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1 This Issues Column!

This issue’s Open Problem Column is by Brittany Terese Fasy and Bei Wang and is on Open
Problems in Computational Topology; however, they also use acknowledged contributions from
others. They also include references for someone who wants to start learning about the area.

2 Request for Columns!

I invite any reader who has knowledge of some area to contact me and arrange to write a column
about open problems in that area. That area can be (1) broad or narrow or anywhere inbetween,
and (2) really important or really unimportant or anywhere inbetween.

Open Problems in Computational Topology
By Brittany Terese Fasy and Bei Wang

with contributions by members of the WinCompTop community

3 Computational Topology in a Nutshell

Computational topology lays the theoretical and algorithmic foundations for topological data anal-
ysis, an emerging area in exploratory data analysis and data mining. In a nutshell, computational
topology combines mathematical concepts from algebraic topology with computational techniques
in computer science to address the following question: What is the shape of data? 1 In general,
we assume that the data is a point cloud, that is a set of objects, or data points, with pairwise
distances defined between them. Sometimes, this point cloud is geometric (embedded in Rn), but
not necessarily. Given a point cloud, we ask: can we describe the structure of this data? How many
clusters are there? Do any (large) loops or holes exist? Can we reconstruct the underlying space
or infer its geometric and topological structures? With dynamic point clouds, we can ask, how the
structure changes with time.

For instance, the algebraic notion of homology captures the topological features of a space
in terms of its connectivity, treating its connected components, tunnels, voids and k-dimensional
notions of holes as zero-, one-, two-, and k-dimensional features. The point cloud extension in
topological data analysis, persistent homology [16], gives practical algorithms that infer such infor-
mation of the space from its point samples. The structure of the point cloud becomes apparent if
we replace the points with balls, and allow the radii of the balls to increase from zero to infinity;
we call this sequence a point cloud. We often think about the radii increasing linearly with time,
and note that the topology of the union of balls will only change a finite number of times. In

1In fact, one of the earliest conversations about persistent homology began when Herbert Edelsbrunner asked David
Letscher that exact question. While a ludicrous thing to ask at the time (of course, a point set has the topology
of a set of points: uninteresting), this question is why so many researchers today–both applied and theoretical–are
interested in computational topology. To emphasize this, Gunnar Carlsson often begins his public lectures with Data
has shape, and that shape matters.
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particular, we focus on important events when the balls merge with one another to form features
such as components (i.e., clusters) or holes. We track the appearance (birth), the disappearance
(death), and the lifetime (i.e., persistence) of topological features in the filtration via persistence
barcodes [18], or equivalently, persistence diagrams [14], which serve as topological descriptors of
the data.

In this paper, we present a sampling of the open problems in computational topology. For the
interested reader, we suggest [6, 18, 21] for a gentle introduction to computational topology, [15]
for algorithmic foundations, and [19] for a (free online) textbook with many examples.

4 Understanding Homotopy Types of Vietoris–Rips Complexes

The first collection of open problems was submitted by Henry Adams from Colorado State University.
Given a metric space X and a scale parameter r > 0, the Vietoris–Rips simplicial complex

VR(X; r) has X as its vertex set, and as its simplices the finite subsets of X of diameter less than r
(or alternatively, less than or equal to r). The intrinsic Čech simplicial complex Č(X; r) has X
as its vertex set, and as its simplices the finite subsets σ of X such that ∩x∈σB(x, r) 6= ∅, where
B(x, r) is the open (or alternatively, the closed) ball in X centered about x and of radius r.

Let M be a compact Riemannian manifold. If the scale parameter r is sufficiently small,
then a theorem of Jean-Claude Hausmann states that VR(M ; r) is homotopy equivalent to M [20,
Theorem 3.5]. Similarly, if r is sufficiently small so that the balls {B(x, r)}x∈M form a good cover
of M , then the Nerve Theorem [4] implies that Č(M ; r) is homotopy equivalent to M . Little is
known about the theory of Vietoris–Rips or intrinsic Čech complexes when scale r is large enough
so that Hausmann’s result or the Nerve Theorem don’t apply, even though these complexes arise
naturally in applications of persistent homology. Below are some open questions along these lines.

1. Let Sn be the n-dimensional sphere equipped with either the Euclidean or the geodesic met-
ric. What are the homotopy types of VR(Sn; r) and Č(Sn; r) for all r? When n = 1, the
simplicial complexes VR(S1; r) and Č(S1; r) obtain the homotopy types of S1, S3,S5,S7, . . .
as r increases [1]. However, for n ≥ 2, essentially nothing is known about the homotopy
types of VR(Sn; r) or Č(Sn; r), except that they obtain the homotopy type of Sn when r is
sufficiently small.

2. Let Tn = (S1)n be the n-dimensional torus equipped with the flat metric. What are the
homotopy types of VR(Tn; r) and Č(Tn; r) when r increases beyond sufficiently small scales?
To our knowledge there are no well-accepted conjectures, though the answer is known when
instead the L∞ metric is used ([1, Proposition 10.2]).

3. Questions (1) and (2) above can be asked not only for M = Sn or M = Tn, but for any
Riemannian manifold M .

4. If M is a compact connected Riemannian manifold, then is the homotopy connectivity of
VR(M ; r) (resp., Č(M ; r)) a non-decreasing function of r? Here, we define the homotopy
connectivity of VR(M ; r) to be the largest n such that homotopy group πk(VR(M ; r)) (resp.,
πk(Č(M ; r))) is trivial for all k ≤ n. See [20, Problem 3.12].

5. If X ⊆ R2 is a subset of the plane equipped with the Euclidean metric, then is VR(X; r)
homotopy equivalent to a wedge of spheres? It is known that the fundamental group of
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VR(X; r) is a free group [10], and [3, Theorem 6.3] provides evidence towards an affirmative
answer to this question.

6. At WinCompTop 2016, a working group led by Yusu Wang characterized the one-dimensional
persistent homology of the intrinsic Čech complexes of metric graphs [17]. What can be said
about higher-dimensional persistent homology of Čech or Vietoris-Rips complexes of metric
graphs? The case of the circle follows from [1, 2].

5 Homotopic Reconstruction

This open problem was submitted by Kate Turner from EPFL.
In computational topology, we often assume that we have a point cloud sampled from a proba-

bility distribution supported on a manifold (often Euclidean); see [5, 13] for example.
Let X be a manifold embedded in Rn, for some n ≥ 2. Then, we define the local feature

size of X at x ∈ X, denoted lfs(x), as the distance from x to the medial axis of X. We call
the minimum local feature size over the whole manifold the reach of X, denoted reach(M). If
ε < reach(M), then the tubular neighborhood of radius ε around M deformation retracts onto
M . A similar concept is the weak feature size, which is defined to be the smallest value ε for which
Č(X; ε) is not homologous with X; we denote this by wfs(X). Let τ = 1

4wfs(X) and suppose S is
a finite τ -sampling from X. Then, the homology of X is isomorphic to the image of the following
map induced by inclusion:

H(Č(S; τ))→ H(Č(S; 3τ)).

An open question of interest here is does there exist a subcompex of Č(S; 3τ) that realizes this
homology? And, if so, can such a subcomplex be found in polynomial time?

6 Homotopy Height

This open problem was submitted by Erin Wolf Chambers from Saint Louis University.
Data analysis is often about measuring the distance (and the similarity) between data. Topo-

logical data analysis is no exception to this. Trajectory data is one type of data that has a rich
potential for geometric and topological data analysis.

Given two curves, f and g, embedded in a (metricized) topological space, a ‘nice’ distance would
be one that is realized via a minimal homotopy H such that H(·, 0) = f and H(·, 1) = g. However,
how do we define (or compute) the cost of a homotopy? One way would be to integrate the area
swept out by the homotopy. The so-called minimal area homotopy is related to the winding area and
can be computed efficiently when f and g are embedded in an orientable surface [7] (here, efficiently
is with respect to the complexity of the curves and the number of intersections between them).
Another option is to measure the homotopy height, which is the length of the longest intermediate
curve [11]; a dual, in a way, to the Fréchet distance. While [8] proved various properties of minimum
homotopies (including the fact that the minimal homotopy will not ‘backtrack’), a longstanding
problem is to find a polynomial-time algorithm to compute the homotopy height between two curves
embedded on a triangulated manifold.
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Progress. In February 2017, a working group at Dagstuhl Seminar 17072 (comprised of Erin Wolf
Chambers, Arnaud de Mesmay, and Tim Ophelders) made progress on this open problem, showing
that it is - in fact, in NP [9]. It still remains open whether or not this problem is NP-complete.

7 Computational Topology in Practice

This open problem was inspired by a problem submitted by Mimi Tsuruga from UC Davis.
One of the benefits of the tools of computational topology is that shape and structure can be

found in all types of data. For this reason, the popularity of Computational Topology has risen in
application domains over the past few years; see [12, 22], for example. However, what does it mean
for your data to have interesting five-dimensional homology? The answer, thus far, is unclear. In
fact, a recent panel at a workshop organized by one of the authors (Bei Wang) at the ACM-BCB
2016 annual conference discussed just this: how can we make computational topology a feasible
toolset for those wanting to analyze data in various domains? In fact, this is the most pressing
open problem in our community today: how do we narrow the gap between theory and practice?
To properly solve this problem will take the partnership between domain experts and researchers
from computational topology. In sum, we ask: How do we make sense of the topological features
that we can extract from data? In other words, now what?

Acknowledgements This collection of open problems was generated from an open problems
session at the Women in Computational Topology (WinCompTop) 2016 workshop, as well as from
the WinCompTop listserv. WinCompTop 2016 was funded through NSF grant DMS 1619908.
Special thanks to all who contributed problems, including: Henry Adams, Erin Wolf Chambers,
Maia Grudzien, Emilie Purvine, Mimi Tsuruga, Altaa Tumurbaatar, and Katherine Felicity Turner.
While not all problems proposed are included in this article, they did help in understanding the
scope of problems that our colleagues are interested in.

The authors also gratefully acknowledge the support of grants: NSF CCF 1618605 and NSF
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