
Adaptive Covers for Mapper Graphs Using
Information Criteria

Nithin Chalapathi
University of California, Berkeley

Berkeley, CA, USA
nithinc@berkeley.edu

Youjia Zhou
University of Utah

Salt Lake City, UT, USA
zhou325@sci.utah.edu

Bei Wang
University of Utah

Salt Lake City, UT, USA
beiwang@sci.utah.edu

Abstract—The mapper construction is a widely used tool from
topological data analysis in obtaining topological summaries
of large, high-dimensional point cloud data. It has enjoyed
great success in data science, including cancer research, sports
analytics, and visualization. However, developing practical and
automatic parameter selection for the mapper construction
remains a challenging open problem for both the topological
analysis and visualization communities. In this paper, we focus
on parameter selection for the 1-dimensional skeleton of the
mapper construction, called the mapper graph. Specifically, we
explore how information criteria used in the X-means clustering
algorithm can inform and generate adaptive covers for mapper
graphs. Our approach thus makes novel progress towards au-
tomatic parameter selection for the mapper construction using
information theory.

Index Terms—Topological data analysis, topology in visualiza-
tion, mapper, information theory

I. INTRODUCTION

The amount of high-dimensional data has increased at an
unprecedented rate, as has the demand for data science tools to
explore such data. Topological data analysis (TDA) offers a rich
set of tools for the exploratory analysis of high-dimensional
data (see [1], [2] for surveys). One successful tool is the mapper
construction, a topological summary of data in the form of a
simplicial complex.

First introduced by Singh et al. [3], the mapper construction
visualizes the topological structures of high-dimensional point
clouds. At its core, it produces a function-induced soft-
clustering that captures topological information about the
data, such as branches or loops in high dimensions. The
mapper construction has seen success across a variety of fields,
including network visualization [4], cancer research [5], [6],
neuroscience [7], machine learning interpretability [8], and
more [9]. In recent years, the ecosystem for the mapper frame-
work has rapidly developed in the form of open source libraries
and interactive visualization tools, e.g., KeplerMapper [10],
giotto-tda [11], Mapper Interactive [12], TDAview [13], and
Guhdi [14].

One major obstacle encountered by applications of the
mapper construction and an active research topic in TDA is
parameter selection and tuning, specifically the creation of a
cover. We focus on parameter selection for the 1-dimensional
skeleton of the mapper construction, referred to as the mapper
graph. Carrière et al. [15] made some recent progress in this

direction by introducing a statistical procedure for selecting
the most stable parameters for the mapper graph, under certain
assumptions (see Sect. III for details). Different from previous
approaches, we adapt information-theoretic measures used
in X-means clustering to inform and generate adaptive
covers for mapper graphs.

Our contributions are as follows:
• First, inspired by X-means clustering, we propose a new

strategy to generate adaptive covers for mapper graphs,
referred to as the multi-pass AIC/BIC algorithm, based
on the Akaike information criterion (AIC) and Bayesian
information criterion (BIC).

• Second, we demonstrate our algorithm by generating
adaptive covers for several synthetic and real-world
datasets under the mapper framework.

• Lastly, we provide an open source implementation
of our framework that is distributed both as a
stand-alone Python package (https://github.com/tdavislab/
mapper-xmean-cover), and as an extension to the
Mapper Interactive toolbox [12] (https://github.com/
MapperInteractive/MapperInteractive/tree/xmeans).

II. TECHNICAL BACKGROUND

We first review the mapper construction as introduced by
Singh et al. [3]. We focus on the 1-dimensional mapper
construction, referred to as the mapper graph. We then discuss
the X-means clustering that utilizes information criteria to
determine the number of clusters in a dataset. X-means
clustering inspires our proposed approach.

A. Mapper Graphs

Covers and nerves. To describe the mapper construction, we
begin with the notions of a cover and the nerve of a cover. Given
a high-dimensional point cloud X⊂ Rd , a cover V = {Vi}i∈I
of X is an indexed set of open sets of Rd such that X⊂

⋃
i∈I Vi.

The nerve N of V contains all finite subsets J ⊆ I such that
the intersection of the Vi whose indices are in J is non-empty.

In general, N is an abstract simplicial complex called the
nerve complex of V . The 1-dimensional skeleton of N , denoted
as N1, is a graph referred to as the mapper graph, which
captures the intersections between elements of V . Each node in
N1 represents a cover element, while there is an edge between
vertices i and j, if and only if Vi∩Vj is nonempty.

https://github.com/tdavislab/mapper-xmean-cover
https://github.com/tdavislab/mapper-xmean-cover
https://github.com/MapperInteractive/MapperInteractive/tree/xmeans
https://github.com/MapperInteractive/MapperInteractive/tree/xmeans

As illustrated in Fig. 1A, X is a 2-dimensional point cloud
covered by a set V of rectangles as the cover elements. The
1-dimensional nerve N1 of V is shown in Fig. 1C, where there
is an edge between nodes 1 and 3 since V1∩V3 6= /0.

A B C
Fig. 1. An example mapper graph. (A) A 2-dimensional point cloud X. (B)
A height function f : X→ R together with a cover of f (X) consisting of
intervals. (C) The resulting mapper graph.

Mapper graphs. Finding an appropriate cover V of X that
captures its underlying structure is nontrivial. In the simplest
case, given a point cloud X⊂ Rd equipped with a continuous
function f : X→ R, a mapper construction induces a cover of
X using f . Specifically, starting with a cover U = {U j} j∈J of
f (X), we can create a cover V of X by considering the clusters
induced by f−1(U j). In practice, a density based clustering
algorithm, DBSCAN [16] is typically employed to cluster
points in f−1(U j). That is, for each U j ∈ U , we treat the
clusters of f−1(U j) (obtained by DBSCAN) as cover elements
of X that constitute V . The mapper graph is defined as the
1-dimensional nerve of V , M(X, f) :=N1(V).

Take Fig. 1 as an example. A 2D point cloud X is equipped
with a height function f :X→R. We start with a cover of f (X)
with 8 open intervals of uniform lengths, f (X)⊆

⋃8
j=1 U j ⊂R

in Fig. 1B. For each U j, f−1(U j) induces some clusters that
are subsets of X. These clusters form cover elements of X. For
instance, f−1(U1) induces two clusters of points enclosed by
the orange rectangles V1 and V2 respectively; while f−1(U2)
induces a single cluster enclosed by the green rectangle V3,
see Fig. 1A. The mapper graph in Fig. 1C is the 1-dimensional
nerve of this cover and it captures the overall shape of the
point cloud, including the two upward branches and two loops.
Parameters for mapper graphs. In practice, a practitioner
needs to specify a number of parameters to construct a mapper
graph: the function f , the number of cover elements l and
their percentage of overlap p, the metric dX on X, and the
clustering method. The function f is typically referred to as
the filter function that captures either a known data attribute or
the properties of the underlying point cloud, e.g., the L2-norm,
geodesic distances, and eccentricity [3], [17]. For example,
in Fig. 1, f is the height function, l = 8 and p = 25%, dX
is Euclidean, and the clustering method is DBSCAN. The
DBSCAN algorithm comes with two additional parameters: ε

is the neighborhood size of a given point, and minPts is the

minimum number of points needed to consider a set of points
as a cluster.

In this paper, we study the parameter selection of the number
of intervals l that specifies a cover for a mapper graph, assuming
all other parameters (f , p, dX, ε , minPts, etc.) are fixed. The
standard way to construct the cover U of f (X) is by splitting
the range of f (X) into l equally sized intervals, each with p
percentage overlap between adjacent intervals. We require the
intervals in U to overlap in order to capture relations among the
cover elements. This strategy of creating U is called the uniform
cover. A second but less widely used strategy is the balanced
cover, where the inverse image of each interval contains an
equal number of points; such a strategy is offered by libraries
such as the giotto-tda [11].

B. X-means Clustering

k-means clustering is one of the most popular clustering
algorithms [18], [19]. Determining the number of clusters
k for k-means clustering is a widely discussed topic with
established approaches such as cross validation [20], the
silhouette score [21], and various indices [22].

Given a set of points X = {x1,x2, · · · ,xn}, the standard k-
means clustering initializes a group of k randomly selected
centroids and then performs an interactive process to optimize
the centroids until they have stabilized or a pre-defined number
of iterations have been reached. During each iteration, the
algorithm proceeds by:

1) Assigning each point xi to the centroid that is closest to
xi.

2) Updating centroids by computing the center of mass of
points assigned to it.

However, there are several issues surrounding the k-means
algorithm: the problem is NP-hard [23] (although it typically
works fast in practice); it does not guarantee convergence to
the global optimum; and determining the number of clusters k
is often ambiguous.
X-means clustering is a variant of k-means clustering, which
attempts to address the parameter selection of k. It refines
clusters by repeatedly attempting subdivision, and keeping
the best resulting splits according to an information-theoretic
criterion such as the Akaike information criterion (AIC) or
Bayesian information criterion (BIC) [24].

To apply X-means clustering to a dataset X, the user specifies
as input a range [kmin,kmax] in which the true number of clusters
k reasonably lies. And the output is a value for k ∈ [kmin,kmax]
which scores best with a model selection criterion such as AIC
or BIC [24].

At its core, X-means consists of two alternating operations:
a k-means algorithm (Improve-Params) to determine the
clusters for a chosen k, and a clustering splitting process
(Improve-Structure) that optimizes the value of k according
to the AIC/BIC. Starting with an initial choice of k = kmin,
X-means runs the following steps until completion [24]:

1) Improve-Params: running standard k-means clustering
until convergence.

2) Improve-Structure: (a) splitting the centroid of each
cluster X j into two children; (b) running a local 2-means
algorithm for each pair of children in the region defined
by the cluster X j; (c) performing model selection on all
pairs of children: for each pair, if the AIC/BIC does not
increase locally, the parent centroid is kept; otherwise,
the children are kept and X j is split into two, and k is
updated accordingly (i.e., k← k+1).

3) If k > kmax, stop and report the best scoring model;
otherwise go to step 1.

Our method is inspired by X-means’ utility in param-
eter selection. In particular, we utilize and modify the
Improve-Structure process for X-means to formulate adap-
tive covers for mapper graphs.

To clarify, there are two different clustering algorithms
relevant to our pipeline. To construct a mapper graph with
a given cover U of f (X), DBSCAN is used to cluster points
in f−1(U j) (for each U j ∈ U) such that these clusters form a
cover V of X. The Improve-Structure process of X-means
is used to determine whether a particular cover element U j
of f (X) should be split or not during the cover refinement
process (see Sect. IV for details).
AIC and BIC. Kullback-Leibler (KL) divergence (or relative
entropy) [25] is at the center of information theoretic measures
such as AIC and BIC. It provides a way to compare two
probability distributions. Both AIC and BIC are commonly
used for model selection to estimate the relative amount of
information lost by a given model. In the X-means clustering
method, assume we are given a dataset X and a family of
models, where each model M corresponds to a clustering of
X with different values of k. For a fixed model M, BIC is
formulated as [24], [26], [27],

BIC(M) = l̂(M;X)− θ

2
log |X|.

where l̂ is the maximum log likelihood estimation of M given
dataset X and θ is the number of parameters estimated in M.
Similarly, AIC [28], [29] is defined as,

AIC(M) = 2l̂(M;X)−2θ .

The log likelihood term l̂ measures how likely a model is
given the observed data, whereas the θ term penalizes models
with more parameters, and hence discourages overfitting. For
X-means, the model with the highest AIC or BIC score is
selected1.

In our setting, let X = {x1, · · · ,xn} be a point cloud of n
points in d dimensions, we derive BIC and AIC based the
work of Pelleg and Moore [24] with a minor correction based
on multivariate Gaussian distribution [30], [31] (see Sect. A).
In a nutshell, given a mapper graph with a fixed cover, we
convert such a mapper graph into a hard clustering of points and
evaluate its AIC/BIC scores. Following the derivation details
in Sect. A, we have θ = (d +1)k, X(i) is the cluster assigned

1In some literature, there is a factor of -1 for the definition of AIC/BIC;
in this case, the computational process is the same but the model with the
smallest score is selected instead.

to xi, σ̂ is the maximum likelihood estimator for the variance
under a spherical Gaussian assumption, and

l̂(M;X) =
n

∑
i=1

[
log
|X(i)|
|X|
−d · log(

√
2πσ̂)

]
− |X| ·d

2
.

III. RELATED WORK

The mapper construction has been a popular and effective
tool from TDA for capturing topological summaries of complex
data [6], [32]–[34]. There are several open source implementa-
tions for computing and visualizing mapper graphs for general
purposes [10]–[14], and for domain-specific applications [35],
[36]. A number of theoretical questions surrounding the mapper
construction are being studied by the TDA communities
regarding its information content (e.g., [37]–[39]), stability
(e.g., [38]), convergence (e.g., [3], [37], [38], [40], [41]), and
comparative measures (e.g., [42]–[46], see [47], [48] for a
survey).

However, parameter selection for the mapper algorithm, in
particular, the selection of covers, remains an active topic
of research. One common strategy is to employ a best
practice, which is to find a range of parameters where the
mapper graphs remain structurally stable. In the classic mapper
construction [3], the uniform cover consists of a number
of equal-sized intervals with a fixed overlap rate between
successive intervals. The giotto-tda library [11] enables a
balanced cover, where the length of intervals is adjusted so
that approximately the same number of points fall into each
interval.

Carrière et al. [15] introduced a statistical procedure for
selecting the most stable parameters for the mapper graph.
They assumed that the data is sampled under a well-behaved
probability distribution, i.e., an (a,b)-standard probability
distribution, where a, b are some constant parameters. Their
algorithm repeatedly computes the mapper graph over a sample
of the data while comparing the extended persistence [15]
between the mapper graph and its continuous analogue, the
Reeb graph [49]. The mapper graph is induced by a δ -
neighborhood graph of the input point cloud, where the
threshold δ is determined by a and b, and the length of
intervals is determined by the maximum value of filter function
differences between any two points that have a distance less
than or equal to δ . When a and b are unknown, a subsampling
approach [50] is adapted to determine the threshold δ . They
proved that the mapper graph is an optimal estimator for the
Reeb graph [49]. However, their theoretical results are not
guaranteed to hold when the Reeb graph is unknown or the
independent sampling condition of the input point cloud is not
satisfied.

Our framework, on the other hand, is a completely new
approach based on information criteria and it does not make
any assumptions on the input point cloud. To the best of our
knowledge, this is the first time the information theory is
used for automatically tuning the parameters of the mapper
construction.

IV. METHOD

To generate an adaptive cover for a mapper graph, we begin
by articulating how to compute the AIC and BIC for a mapper
graph and its subgraph. Then we describe our multi-pass
AIC/BIC algorithm inspired by X-means.

A. Computing AIC or BIC of a Mapper Graph

Let X⊂Rd be a point cloud with a filter function f : X→R.
Each point x ∈ X is a d-dimensional point with a vector of
coordinates. We assume that X is equipped with the standard
Euclidean metric. We convert a mapper graph M constructed
from (X, f) to a hard clustering in order to compute its AIC
or BIC.

Let V denote the set of nodes ofM and k = |V |. We generate
a centroid for points belong to each node ofM. That is, let X j
denote the set of points belong to a node in M, its centroid is
computed as 1

|X j | ∑x∈X j x. Then we assign each point in X to
its nearest centroid. This is illustrated in Fig. 2. The resulting
clustering in Fig. 2C contains 11 clusters; points are colored
by their cluster ID with cluster centroids highlighted in red.

A B C

Fig. 2. Converting a mapper graph into a hard clustering. (A) The original
point cloud of Fig. 1A. (B) The mapper graph in Fig. 1C, where nodes are
colored by cluster ID. (C) The resulting hard clustering with cluster centroids
highlights in red.

B. Generating Adaptive Covers

Our strategy is inspired by the Improve-Structure step
of X-means, referred to as the multi-pass AIC/BIC. In the
Improve-Structure phase, given a point cloud X with k
clusters, a cluster X j is treated as an independent point cloud,
and a BIC (or AIC) score is computed before and after it
is split into two clusters. The split is kept if it increases the
information criterion.

Our algorithm starts with an initial mapper graph M on
point cloud X, with a filter function f , a cover of f (X) with l
intervals of uniform lengths, and p percent overlap. The multi-
pass BIC iterates through the following steps until convergence
using BIC. Assume intervals in U are sorted by their left
endpoints. At each iteration, for a chosen unprocessed interval
U ∈ U , the algorithm proceeds by,

1) Considering the subgraph MU of M induced by U (i.e.,
MU consists of nodes in M that correspond to clusters

of f−1(U), and edges inM induced by these nodes) and
computing the BIC of MU as outlined in Sect. IV-A.

2) Splitting U into two overlapping intervals U ′ and U ′′

(with a p percent overlap) and computing a new mapper
graph M′ using the new cover (U \U)∪U ′ ∪U ′′; see
Fig. 3A-B.

3) Considering the subgraphM′
U ofM′ induced by U ′∪U ′′

and computing its BIC. The split is kept if it increases
the information criterion, and U is updated and sorted;
otherwise, the split is ignored.

The convergence criteria are reached when the number of
iterations t has reached a pre-defined threshold (e.g., t ≥ 100),
or when all intervals have been processed, and the BIC score
has converged, that is, BICt −BICt−1 ≤ δ ∗BICt−1 for some
small percentage δ .

U
<latexit sha1_base64="VLV1WfLffWbJvU05bja4sMBfihk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LLaCp5IUQY8FLx4rmrbQhrLZbtqlm03YnQil9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5YSqFQdf9dgobm1vbO8Xd0t7+weFR+fikZZJMM+6zRCa6E1LDpVDcR4GSd1LNaRxK3g7Ht3O//cS1EYl6xEnKg5gOlYgEo2ilh6pf7Zcrbs1dgKwTLycVyNHsl796g4RlMVfIJDWm67kpBlOqUTDJZ6VeZnhK2ZgOeddSRWNuguni1Bm5sMqARIm2pZAs1N8TUxobM4lD2xlTHJlVby7+53UzjG6CqVBphlyx5aIokwQTMv+bDITmDOXEEsq0sLcSNqKaMrTplGwI3urL66RVr3luzbuvVxpXeRxFOINzuAQPrqEBd9AEHxgM4Rle4c2Rzovz7nwsWwtOPnMKf+B8/gBj7Y0l</latexit><latexit sha1_base64="VLV1WfLffWbJvU05bja4sMBfihk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LLaCp5IUQY8FLx4rmrbQhrLZbtqlm03YnQil9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5YSqFQdf9dgobm1vbO8Xd0t7+weFR+fikZZJMM+6zRCa6E1LDpVDcR4GSd1LNaRxK3g7Ht3O//cS1EYl6xEnKg5gOlYgEo2ilh6pf7Zcrbs1dgKwTLycVyNHsl796g4RlMVfIJDWm67kpBlOqUTDJZ6VeZnhK2ZgOeddSRWNuguni1Bm5sMqARIm2pZAs1N8TUxobM4lD2xlTHJlVby7+53UzjG6CqVBphlyx5aIokwQTMv+bDITmDOXEEsq0sLcSNqKaMrTplGwI3urL66RVr3luzbuvVxpXeRxFOINzuAQPrqEBd9AEHxgM4Rle4c2Rzovz7nwsWwtOPnMKf+B8/gBj7Y0l</latexit><latexit sha1_base64="VLV1WfLffWbJvU05bja4sMBfihk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LLaCp5IUQY8FLx4rmrbQhrLZbtqlm03YnQil9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5YSqFQdf9dgobm1vbO8Xd0t7+weFR+fikZZJMM+6zRCa6E1LDpVDcR4GSd1LNaRxK3g7Ht3O//cS1EYl6xEnKg5gOlYgEo2ilh6pf7Zcrbs1dgKwTLycVyNHsl796g4RlMVfIJDWm67kpBlOqUTDJZ6VeZnhK2ZgOeddSRWNuguni1Bm5sMqARIm2pZAs1N8TUxobM4lD2xlTHJlVby7+53UzjG6CqVBphlyx5aIokwQTMv+bDITmDOXEEsq0sLcSNqKaMrTplGwI3urL66RVr3luzbuvVxpXeRxFOINzuAQPrqEBd9AEHxgM4Rle4c2Rzovz7nwsWwtOPnMKf+B8/gBj7Y0l</latexit><latexit sha1_base64="VLV1WfLffWbJvU05bja4sMBfihk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LLaCp5IUQY8FLx4rmrbQhrLZbtqlm03YnQil9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5YSqFQdf9dgobm1vbO8Xd0t7+weFR+fikZZJMM+6zRCa6E1LDpVDcR4GSd1LNaRxK3g7Ht3O//cS1EYl6xEnKg5gOlYgEo2ilh6pf7Zcrbs1dgKwTLycVyNHsl796g4RlMVfIJDWm67kpBlOqUTDJZ6VeZnhK2ZgOeddSRWNuguni1Bm5sMqARIm2pZAs1N8TUxobM4lD2xlTHJlVby7+53UzjG6CqVBphlyx5aIokwQTMv+bDITmDOXEEsq0sLcSNqKaMrTplGwI3urL66RVr3luzbuvVxpXeRxFOINzuAQPrqEBd9AEHxgM4Rle4c2Rzovz7nwsWwtOPnMKf+B8/gBj7Y0l</latexit>

U 0
<latexit sha1_base64="q+vMVJwZH0cYNaJIsAphCdipl9M=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LLaip5IUQY8FLx4rmLbQhrLZbtqlu5uwuxFK6F/w4kERr/4hb/4bN20O2vpg4PHeDDPzwoQzbVz32yltbG5t75R3K3v7B4dH1eOTjo5TRahPYh6rXog15UxS3zDDaS9RFIuQ0244vcv97hNVmsXy0cwSGgg8lixiBJtcqvuX9WG15jbcBdA68QpSgwLtYfVrMIpJKqg0hGOt+56bmCDDyjDC6bwySDVNMJniMe1bKrGgOsgWt87RhVVGKIqVLWnQQv09kWGh9UyEtlNgM9GrXi7+5/VTE90GGZNJaqgky0VRypGJUf44GjFFieEzSzBRzN6KyAQrTIyNp2JD8FZfXiedZsNzG95Ds9a6LuIowxmcwxV4cAMtuIc2+EBgAs/wCm+OcF6cd+dj2VpyiplT+APn8wfEkY1W</latexit><latexit sha1_base64="q+vMVJwZH0cYNaJIsAphCdipl9M=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LLaip5IUQY8FLx4rmLbQhrLZbtqlu5uwuxFK6F/w4kERr/4hb/4bN20O2vpg4PHeDDPzwoQzbVz32yltbG5t75R3K3v7B4dH1eOTjo5TRahPYh6rXog15UxS3zDDaS9RFIuQ0244vcv97hNVmsXy0cwSGgg8lixiBJtcqvuX9WG15jbcBdA68QpSgwLtYfVrMIpJKqg0hGOt+56bmCDDyjDC6bwySDVNMJniMe1bKrGgOsgWt87RhVVGKIqVLWnQQv09kWGh9UyEtlNgM9GrXi7+5/VTE90GGZNJaqgky0VRypGJUf44GjFFieEzSzBRzN6KyAQrTIyNp2JD8FZfXiedZsNzG95Ds9a6LuIowxmcwxV4cAMtuIc2+EBgAs/wCm+OcF6cd+dj2VpyiplT+APn8wfEkY1W</latexit><latexit sha1_base64="q+vMVJwZH0cYNaJIsAphCdipl9M=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LLaip5IUQY8FLx4rmLbQhrLZbtqlu5uwuxFK6F/w4kERr/4hb/4bN20O2vpg4PHeDDPzwoQzbVz32yltbG5t75R3K3v7B4dH1eOTjo5TRahPYh6rXog15UxS3zDDaS9RFIuQ0244vcv97hNVmsXy0cwSGgg8lixiBJtcqvuX9WG15jbcBdA68QpSgwLtYfVrMIpJKqg0hGOt+56bmCDDyjDC6bwySDVNMJniMe1bKrGgOsgWt87RhVVGKIqVLWnQQv09kWGh9UyEtlNgM9GrXi7+5/VTE90GGZNJaqgky0VRypGJUf44GjFFieEzSzBRzN6KyAQrTIyNp2JD8FZfXiedZsNzG95Ds9a6LuIowxmcwxV4cAMtuIc2+EBgAs/wCm+OcF6cd+dj2VpyiplT+APn8wfEkY1W</latexit><latexit sha1_base64="q+vMVJwZH0cYNaJIsAphCdipl9M=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LLaip5IUQY8FLx4rmLbQhrLZbtqlu5uwuxFK6F/w4kERr/4hb/4bN20O2vpg4PHeDDPzwoQzbVz32yltbG5t75R3K3v7B4dH1eOTjo5TRahPYh6rXog15UxS3zDDaS9RFIuQ0244vcv97hNVmsXy0cwSGgg8lixiBJtcqvuX9WG15jbcBdA68QpSgwLtYfVrMIpJKqg0hGOt+56bmCDDyjDC6bwySDVNMJniMe1bKrGgOsgWt87RhVVGKIqVLWnQQv09kWGh9UyEtlNgM9GrXi7+5/VTE90GGZNJaqgky0VRypGJUf44GjFFieEzSzBRzN6KyAQrTIyNp2JD8FZfXiedZsNzG95Ds9a6LuIowxmcwxV4cAMtuIc2+EBgAs/wCm+OcF6cd+dj2VpyiplT+APn8wfEkY1W</latexit>

U 00
<latexit sha1_base64="HJ4GtWAHmzLHrrfwch3GR/67Q+M=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLZSTyUpgh4LXjxWMLXQhrLZTtqlm03Y3Qil9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YSq4Nq777RQ2Nre2d4q7pb39g8Oj8vFJWyeZYuizRCSqE1KNgkv0DTcCO6lCGocCH8Px7dx/fEKleSIfzCTFIKZDySPOqLGSX/VrtWq/XHHr7gJknXg5qUCOVr/81RskLItRGiao1l3PTU0wpcpwJnBW6mUaU8rGdIhdSyWNUQfTxbEzcmGVAYkSZUsaslB/T0xprPUkDm1nTM1Ir3pz8T+vm5noJphymWYGJVsuijJBTELmn5MBV8iMmFhCmeL2VsJGVFFmbD4lG4K3+vI6aTfqnlv37huV5lUeRxHO4BwuwYNraMIdtMAHBhye4RXeHOm8OO/Ox7K14OQzp/AHzucPJW2Nhw==</latexit><latexit sha1_base64="HJ4GtWAHmzLHrrfwch3GR/67Q+M=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLZSTyUpgh4LXjxWMLXQhrLZTtqlm03Y3Qil9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YSq4Nq777RQ2Nre2d4q7pb39g8Oj8vFJWyeZYuizRCSqE1KNgkv0DTcCO6lCGocCH8Px7dx/fEKleSIfzCTFIKZDySPOqLGSX/VrtWq/XHHr7gJknXg5qUCOVr/81RskLItRGiao1l3PTU0wpcpwJnBW6mUaU8rGdIhdSyWNUQfTxbEzcmGVAYkSZUsaslB/T0xprPUkDm1nTM1Ir3pz8T+vm5noJphymWYGJVsuijJBTELmn5MBV8iMmFhCmeL2VsJGVFFmbD4lG4K3+vI6aTfqnlv37huV5lUeRxHO4BwuwYNraMIdtMAHBhye4RXeHOm8OO/Ox7K14OQzp/AHzucPJW2Nhw==</latexit><latexit sha1_base64="HJ4GtWAHmzLHrrfwch3GR/67Q+M=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLZSTyUpgh4LXjxWMLXQhrLZTtqlm03Y3Qil9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YSq4Nq777RQ2Nre2d4q7pb39g8Oj8vFJWyeZYuizRCSqE1KNgkv0DTcCO6lCGocCH8Px7dx/fEKleSIfzCTFIKZDySPOqLGSX/VrtWq/XHHr7gJknXg5qUCOVr/81RskLItRGiao1l3PTU0wpcpwJnBW6mUaU8rGdIhdSyWNUQfTxbEzcmGVAYkSZUsaslB/T0xprPUkDm1nTM1Ir3pz8T+vm5noJphymWYGJVsuijJBTELmn5MBV8iMmFhCmeL2VsJGVFFmbD4lG4K3+vI6aTfqnlv37huV5lUeRxHO4BwuwYNraMIdtMAHBhye4RXeHOm8OO/Ox7K14OQzp/AHzucPJW2Nhw==</latexit><latexit sha1_base64="HJ4GtWAHmzLHrrfwch3GR/67Q+M=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLZSTyUpgh4LXjxWMLXQhrLZTtqlm03Y3Qil9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YSq4Nq777RQ2Nre2d4q7pb39g8Oj8vFJWyeZYuizRCSqE1KNgkv0DTcCO6lCGocCH8Px7dx/fEKleSIfzCTFIKZDySPOqLGSX/VrtWq/XHHr7gJknXg5qUCOVr/81RskLItRGiao1l3PTU0wpcpwJnBW6mUaU8rGdIhdSyWNUQfTxbEzcmGVAYkSZUsaslB/T0xprPUkDm1nTM1Ir3pz8T+vm5noJphymWYGJVsuijJBTELmn5MBV8iMmFhCmeL2VsJGVFFmbD4lG4K3+vI6aTfqnlv37huV5lUeRxHO4BwuwYNraMIdtMAHBhye4RXeHOm8OO/Ox7K14OQzp/AHzucPJW2Nhw==</latexit>

a

b

c

d e

A

B

C

D E

Fig. 3. (A)-(B) Splitting U into U ′ and U ′′. (C)-(E) First three iterations of a
DFS multi-pass BIC starting with two initial intervals in (A).

The above multi-pass AIC/BIC algorithm has three variations,
depending on how to choose an unprocessed interval U ∈
U at the beginning of each iteration. The Random strategy
chooses an interval proportionally to its length, that is, a longer
interval has a higher probability to be chosen. The DFS (depth-
first search) strategy starts at the first (and left-most) interval
for each iteration, and explores as deep as possible before
backtracking and moving to the second interval and so on
(see Fig. 3C-E for an example). The BFS (breadth-first search)
strategy starts at the first interval and explores all intervals at
the present depth. The interval with the largest change in AIC
or BIC is split permanently. This process is then repeated until
convergence.

V. RESULTS

We apply our multi-pass AIC/BIC algorithm to several
synthetic and real-world datasets. Using multi-pass AIC/BIC,
we ask the following question: can we use information criteria
to adaptively refine the cover of a mapper graph to better
capture its underlying structure? The answer is yes.

A key takeaway is that our framework offers a practical
and automatic way to adaptively adjust the cover for an initial

mapper graph, thus obtaining a refined mapper graph that better
captures the structure of its underlying dataset.

A. 2D Concentric Circles

Our first dataset consists of 2000 points sampled from two
concentric circles with a filter function, the sum of x and y
coordinates (Fig. 4A). Therefore the hand-tuned mapper graph
(regarded as the “ground truth”) is expected to also contain
two circles (Fig. 4B).

D. AIC BFS

C. InitializationA. Point Cloud B. Hand-Tuned

E. AIC DFS F. AIC Random

G. BIC BFS H. BIC DFS I. BIC Random

Fig. 4. Circles dataset. For mapper graphs, p = 20%. For DBSCAN, ε = 0.1,
and minPts = 5. (A) point cloud visualized as a scatter plot. (B) Hand-tuned
mapper graph (l = 6). (C) Initial mapper graph (l = 2). (D-F) AIC results
using BFS, DFS and Random strategies respectively. (G-I) BIC results using
BFS, DFS and random strategies respectively. Nodes are colored by the (0-1
normalized) average value of the filter function (sum of x and y coordinates).

As illustrated in Fig. 4C, the initial mapper graph with l = 2
uniform intervals is too coarse to capture the circular structures
of the underlying data. We then apply multi-pass AIC/BIC
to the initial mapper graph. Fig. 4D-F are multi-pass AIC
results using BFS, DFS and Random strategies respectively.
We set δ = 0% and t = 50. It can be seen that both BFS and
Random strategies recover the two circles, and the DFS strategy
recovers the outside circle only. Fig. 4G-I are multi-pass BIC
results using BFS, DFS, and Random strategies, respectively.
Using the BFS strategy, both circles are recovered, and the
DFS and Random strategies recover the outside circle. This
example indicates that there are fine differences among the three
strategies of multi-pass AIC/BIC, and the effectiveness of the
results are likely initialization-dependent and data-dependent.

B. 3D Human Dataset

We explore a second point cloud dataset from [51], which
is a 3D human shape, see Fig. 5A. The dataset consists of
4706 points. The hand-tuned mapper graph (Fig. 5B) with a
height (filter) function is expected to capture the head (the red

branch), as well as the arms (the two green branches) and legs
(the two blue branches) of the human.

We apply multi-pass AIC/BIC (δ = 0%, t = 50) to a very
simple initial mapper graph. The initial mapper graph Fig. 5C
with l = 2 uniform intervals does not capture any expected
bodily features. The multi-pass AIC Random result in Fig. 5D
is able to capture the head feature; however, the arms and legs
are not clearly separated. On the other hand, the multi-pass
BIC Random result in Fig. 5E is able to recover the head,
arms, and legs of the human as expected.

C. InitializationA. Point Cloud B. Hand-Tuned

D. AIC Random E. BIC Random

Head

Leg

Leg

ArmArm

Fig. 5. Human dataset. For mapper graphs, p = 40%. For DBSCAN, ε = 0.1,
and minPts = 5. (A) Point cloud visualized as a scatter plot. (B) Hand-tuned
mapper graph (l = 30). (C) Initial mapper graph (l = 2). (D) AIC Random
(resulting in l = 5). (E) BIC Random (resulting in l = 11). Nodes are colored
by the (0-1 normalized) average value of the height function with a rainbow
colormap.

We show the distributions of cover elements in Fig. 6 before
and after multi-pass AIC Random (left) and multi-pass BIC
Random (right) strategies. The refined mapper graphs contain
5 (AIC) and 11 (BIC) uneven intervals, respectively.

Fig. 6. Human dataset. Distributions of cover elements before and after
multi-pass AIC Random (left) and multi-pass BIC Random (right), starting
with l = 2 initial intervals.

C. 3D Horse Dataset

Our third dataset is a point cloud sampled from a 3D horse
shape with 8430 points (Fig. 7). The filter function is the
distance to the tail. The hand-tuned mapper graph captures
different parts of the animal and their connectivities: the head,
four legs, and a tail.

Leg

Leg

Leg Leg

Tail

Head

C. Initialization

A. Point Cloud B. Hand-Tuned

D. AIC Random E. BIC Random

Fig. 7. Horse dataset. For mapper graphs, p = 20%. For DBSCAN, ε = 0.1,
and minPts = 5. (A) Point cloud visualized as a scatter plot. (B) Hand-tuned
mapper graph (l = 25). (C) Initial mapper graph (l = 3). (D) AIC Random
(resulting in l = 8) (E) BIC Random (resulting in l = 8). Nodes are colored
by the (0-1 normalized) average value of the filter function (distance to the
tail) with a rainbow colormap.

We show the distributions of cover elements in Fig. 8 before
and after multi-pass AIC Random (left) and BIC Random (right)
strategies. The refined mapper graphs both contain (identical)
8 intervals, respectively.

Fig. 8. Horse dataset. Distributions of cover elements before and after multi-
pass AIC Random (left) and multi-pass BIC Random (right), starting with
l = 3 initial intervals.

D. 3D Ant Dataset

Our next dataset is the point cloud of a 3D ant shape
from [51]. The dataset consists of 6370 points. The filter
function is the distance to the tip of its abdomen (Fig. 9A).

In the hand-tuned mapper graph, Fig. 9B, there are notable
branches for the two antennas on the head, six legs, and one
abdomen of the ant. The abdomen of the ant is represented
by the blue branch. The refined mapper graphs using multi-
pass AIC/BIC Random strategies are shown in Fig. 9D-E,

C. InitializationA. Point Cloud B. Hand-Tuned

D. AIC Random E. BIC Random

antenna Leg

antenna
abdomen

Fig. 9. Ant dataset. For mapper graphs, p = 40%. For DBSCAN, ε = 0.025,
and minPts = 5. (A) Point cloud visualized as a scatter plot. (B) Hand-tuned
mapper graph (l = 20). (C) Initial mapper graph (l = 2). (D) AIC Random
(resulting in l = 14) (E) BIC Random (resulting in l = 12). Nodes are colored
by the (0-1 normalized) average value of the filter function with a rainbow
colormap.

respectively. The BIC Random strategy produces a mapper
graph that resembles that of the hand-tuned version; while the
AIC Random strategy over-segments the data (i.e., some parts
of the antenna appear to break off from the main body).

We show the distributions of cover elements in Fig. 8 before
and after multi-pass AIC Random (left) and BIC Random
(right) strategies, resulting in 14 and 12 intervals, respectively.

Fig. 10. Ant dataset. Distributions of cover elements before and after multi-
pass AIC Random (left) and multi-pass BIC Random (right), starting with
l = 2 initial intervals.

E. 5D Klein Bottle Dataset

Our fifth dataset is a point cloud sample of the Klein bottle
embedded in R5 with 15876 points. The dataset is obtained
from the Gudhi library [14] 2, see Fig. 11A. The filter function
is the first coordinate of the point cloud. The hand-tuned
mapper graph (Fig. 11B) is expected to capture the loop shown
in Fig. 11A. We apply multi-pass AIC/BIC BFS (δ = 0%,
t = 50) strategy to an initial mapper graph with l = 4 uniform

2https://github.com/GUDHI/gudhi-devel

https://github.com/GUDHI/gudhi-devel

C. InitializationA. Point Cloud B. Hand-Tuned

D. AIC BFS E. BIC BFS

Fig. 11. Klein bottle dataset. For mapper graphs, p = 40%. For DBSCAN,
ε = 0.21, and minPts = 5. (A) Point cloud visualized with a scatter plot
using dimension 1, 2, and 3. (B) Hand-tuned mapper graph (l = 19). (C)
Initial mapper graph (l = 4). (D) Multi-pass AIC BFS resulting in l = 6.
(E) Multi-pass BIC BFS resulting in l = 6. Nodes are colored by the (0-1
normalized) average value of the filter function (the first coordinate) with a
rainbow colormap.

intervals. As shown in Fig. 11C, using 4 uniform intervals
does not capture the loop, whereas the multi-pass AIC BFS
and BIC BFS both capture the loop.

We show the distributions of cover elements in Fig. 12 before
and after multi-pass AIC BFS (left) and multi-pass BIC BFS
(right) strategies. Both of the refined mapper graphs contain
(the same) 6 uneven intervals.

Fig. 12. Klein bottle dataset. Distributions of cover elements before and after
multi-pass AIC BFS (left) and multi-pass BIC BFS (right), starting with l = 4
initial intervals.

F. 7D COVID Dataset

The first real-world dataset [12] contains 1431 daily records
of COVID-19 cases in nine states from April 12, 2020 to
September 18, 20203. These nine states (AZ, CA, FL, GA,
IL, NC, NJ, NY, TX) are chosen to be the ones with the
largest number of confirmed cases. For each record, the dataset
contains seven statistical measures: number of confirmed cases,
death cases, active cases, people tested, testing rate, mortality
rate, and incidence rate (i.e., the number of cases per 100K
persons). The hand-tuned mapper graph of this dataset has been
studied previously [12] (Fig. 13A), which helps to distinguish
states with different epidemic trends. Specifically, two main
branches stand out: Arizona and Georgia, Florida and Texas,

3https://github.com/CSSEGISandData/COVID-19/

which are two pairs of states sharing similar epidemic trends.
Each pair emerges from the main branch and bifurcates, where
the branching points (two black arrows in Fig. 13A) indicate
when their trends start to diverge.

D. BIC RandomC. AIC Random

A. Hand-Tuned B. Initialization
AZ

GA
TX

FL

Fig. 13. COVID dataset. For mapper graphs, p = 50%, filter function: the
number of recorded days. For DBSCAN, ε = 0.15, and minPts = 5. (A) Hand-
tuned mapper graph (l = 20). (B) Initial mapper graph (l = 2). (C) Multi-pass
AIC Random (l = 26). (D) Multi-pass BIC Random (l = 24). Nodes are colored
by pie chart of states composition.

While the initial mapper graph with l = 2 uniform intervals
shows some branching structure (Fig. 13B), it is far from
the hand-tuned mapper graph as most states remain mixed.
Applying multi-pass AIC/BIC (δ = 1%, t = 100) to the initial
mapper graph results in adaptive covers whose corresponding
refined mapper graphs look very similar to the hand-tuned
result (Fig. 13C-D). In particular, the refined mapper graph
using the AIC Random strategy recovers the full branching
and bifurcation of Arizona and Georgia, as well as Florida and
Texas (see black arrows in Fig. 13C). Results from BFS and
DFS strategies are fairly similar thus omitted here.

We also show the distributions of cover elements in Fig. 14
before and after multi-pass AIC Random (left) and multi-pass
BIC Random (right) strategies. The refined mapper graphs
contain 26 (AIC) and 24 (BIC) uneven intervals, respectively.

Fig. 14. COVID dataset. Distributions of cover elements before and after
multi-pass AIC Random (left) and multi-pass BIC Random (right), starting
with l = 2 initial intervals.

https://github.com/CSSEGISandData/COVID-19/

G. 512D CIFAR-10 Dataset

Our second real-world dataset is created by passing 50K in-
put images from CIFAR-10 [52] to a ResNet-18 neural network,
and collecting spatial activation vectors (i.e., combinations of
neuron firings) from the last layer of the network. The images
are from 10 image classes (ship, truck, automobile, horse,
deer, bird, dog, cat, fog, and airplane), and they give rise to
activation vectors in 512 dimensions. This dataset has been
studied previously [8], [12] using mapper graphs. The filter
function is the L2 norm of each activation vector. We use
this dataset to show that our adaptive cover strategy recovers
prior findings; for a dedicated study on applying the mapper
construction to ResNet-18, we refer the reader to Rathore et
al. [8].

As illustrated in Fig. 15A, a hand-tuned mapper graph [12]
is shown with l = 40 uniform intervals and p = 20% overlap.
Nodes are colored by the class ID, and a pie chart represents a
set of activation vectors with mixed classes. This mapper graph
was shown to not only cluster images from each class into a
separate branch, but also highlight relationships among closely
related classes [12]. For instance, the “horse” and “deer” images
first jointly emerge from the main branch and then bifurcate
into their own branches, indicating similarities between these
two classes of images. The “automobile” and “truck” images
behave in a similar fashion. The hand-tuned mapper graph
of Fig. 15A, regarded as the “ground truth”, captures these
class bifurcations quite well (see the two black arrows).

D. BIC RandomC. AIC Random

A. Hand-Tuned B. Initialization

Fig. 15. CIFAR-10 dataset. For mapper graphs, p = 20%, filter function: L2-
norm. For DBSCAN, ε = 8.71, and minPts = 5. (A) Hand-tuned mapper graph
(l = 70). (B) Initial mapper graph (l = 2). (C) AIC Random (l = 42). (D) BIC
Random (l = 40). Nodes are colored by pie chart of categories composition.

As illustrated in Fig. 15B, the initial mapper graph with l = 2
uniform intervals is a star-shaped graph, which is too coarse to
show any detailed branching structures. Applying multi-pass
AIC/BIC to this initial mapper graph (δ = 1%, t = 100) is able

to uncover the main branching structures from the hand-tuned
mapper graph. In particular, multi-pass AIC Random is able
to recover both horse-deer and truck-automobile bifurcations
(see black arrows in Fig. 15C).

Fig. 16 shows the cover elements before and after running
multi-pass AIC Random and BIC Random respectively, w.r.t.
the initial mapper graph (at l = 2). AIC Random produces
l = 42 intervals and BIC Random produces l = 40 intervals. It
is clear that multi-pass AIC/BIC adaptively refines the cover
for the initial mapper graph to capture meaningful structure of
the data.

Fig. 16. CIFAR-10 dataset. Distributions of cover elements before and after
multi-pass AIC Random (left) and multi-pass BIC Random (right), starting
with l = 2 initial intervals.

VI. COMPARISONS WITH STATE-OF-THE-ART

In this section, we compare our results with those obtained
by two state-of-the-art tools that implement mapper graphs
with different cover selection strategies.

A. Comparison with Gudhi

First, we compare our results with the Gudhi library [14],
which includes the automatic parameter tuning approach
proposed by Carrière et al. [15] (referred to as statistical
cover here).

Circles Human Horse

Ant Klein bottle

Fig. 17. Applying statistical cover strategy to five synthetic datasets: circles
(l = 50), human (l = 58), horse (l = 10), ant (l = 40), and Klein bottle (l = 46)
datasets.

We begin with the synthetic datasets. As shown in Fig. 17,
our adaptive cover strategy and the statistical cover strategy are
both able to recover the hand-tuned mapper graphs. The main

difference between these two approaches is that our method
is able to recover the hand-tuned mapper graph by refining
some very coarse initial covers. In addition, the statistical cover
strategy typically produces a larger number of (even-length)
intervals in comparison to our approach.

COVID CIFAR-10

COVID

CIFAR-10

Fig. 18. Applying statistical cover strategy to two real-world datasets: COVID
(l = 5) and CIFAR-10 (l = 3) datasets.

We show the results associated with the two real-world
datasets in Fig. 18. In both cases, statistical cover strategy is
not able to recover the hand-tuned mapper graphs in comparison
with our strategy, after some extensive testing.

We hypothesize that this is because the independent sampling
condition of the input point cloud is not satisfied following
the framework in [15]. In the Covid dataset, points are not
independently distributed. Points sampled from later recording
dates tend to have more number of confirmed cases, death cases,
people tested, etc. For the CIFAR-10 dataset, although the points
(activations) are supposed to be independently distributed (since
each activation is randomly sampled from a single image), they
are not likely to come from a uniform probability distribution.
Therefore, statistical cover strategy performs poorly on these
two datasets.

B. Comparison with giotto-tda
Second, we compare our results with the balanced cover

strategy implemented within the giotto-tda library. We run the
balanced cover strategy using the final number of intervals after
a multi-pass BIC strategy. In particular, we set l = 6,11,8,12,6
for the synthetic datasets, circles, human, horse, ant, and Klein
bottle datasets, respectively, see Fig. 19.

We set l to be 24 and 40 for the real-world COVID and
CIFAR-10 datasets, respectively, see Fig. 20. The balanced
cover strategy recovers the branching structures in the COVID
dataset reasonably well; while it fails to recover the branching
structures in the CIFAR-10 dataset.

In summary, the main difference between our adaptive cover
strategy and the balanced cover strategy is that the latter does
not perform any automatic parameter tuning. In other words,
choosing the appropriate number of intervals relies entirely on
the end user.

C. Runtime Comparison
Finally, we report the runtime of our adaptive cover strategy

in comparison with the statistical cover strategy in Gudhi and
the balanced cover strategy of giotto-tda.

Circles Human Horse

Ant

Circles Human Horse

Klein bottle

Klein bottleAnt

Fig. 19. Applying balanced cover strategy to synthetic datasets.

CIFAR-10

CIFAR-10

COVID

COVID

Fig. 20. Applying balanced cover strategy to COVID and CIFAR-10 datasets.

For the CIFAR-10 dataset, all three cover strategies are
applied with a 5K subsample of the dataset. The rest of the
datasets are run as is with the same parameters. We use a 2.3
GHz quad-core i7 laptop with 32 GB of RAM. The reported
times are the average over 5 trials each. All times are reported
in seconds.

In comparison with the statistical cover strategy, for the

TABLE I
RUNTIME (IN SECONDS) AND SIZE OF EACH DATASET.

data size dim adaptive
cover

statistical
cover

balanced
cover

circles 2000 2 4.02 2.38 0.05
Human 4706 3 4.99 2.74 0.25
horse 8430 3 3.66 10.35 0.88
ant 6370 3 5.92 5.51 0.50
Klein bottle 15876 5 6.33 25.48 2.75
COVID 1431 7 4.63 0.43 0.17
CIFAR-10 5K sample 512 22.21 46.97 0.53

circles and human datasets, our approach is slower. However,
for the Klein bottle and CIFAR-10 (5K sample), our approach is
significantly faster. This is likely because that we do not have to
search a large parameter space in comparison with the statical
cover strategy. On the COVID dataset, it is interesting to note
that the statistical cover finishes significantly faster than our
approach but at the cost of poorer result quality, as explained
in prior sections. Moreover, it is unsurprising that balanced
cover is significantly faster than either adaptive or statistical
cover strategies since it does not perform any parameter tuning.
Our experiments and prior work by Zhou et al. [12] indicate
that the most time consuming step in computing the mapper
graph is the clustering step with DBSCAN, which is performed
many times in our adaptive cover strategy. This to its slower
runtime in comparison with the balanced cover strategy.

VII. CONCLUSION

Inspired by X-means clustering, we generate adaptive covers
for mapper graphs using information criteria such as AIC and
BIC. To the best of our knowledge, our approach, for the first
time, investigates practical and automatic parameter selection
for mapper graphs using information theory. We demonstrate
the utility of our framework with several datasets in obtaining
refined mapper graphs that better capture the structures of the
underlying data. There are a few points for discussion.
Evaluation. Our current evaluation is based on visual inspec-
tion. Comparing mapper graphs via distance measures such
as bottleneck and Wasserstein distances between persistence
diagrams is an immediate direction to explore. Carrière
et al. [15] used the bottleneck distance between extended
persistence diagram to assess if a mapper graph is a good
approximation of the Reeb graph. Additionally, we could also
study class consistencies in the case where labels are known
for real-world datasets following [24], this is left for future
work.
From 1D to 2D covers. Our experiments focus on 1D cover. It
would be interesting to explore the extension of our framework
for 2D or higher-dimensional covers. We believe this is feasible,
albeit certain technical details in converting a mapper graph
into hard clustering in higher dimensions.
Computational complexity. There has been a number of
recent progress in scalable computation of mapper graphs. Both
giotto-tda and Mapper Interactive are equipped with on-the-fly
computation of mapper graphs. In particular, the command
line API of Mapper Interactive computes mapper graphs for 1
million points of 256 dimensions in 3 minutes, and its GPU
implementation provides an additional 2 times acceleration [12].
Our implementation is included as an extension to the Mapper
Interactive.

X-means algorithm was proposed to address both the scalabil-
ity and the parameter selection issues of the k-means algorithm
for large datasets [53]. As shown in Sect. V-G, our framework
is able to refine the mapper graph of a high-dimensional point
cloud dataset (50K points in 512D). Further experiments are
needed to explore the scalability of our approach for datasets
of increased size and dimension. Similar to k-means [54] and

X-means clusterings, analyzing the computational complexity
and the quality of approximation of our multi-pass AIC/BIC
algorithm is challenging and remains an open problem.

ACKNOWLEDGEMENT

This work was partially supported by NSF IIS-1910733,
DBI-1661375, and DOE DE-SC0021015.

APPENDIX

We provide detailed derivations of BIC and AIC from the
hard clustering of a point cloud; our derivations are based on
the original derivation of Pelleg and Moore [24] with minor
correction based on multivariate Gaussian distribution [30].

Let X = {x1, · · · ,xn} be a point cloud of n points in d
dimensions, |X| = n. For a fixed hard clustering model M,
suppose X is partitioned into k clusters assumed to be spherical
Gaussians. Let X(i) denote the cluster whose centroid µ(i)
is the closest to the point xi ∈ X. The maximum likelihood
estimator for the variance under the identical spherical Gaussian
assumption is [31] (a correction from [24]),

σ̂
2 =

1
|X| ·d

n

∑
i=1
‖xi−µ(i)‖2.

The point probability of xi is [30],

P̂(xi) =
|X(i)|
|X|
· 1
(
√

2πσ̂)d
· exp

(
− 1

2σ̂2 ‖xi−µ(i)‖2
)
.

The joint probability on the data is modeled as ∏
n
i=1 P̂(xi),

taking its log-likelihood, we obtain

l̂(M;X) = log

(
n

∏
i=1

P̂(xi)

)
=

n

∑
i=1

log(P̂(xi))

=
n

∑
i=1

[
log
|X(i)|
|X|
−d · log(

√
2πσ̂)− 1

2σ̂2 ‖xi−µ(i)‖2
]

=
n

∑
i=1

[
log
|X(i)|
|X|
−d · log(

√
2πσ̂)

]
− 1

2σ̂2

n

∑
i=1
‖xi−µ(i)‖2

=
n

∑
i=1

[
log
|X(i)|
|X|
−d · log(

√
2πσ̂)

]
− |X| ·d

2
.

Recall that BIC is defined as

BIC(M;X) = l̂(M;X)− θ

2
log |X|,

where θ is the number of free parameters estimated by the
underlying statistical model M. It is simply the sum of k−1
cluster probabilities, d ·k centroid coordinates, and one variance
estimation [24]. That is, θ = k−1+d · k+1 = (d +1)k.

REFERENCES

[1] N. Otter, M. A. Porter, U. Tillmann, P. Grindrod, and H. A. Harrington,
“A roadmap for the computation of persistent homology,” EPJ Data
Science, vol. 6, no. 1, 2017.

[2] L. Wasserman, “Topological data analysis,” Annual Review of Statistics
and Its Application, vol. 5, no. 1, pp. 501–532, 2018.

[3] G. Singh, F. Memoli, and G. Carlsson, “Topological methods for the
analysis of high dimensional data sets and 3D object recognition,”
Eurographics symposium on point-based graphics, 2007.

[4] M. Hajij, P. Rosen, and B. Wang, “Mapper on graphs for network
visualization,” arXiv preprint arXiv:1804.11242, 2019.

[5] J. C. Mathews, S. Nadeem, A. J. Levine, M. Pouryahya, J. O. Deasy,
and A. Tannenbaum, “Robust and interpretable PAM50 reclassification
exhibits survival advantage for myoepithelial and immune phenotypes,”
npj Breast Cancer, vol. 5, no. 1, p. 30, 2019.

[6] M. Nicolau, A. J. Levine, and G. Carlsson, “Topology based data analysis
identifies a subgroup of breast cancers with a unique mutational profile
and excellent survival,” Proceedings of the National Academy of Sciences,
vol. 108, no. 17, pp. 7265–7270, 2011.

[7] C. Geniesse, O. Sporns, G. Petri, and M. Saggar, “Generating dynamical
neuroimaging spatiotemporal representations (DyNeuSR) using topolog-
ical data analysis,” Network neuroscience, vol. 3, no. 3, pp. 763–778,
2019.

[8] A. Rathore, N. Chalapathi, S. Palande, and B. Wang, “TopoAct: Visually
exploring the shape of activations in deep learning,” Computer Graphics
Forum, vol. 40, no. 1, pp. 382–397, 2021.

[9] A. Patania, F. Vaccarino, and G. Petri, “Topological analysis of data,”
EPJ Data Science, vol. 6, no. 1, p. 7, 2017.

[10] H. J. van Veen, N. Saul, D. Eargle, and S. W. Mangham, “Kepler mapper:
A flexible python implementation of the mapper algorithm.” Journal of
Open Source Software, vol. 4, no. 42, p. 1315, 2019.

[11] G. Tauzin, U. Lupo, L. Tunstall, J. B. Pérez, M. Caorsi, A. Medina-
Mardones, A. Dassatti, and K. Hess, “giotto-tda: A topological data
analysis toolkit for machine learning and data exploration,” Journal of
Machine Learning Research, vol. 22, pp. 1–6, 2020.

[12] Y. Zhou, N. Chalapathi, A. Rathore, Y. Zhao, and B. Wang, “Mapper
interactive: A scalable, extendable, and interactive toolbox for the
visual exploration of high-dimensional data,” IEEE Pacific Visualization
Symposium, 2021.

[13] K. Walsh, M. A. Voineagu, F. Vafaee, and I. Voineagu, “TDAview: an
online visualization tool for topological data analysis,” Bioinformatics,
vol. 36, no. 18, pp. 4805–4809, 2020.

[14] C. Maria, J.-D. Boissonnat, M. Glisse, and M. Yvinec, “The GUDHI
library: simplicial complexes and persistent homology,” in International
congress on mathematical software. Springer, 2014, pp. 167–174.

[15] M. Carrière, B. Michel, and S. Oudot, “Statistical analysis and parameter
selection for mapper,” Journal of Machine Learning Research, vol. 19,
no. 12, pp. 1–39, 2018.

[16] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based
algorithm for discovering clusters in large spatial databases with noise,”
in Proceedings of the second international conference on knowledge
discovery and data mining. AAAI Press, 1996, pp. 226–231.

[17] S. Biasotti, D. Giorgi, M. Spagnuolo, and B. Falcidieno, “Reeb graphs
for shape analysis and applications,” Theoretical Computer Science, vol.
392, pp. 5–22, 2008.

[18] S. P. Lloyd, “Least squares quantization in PCM,” IEEE Transactions
on Information Theory, vol. 28, no. 2, pp. 129–137, 1982.

[19] D. Arthur and S. Vassilvitskii, “K-Means++: The advantages of careful
seeding,” Proceedings of the 18th annual ACM-SIAM symposium on
discrete algorithms, pp. 1027–1035, 2007.

[20] J. M. Phillips, Mathematical Foundations for Data Analysis, ser. Springer
Series in the Data Sciences. Springer-Verlag, 2021.

[21] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis,” Journal of Computational and Applied
Mathematics, vol. 20, pp. 53–65, 1987.

[22] D. T. Pham, S. S. Dimov, and C. D. Nguyen, “Selection of K in K-means
clustering,” Proceedings of the Institution of Mechanical Engineers, Part
C: Journal of Mechanical Engineering Science, vol. 219, no. 1, pp.
103–119, 2005.

[23] M. Mahajan, P. Nimbhorkar, and K. Varadarajan, “The planar k-means
problem is NP-hard,” Lecture Notes in Computer Science, vol. 5431, pp.
274–285, 2009.

[24] D. Pelleg and A. Moore, “X-means: Extending k-means with efficient es-
timation of the number of clusters,” Proceedings of the 17th international
conference on machine learning, pp. 727–734, 2000.

[25] S. Kullback and R. A. Leibler, “On information and sufficiency,” Annals
of Mathematical Statistics, vol. 22, no. 1, pp. 79–86, 1951.

[26] R. E. Kass and L. Wasserman, “A reference bayesian test for nested
hypotheses and its relationship to the schwarz criterion,” Journal of the
American Statistical Association, vol. 90, no. 431, pp. 928–934, 1995.

[27] G. Schwarz, “Estimating the dimension of a model,” The Annals of
Statistics, vol. 6, no. 2, pp. 461–464, 1978.

[28] H. Akaike, “A new look at the statistical model identification,” IEEE
Transactions on Automatic Control, vol. 19, no. 6, pp. 716–723, 1974.

[29] K. P. Burnham and D. R. Anderson, Model Selection and Multimodel
Inference, 2nd ed. Springer-Verlag, 2002.

[30] S. Prince, Computer Vision: Models, Learning, and Inference. Cambridge
University Press, 2012.

[31] B. Hancock, D. Frank, A. Foglia, and R. Yozzo, “Notes on Bayesian
information criterion calculation for x-means clustering,” https://github.
com/bobhancock/goxmeans/blob/master/doc/BIC notes.pdf, 2014.

[32] P. Y. Lum, G. Singh, A. Lehman, T. Ishkanov, M. Vejdemo-Johansson,
M. Alagappan, J. Carlsson, and G. Carlsson, “Extracting insights from
the shape of complex data using topology,” Scientific reports, vol. 3,
no. 1, pp. 1–8, 2013.

[33] A. Robles, M. Hajij, and P. Rosen, “The shape of an image: A study of
mapper on images,” International Joint Conference on Computer Vision,
Imaging and Computer Graphics Theory and Applications, 2018.

[34] M. Saggar, O. Sporns, J. Gonzalez-Castillo, P. A. Bandettini, G. Carlsson,
G. Glover, and A. L. Reiss, “Towards a new approach to reveal
dynamical organization of the brain using topological data analysis,”
Nature communications, vol. 9, no. 1, pp. 1–14, 2018.

[35] M. Kamruzzaman, A. Kalyanaraman, B. Krishnamoorthy, S. Hey, and
P. Schnable, “Hyppo-X: A scalable exploratory framework for analyzing
complex phenomics data,” IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 2019.

[36] Y. Zhou, M. Kamruzzaman, P. Schnable, B. Krishnamoorthy, A. Kalya-
naraman, and B. Wang, “Pheno-Mapper: an interactive toolbox for
the visual exploration of phenomics data,” Proceedings of the 12th
ACM Conference on Bioinformatics, Computational Biology, and Health
Informatics, pp. 1–10, 2021.

[37] T. K. Dey, F. Mémoli, and Y. Wang, “Topological analysis of nerves,
Reeb spaces, mappers, and multiscale mappers,” Proceedings of 33rd
International Symposium on Computational Geometry, vol. 77, no. 36,
pp. 1–16, 2017.

[38] M. Carriére and S. Oudot, “Structure and stability of the one-dimensional
mapper,” Foundations of Computational Mathematics, vol. 18, no. 6, pp.
1333–1396, 2018.

[39] Y. Zhou, N. Saul, I. Safarli, B. Krishnamoorthy, and B. Wang, “Stitch
fix for mapper and topological gains,” in Research in Computational
Topology 2, E. Gasparovic, V. Robins, and K. Turner, Eds. Springer
International Publishing, 2021.

[40] A. Babu, “Zigzag coarsenings, mapper stability and gene-network
analyses,” Ph.D. dissertation, Stanford University, 2013.

[41] E. Munch and B. Wang, “Convergence between categorical represen-
tations of Reeb space and mapper,” Proceedings of 32nd International
Symposium on Computational Geometry, vol. 51, pp. 53:1–53:16, 2016.

[42] U. Bauer, X. Ge, and Y. Wang, “Measuring distance between Reeb
graphs,” Proceedings of the 30th Annual Symposium on Computational
Geometry, pp. 464–474, 2014.

[43] U. Bauer, E. Munch, and Y. Wang, “Strong equivalence of the interleaving
and functional distortion metrics for Reeb graphs,” Proceedings of 31st
International Symposium on Computational Geometry, vol. 34, pp. 461–
475, 2015.

[44] U. Bauer, B. D. Fabio, and C. Landi, “An edit distance for Reeb
graphs,” in Eurographics Workshop on 3D Object Retrieval, A. Ferreira,
A. Giachetti, and D. Giorgi, Eds. The Eurographics Association, 2016.

[45] U. Bauer, C. Landi, and F. Memoli, “The Reeb graph edit distance is
universal,” Foundations of Computational Mathematics, 2020.

[46] V. De Silva, E. Munch, and A. Patel, “Categorified Reeb graphs,” Discrete
& Computational Geometry, vol. 55, no. 4, pp. 854–906, 2016.

[47] L. Yan, T. B. Masood, R. Sridharamurthy, F. Rasheed, V. Natarajan,
I. Hotz, and B. Wang, “Scalar field comparison with topological
descriptors: Properties and applications for scientific visualization,”
Computer Graphics Forum, vol. 40, no. 3, pp. 599–633, 2021.

[48] B. Bollen, E. Chambers, J. A. Levine, and E. Munch, “Reeb graph
metrics from the ground up,” arXiv preprint arXiv:2110.05631, 2021.

[49] G. Reeb, “Sur les points singuliers d’une forme de pfaff completement
intergrable ou d’une fonction numerique (on the singular points of a
complete integral pfaff form or of a numerical function),” Comptes
Rendus Acad. Science Paris, vol. 222, pp. 847–849, 1946.

[50] B. T. Fasy, F. Lecci, A. Rinaldo, L. Wasserman, S. Balakrishnan, and
A. Singh, “Confidence sets for persistence diagrams,” The Annals of
Statistics, vol. 42, no. 6, pp. 2301–2339, 2014.

https://github.com/bobhancock/goxmeans/blob/master/doc/BIC_notes.pdf
https://github.com/bobhancock/goxmeans/blob/master/doc/BIC_notes.pdf

[51] X. Chen, A. Golovinskiy, and T. Funkhouser, “A benchmark for 3D
mesh segmentation,” ACM Transactions on Graphics, vol. 28, no. 3, pp.
1–12, 2009.

[52] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” University of Toronto, Tech. Rep. TR-2009, 2009.

[53] M. Ahmed, R. Seraj, and S. M. S. Islam, “The k-means algorithm: A
comprehensive survey and performance evaluation,” Electronics, vol. 9,
no. 8, p. 1295, 2020.

[54] J. Blömer, C. Lammersen, M. Schmidt, and C. Sohler, “Theoretical
analysis of the k-means algorithm – a survey,” Algorithm Engineering.
Lecture Notes in Computer Science, vol. 9220, 2016.

	Introduction
	Technical Background
	Mapper Graphs
	X-means Clustering

	Related Work
	Method
	Computing AIC or BIC of a Mapper Graph
	Generating Adaptive Covers

	Results
	2D Concentric Circles
	3D Human Dataset
	3D Horse Dataset
	3D Ant Dataset
	5D Klein Bottle Dataset
	7D COVID Dataset
	512D CIFAR-10 Dataset

	Comparisons with State-of-the-Art
	Comparison with Gudhi
	Comparison with giotto-tda
	Runtime Comparison

	Conclusion
	Appendix
	References

