. Liang, H. Guo, L. Yan, and B. Wang. A general frame-
work for augmenting lossy compressors with topological guarantees.
IEEE Transactions on Visualization and Computer Graphics (TVCG),
31(6):3693–3705, 2025. doi: 10.1109/TVCG.2025.3567054 2, 5, 8, 9

[13] H. Guo. What Are Tensors Exactly? World Scientific, 2021. doi: 10.
1142/12388 1

[14] R. Haimes and D. Kenwright. On the velocity gradient tensor and fluid
feature extraction. In Computational Fluid Dynamics Conference, pp.
1–10, 1999. doi: 10.2514/6.1999-3288 1

[15] C. Hergl, C. Blecha, V. Kretzschmar, F. Raith, F. Günther, M. Stommel,
J. Jankowai, I. Hotz, T. Nagel, and G. Scheuermann. Visualization of tensor
fields in mechanics. Computer Graphics Forum (CGF), 40(6):135–161,
2021. 2

[16] L. Hesselink, Y. Levy, and Y. Lavin. The topology of symmetric, second-
order 3D tensor fields. IEEE Transactions on Visualization and Computer
Graphics (TVCG), 3(1):1–11, 1997. doi: 10.1109/2945.582332 3

[17] S.-H. Hung, Y. Zhang, H. Yeh, and E. Zhang. Feature curves and surfaces
of 3D asymmetric tensor fields. IEEE Transactions on Visualization and
Computer Graphics (TVCG), 28(1):33–42, 2022. doi: 10.1109/TVCG.
2021.3114808 3

[18] L. Ibarria, P. Lindstrom, J. Rossignac, and A. Szymczak. Out-of-core com-
pression and decompression of large n-dimensional scalar fields. Computer
Graphics Forum (CGF), 22(3):343–348, 2003. doi: 10.1111/1467-8659.
00681 2

[19] J. Jankowai, B. Wang, and I. Hotz. Robust extraction and simplification of
2D symmetric tensor field topology. Computer Graphics Forum (CGF),
38(3):337–349, 2019. doi: 10.1111/cgf.13693 1, 2, 3, 5

[20] F. Khan, L. Roy, E. Zhang, B. Qu, S.-H. Hung, H. Yeh, R. S. Laramee,
and Y. Zhang. Multi-scale topological analysis of asymmetric tensor fields
on surfaces. IEEE Transactions on Visualization and Computer Graphics
(TVCG), 26(1):270–279, 2020. doi: 10.1109/TVCG.2019.2934314 2, 3

[21] J. Ko, T. Kwon, J. Jung, and K. Shin. ELiCiT: effective and lightweight
lossy compression of tensors. In IEEE International Conference on Data
Mining (ICDM), pp. 171–180, 2024. doi: 10.1109/ICDM59182.2024.
00024 2

[22] T. Kwon, J. Ko, J. Jung, and K. Shin. NeuKron: Constant-size lossy
compression of sparse reorderable matrices and tensors. In ACM Web Con-
ference 2023 (WWW), pp. 71–81, 2023. doi: 10.1145/3543507.3583226
2

[23] T. Kwon, J. Ko, J. Jung, and K. Shin. TensorCodec: Compact lossy com-
pression of tensors without strong data assumptions. In IEEE International
Conference on Data Mining (ICDM), pp. 229–238. IEEE, 2023. doi: 10.
1109/ICDM58522.2023.00032 2

[24] S. Lakshminarasimhan, N. Shah, S. Ethier, S. Klasky, R. Latham, R. Ross,
and N. F. Samatova. Compressing the incompressible with ISABELA: In-
situ reduction of spatio-temporal data. In European Conference on Parallel
Processing, pp. 366–379, 2011. doi: 10.1007/978-3-642-23400-2_34 2

[25] Y. Lavin, Y. Levy, and L. Hesselink. Singularities in nonuniform tensor
fields. In IEEE Visualization Conference (VIS), pp. 59–66. IEEE, 1997. 2,
9

[26] H. Le and J. Tao. Hierarchical autoencoder-based lossy compression
for large-scale high-resolution scientific data. Computing&AI Connect
(CAIC), 1, 2024. doi: 10.69709/CAIC.2024.193132 2

[27] D. Le Bihan, J.-F. Mangin, C. Poupon, C. A. Clark, S. Pappata, N. Molko,
and H. Chabriat. Diffusion tensor imaging: concepts and applications.
Journal of Magnetic Resonance Imaging (JMRI), 13(4):534–546, 2001.
doi: 10.1002/jmri.1076 1

[28] S. Li, P. Lindstrom, and J. Clyne. Lossy scientific data compression with
SPERR. In IEEE International Parallel and Distributed Processing Sym-
posium (IPDPS), pp. 1007–1017. IEEE, 2023. doi: 10.1109/IPDPS54959.
2023.00104 2, 7

[29] Y. Li, X. Liang, B. Wang, Y. Qiu, L. Yan, and H. Guo. MSz: An ef-
ficient parallel algorithm for correcting morse-smale segmentations in
error-bounded lossy compressors. IEEE Transactions on Visualization
and Computer Graphics (TVCG), 31, 2025. doi: 10.1109/TVCG.2024.
3456337 2, 8, 9

[30] X. Liang, S. Di, F. Cappello, M. Raj, C. Liu, K. Ono, Z. Chen, T. Pe-
terka, and H. Guo. Toward feature-preserving vector field compression.
IEEE Transactions on Visualization and Computer Graphics (TVCG),
29(12):5434–5450, 2023. doi: 10.1109/TVCG.2022.3214821 2

[31] X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and F. Cappello.
Error-controlled lossy compression optimized for high compression ratios
of scientific datasets. In IEEE International Conference on Big Data (Big
Data), pp. 438–447. IEEE, 2018. doi: 10.1109/BigData.2018.8622520 2

[32] X. Liang, K. Zhao, S. Di, S. Li, R. Underwood, A. M. Gok, J. Tian,
J. Deng, J. C. Calhoun, D. Tao, Z. Chen, and F. Cappello. SZ3: A
modular framework for composing prediction-based error-bounded lossy
compressors. IEEE Transactions on Big Data (TBD), 9(2):485–498, 2023.
doi: 10.1109/TBDATA.2022.3201176 2, 7

[33] Z. Lin, H. Yeh, R. S. Laramee, and E. Zhang. 2D asymmetric tensor field
topology. In Topological Methods in Data Analysis and Visualization II:
Theory, Algorithms, and Applications, pp. 191–204. Springer, 2011. doi:
10.1007/978-3-642-23175-9_13 2, 3, 4

[34] P. Lindstrom. Fixed-rate compressed floating-point arrays. IEEE Trans-
actions on Visualization and Computer Graphics (TVCG), 20(12):2674–
2683, 2014. doi: 10.1109/TVCG.2014.2346458 2, 7

[35] Y. Lu, K. Jiang, J. A. Levine, and M. Berger. Compressive neural repre-
sentations of volumetric scalar fields. Computer Graphics Forum (CGF),
40(3):135–146, 2021. doi: 10.1111/cgf.14295 2, 7

[36] C. Meneveau. Lagrangian dynamics and models of the velocity gradient
tensor in turbulent flows. Annual Review of Fluid Mechanics, 43:219–245,
2011. doi: 10.1146/annurev-fluid-122109-160708 1

[37] J. Palacios and E. Zhang. Interactive visualization of rotational symmetry
fields on surfaces. IEEE Transactions on Visualization and Computer
Graphics (TVCG), 17(7):947–955, 2011. doi: 10.1109/TVCG.2010.121 2

[38] D. Palke, Z. Lin, G. Chen, H. Yeh, P. Vincent, R. Laramee, and E. Zhang.
Asymmetric tensor field visualization for surfaces. IEEE Transactions on
Visualization and Computer Graphics (TVCG), 17(12):1979–1988, 2011.
doi: 10.1109/TVCG.2011.170 2

[39] W. Pearlman, A. Islam, N. Nagaraj, and A. Said. Efficient, low-complexity
image coding with a set-partitioning embedded block coder. IEEE Transac-
tions on Circuits and Systems for Video Technology (TVSCT), 14(11):1219–
1235, 2004. doi: 10.1109/TCSVT.2004.835150 2

[40] L. Roy, P. Kumar, Y. Zhang, and E. Zhang. Robust and fast extraction of

https://doi.org/10.1143/PTPS.172.224
https://doi.org/10.1143/PTPS.172.224
https://doi.org/10.1145/882262.882296
https://doi.org/10.1109/PacificVis.2013.6596154
https://doi.org/10.1109/PacificVis.2013.6596154
https://doi.org/10.1109/TVCG.2019.2904063
https://doi.org/10.1016/0003-4916(70)90394-5
https://doi.org/10.1016/0003-4916(70)90394-5
https://doi.org/10.1145/1360612.1360702
https://doi.org/10.1109/VISUAL.1994.346326
https://doi.org/10.1145/3733104
https://doi.org/doi.org/10.1002/mrm.20318
https://doi.org/doi.org/10.1002/mrm.20318
https://doi.org/10.1109/TVCG.2025.3567054
https://doi.org/10.1142/12388
https://doi.org/10.1142/12388
https://doi.org/10.2514/6.1999-3288
https://doi.org/10.1109/2945.582332
https://doi.org/10.1109/TVCG.2021.3114808
https://doi.org/10.1109/TVCG.2021.3114808
https://doi.org/10.1111/1467-8659.00681
https://doi.org/10.1111/1467-8659.00681
https://doi.org/10.1111/cgf.13693
https://doi.org/10.1109/TVCG.2019.2934314
https://doi.org/10.1109/ICDM59182.2024.00024
https://doi.org/10.1109/ICDM59182.2024.00024
https://doi.org/10.1145/3543507.3583226
https://doi.org/10.1109/ICDM58522.2023.00032
https://doi.org/10.1109/ICDM58522.2023.00032
https://doi.org/10.1007/978-3-642-23400-2_34
https://doi.org/10.69709/CAIC.2024.193132
https://doi.org/10.1002/jmri.1076
https://doi.org/10.1109/IPDPS54959.2023.00104
https://doi.org/10.1109/IPDPS54959.2023.00104
https://doi.org/10.1109/TVCG.2024.3456337
https://doi.org/10.1109/TVCG.2024.3456337
https://doi.org/10.1109/TVCG.2022.3214821
https://doi.org/10.1109/BigData.2018.8622520
https://doi.org/10.1109/TBDATA.2022.3201176
https://doi.org/10.1007/978-3-642-23175-9_13
https://doi.org/10.1007/978-3-642-23175-9_13
https://doi.org/10.1109/TVCG.2014.2346458
https://doi.org/10.1111/cgf.14295
https://doi.org/10.1146/annurev-fluid-122109-160708
https://doi.org/10.1109/TVCG.2010.121
https://doi.org/10.1109/TVCG.2011.170
https://doi.org/10.1109/TCSVT.2004.835150

3D symmetric tensor field topology. IEEE Transactions on Visualization
and Computer Graphics (TVCG), 25(1):1102–1111, 2019. doi: 10.1109/
TVCG.2018.2864768 3

[41] J. L. Schlenker, G. V. Gibbs, and M. B. Boisen Jr. Strain-tensor compo-
nents expressed in terms of lattice parameters. Acta Crystallographica
Section A: Foundations and Advances, 34(1):52–54, 1978. doi: 10.1107/
S0567739478000108 1

[42] K. Shi, E. R. Smith, E. E. Santiso, and K. E. Gubbins. A perspective on
the microscopic pressure (stress) tensor: History, current understanding,
and future challenges. Journal of Chemical Physics (JCP), 158:040901:1–
040901:32, 2023. doi: 10.1063/5.0132487 1

[43] M. Soler, M. Plainchault, B. Conche, and J. Tierny. Topologically con-
trolled lossy compression. In IEEE Pacific Visualization Symposium
(PacificVis), pp. 46–55. IEEE, 2018. doi: 10.1109/PacificVis.2018.00015
2

[44] S. W. Son, Z. Chen, W. Hendrix, A. Agrawal, W.-k. Liao, and A. Choud-
hary. Data compression for the exascale computing era-survey. Super-
computing Frontiers and Innovations, 1(2):76–88, 2014. doi: 10.14529/
jsfi140205 2

[45] D. Tao, S. Di, Z. Chen, and F. Cappello. Significantly improving lossy
compression for scientific data sets based on multidimensional prediction
and error-controlled quantization. In IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pp. 1129–1139. IEEE, 2017.
doi: 10.1109/IPDPS.2017.115 4

[46] X. Tricoche, G. Scheuermann, and H. Hagen. Tensor topology tracking:
A visualization method for time-dependent 2D symmetric tensor fields.
Computer Graphics Forum (CGF), 20(3):461–470, 2001. 1, 2, 9

[47] M. Xia, B. Wang, Y. Li, P. Jiao, X. Liang, and H. Guo. TspSZ: An
Efficient Parallel Error-Bounded Lossy Compressor for Topological Skele-
ton Preservation . In IEEE Conference on Data Engineering (ICDE), pp.
3682–3695. IEEE, May 2025. doi: 10.1109/ICDE65448.2025.00275 2

[48] K. Xu, L. Zheng, Z. Yan, G. Yan, E. Zhang, M. Niessner, O. Deussen,
D. Cohen-Or, and H. Huang. Autonomous reconstruction of unknown
indoor scenes guided by time-varying tensor fields. ACM Transactions on
Graphics (TOG), 36(6):1–15, 2017. doi: 10.1145/3130800.3130812 1, 2

[49] L. Yan, X. Liang, H. Guo, and B. Wang. TopoSZ: Preserving topology
in error-bounded lossy compression. IEEE Transactions on Visualization
and Computer Graphics (TVCG), 30(1):1302–1312, 2024. doi: 10.1109/
TVCG.2023.3326920 2, 9

[50] E. Zhang, H. Yeh, Z. Lin, and R. S. Laramee. Asymmetric tensor analysis
for flow visualization. IEEE Transactions on Visualization and Computer
Graphics (TVCG), 15(1):106–122, 2009. doi: 10.1109/TVCG.2008.68 2,
3, 9

[51] Y. Zhang, X. Gao, and E. Zhang. Applying 2D tensor field topology to
solid mechanics simulations. In Modeling, Analysis, and Visualization of
Anisotropy, pp. 29–41. Springer, 2017. 2, 9

[52] K. Zhao, S. Di, M. Dmitriev, T.-L. D. Tonellot, Z. Chen, and F. Cappello.
Optimizing error-bounded lossy compression for scientific data by dy-
namic spline interpolation. In IEEE International Conference on Data
Engineering (ICDE), pp. 1643–1654, 2021. doi: 10.1109/ICDE51399.
2021.00145 2

[53] X. Zheng and A. Pang. HyperLIC. In IEEE Visualization Conference
(VIS), pp. 249–256. IEEE, 2003. 2

[54] X. Zheng and A. Pang. 2D asymmetric tensor analysis. In IEEE Visual-
ization Conference (VIS), pp. 3–10. IEEE, 2005. doi: 10.1109/VISUAL.
2005.1532770 3

https://doi.org/10.1109/TVCG.2018.2864768
https://doi.org/10.1109/TVCG.2018.2864768
https://doi.org/10.1107/S0567739478000108
https://doi.org/10.1107/S0567739478000108
https://doi.org/10.1063/5.0132487
https://doi.org/10.1109/PacificVis.2018.00015
https://doi.org/10.14529/jsfi140205
https://doi.org/10.14529/jsfi140205
https://doi.org/10.1109/IPDPS.2017.115
https://doi.org/10.1109/ICDE65448.2025.00275
https://doi.org/10.1145/3130800.3130812
https://doi.org/10.1109/TVCG.2023.3326920
https://doi.org/10.1109/TVCG.2023.3326920
https://doi.org/10.1109/TVCG.2008.68
https://doi.org/10.1109/ICDE51399.2021.00145
https://doi.org/10.1109/ICDE51399.2021.00145
https://doi.org/10.1109/VISUAL.2005.1532770
https://doi.org/10.1109/VISUAL.2005.1532770

	Introduction
	Related Work
	Technical Background
	Tensors and Tensor Fields
	Topology of Tensor Fields
	Topology of Second-Order Symmetric Tensor Fields
	Topology of Second-Order Asymmetric Tensor Fields

	Quantization in Lossy Compression

	Method
	An Overview of Compression Pipeline
	Compression of Symmetric Tensor Fields
	Compression of Asymmetric Tensor Fields
	Asymmetric Cell Correction: Vertex Correction
	Asymmetric Cell Correction: Cell Topology Correction

	Experimental Results
	Overview of Experiments
	Performance Evaluation
	Run Time Analysis

	Limitations and Discussion
	Conclusion

