
Autism Classification Using Topological Features
and Deep Learning: A Cautionary Tale

Supplementary Material

Archit Rathore1, Sourabh Palande1, Jeffrey Anderson1, Brandon A. Zielinski1,
P. Thomas Fletcher2, and Bei Wang1

1 University of Utah, Salt Lake City, UT 84112, USA
{archit, sourabh, beiwang}@sci.utah.edu, andersonjeffs@gmail.com,

brandon.zielinski@utah.edu
2 University of Virginia, Charlottesville, VA 22904-4259, USA

ptf8v@virginia.edu

1 Mathematical Formulations

We experiment with four different kernels for persistence diagrams to train
SVM classifiers. In this section, we give mathematical formulations of these ker-
nels. They are computed using implementations provided in the Python package
sklearn tda, see [2] for implementation details. We also provide details of the
projection layer defined by Hofer et al. [5] in their neural network architecture.
For an introduction to persistent homology, see [4].

1.1 Kernels for Persistence Diagrams

An (ordinary) i-dimensional persistence diagram A is the disjoint union of a
multi-set of off-diagonal points {(b, d) | b 6= d, b, d ∈ R≥0} on the Euclidean
plane R̄2 (where R̄ = R ∪ {−∞,+∞}) and the diagonal ∆ = {(b, b) | b ∈ R≥0}
counted with infinite multiplicity.

Persistence scale-space kernel [8]. For two i-dimensional persistence dia-
grams A and B, the persistence scale-space kernel KS is defined as:

KS(A,B, σ) =
1

8πσ

∑
p∈A,q∈B

e
‖p−q‖

8σ − e
‖p−q‖

8σ , (1)

where ∀ q = (b, d) ∈ Bi, q = (d, b). In our experiments, we only consider 0- and
1-dimensional topological features. Correspondingly, we compute scale-space ker-
nels for 0- and 1-dimensional persistence diagrams which can then be combined
using a weighted average.

Persistence weighted Gaussian kernel [6]. For two i-dimensional persis-
tence diagrams A and B, the persistence weighted Gaussian kernel KG is defined
as:

KG(A,B, σ) =
∑

p∈A,q∈B
w(p)w(q)e−

‖p−q‖2

2σ2 , (2)



2 A. Rathore et al.

where w(p) is the weight assigned to the point p. Kusano et al. [6] suggest
w(p) = arctan(C(d − b)t) as the weight for p = (b, d), where C is a positive
constant for practical purposes and t is assumed to be greater than the dimension
of the underlying space. In our experiments, we use the default weight function
implemented in the sklearn tda package which assigns a unit weight to each
point in the persistence diagram.

Sliced Wasserstein kernel [3]. Let A and B be i-dimensional persistence
diagrams. Given a unit vector θ in R2, let L(θ) = {λθ | λ ∈ R} denote the
line and π(θ, p) denote the orthogonal projection of point p on the line L(θ). To
compute the sliced Wasserstein kernel, we first augment persistence diagram A
with the orthogonal projection π∆ of points in B and vice-versa to obtain two
new sets A∗ and B∗. The sliced Wasserstein distance between these two sets is
approximated as:

SW (A∗, B∗,M) =
1

π

M∑
j=1

‖V (A∗, θj)− V (B∗, θj)‖1,

where θj = jπ/M − π/2 and V (A∗, θj) is the vector of dot products < p, θj >
of all points p ∈ A∗. The sliced Wasserstein kernel is then computed as:

KW (A∗, B∗,M) = e
−SW (A∗,B∗,M)

2σ2 , (3)

In our experiments, we fix the number of directions M = 10. The bandwidth σ
is determined using grid search.

Persistence Fisher kernel [7]. Given an i-dimensional persistence diagram A
and a bandwidth σ > 0, one can define a smooth, normalized measure

ρA =

[
1

Z

∑
u∈A

N(x;u, σI)

]
x∈Θ

over a given set Θ, where I is the identity matrix, N is a Gaussian function and
Z =

∫
Θ

∑
u∈AN(x;u, σI)dx. Note that if Θ is the entire Euclidean space R2

then ρA is a probability distribution similar to the case of persistence images [1].
Given two i-dimensional persistence diagrams A and B, we obtain two new sets
A∗ and B∗ by augmenting A with the orthogonal projection of points of B on
the diagonal and vice-versa. For these two sets, the persistence Fisher kernel is
defined as:

KF (A∗, B∗) = e−tdF (A∗,B∗) (4)

where t > 0 is a scalar parameter and dF is the Fisher information metric defined
as follows:

dF (A∗, B∗) = arccos

(∫ √
ρA∗(x) ρB∗(x)dx

)
In our experiments, we fix the bandwidth σ = 1.0 needed to compute the measure
ρ. The kernel parameter t is tuned using grid search.



Autism Classification Using Topological Features 3

1.2 Neural Networks with Topological Features

To train a neural network with persistence diagrams, we use the approach pro-
posed by Hofer et al. [5], where a projection layer is defined as a set of nodes
in the neural network that takes a persistence diagram as input and outputs an
n-dimensional vector.

Denote an i-dimensional persistence diagram as A and a point in the diagram
(b, d) ∈ A. A change of coordinates (x, y) = (b+d, d− b) is applied to each point
of A. Let µ = [µx, µy] and σ = [σx, σy] denote the location and scale of a
structure element. Define sµ,σ,ν as follows:

sµ,σ,ν(x, y) =


e−σ

2
x(x−µx)

2−σ2
y(y−µy)

2

y ∈ [ν,∞)

e−σ
2
x(x−µx)

2−σ2
y(ln

y
ν+ν−µy)

2

y ∈ (0, ν)

0, y = 0

where ν is a cutoff parameter for handling points with persistence (difference
between birth and death) close to zero. The projection of an i-dimensional per-
sistence diagram A w.r.t to sµ,σ,ν is

Sµ,σ,ν =
∑

(x,y)∈ρ(A)

sµ,σ,ν(x, y).

Note that Sµ,σ,ν maps A to a scalar value. Now, suppose θ = {(µi,σi)}ni=1 is
a set of location and scale parameters for n structure elements. The projection
layer Sθ,ν for A is composed of n nodes, where each node corresponds to one
structure element (µ,σ) and outputs the projection Sµ,σ,ν of A. Each of the
n nodes output one scalar value and these scalar values are concatenated to
form the output vector. Note that projection layers are defined independently
for each dimension of the persistence diagram. Hofer et al. [5] show that the
function sµ,σ,ν(x, y) is stable with respect to the Wasserstein and bottleneck
distances and differentiable with respect to parameters µ and σ so that gradient
descent can be applied to train the neural network.

2 Implementation Details

2.1 Neural Networks

We implement the neural networks using the Pytorch Python library. The layer
sizes for the networks with correlation features are as follows:

– 3 Layers: n-1,000-100-10-2
– 5 Layers: n-10,000-5,000-1,000-100-10-2
– 7 Layers: n-10,000-5,000-1,000-500-100-50-10-2

For CC200 n = 19, 900 and for CC400 n = 79, 800. For the hybrid neural
network, the layer sizes after the concatenation layer are identical to the above.
We use 50 structure elements for both 0-dimensional and 1-dimensional fea-
tures for CC200 and 100 structure elements for CC400. This makes the output
size of concatenation layer to be 20,000 (50+50+19,900) for CC200 and 80,000
(100+100+79,800) for CC400.



4 A. Rathore et al.

Site SVMcorr NN3corr NN3PD+corr

CALTECH 61.23 66.18 67.78
CMU 61.74 65.28 68.43
KKI 61.73 67.19 67.24
LEUVEN 60.95 65.64 67.83
MAX MUN 60.55 66.32 67.75
NYU 62.39 64.88 68.48
OHSU 61.40 65.58 68.46
OLIN 63.23 65.42 67.02
PITT 59.41 64.60 67.98
SBL 60.99 65.66 66.82
SDSU 62.22 65.55 67.19
STANFORD 61.76 65.75 67.69
TRINITY 63.57 65.56 67.56
UCLA 61.45 66.12 67.40
UM 62.02 65.70 67.34
USM 63.20 65.94 67.94
YALE 61.90 66.29 67.63

Mean 61.74 65.74 67.68

Table 1: Accuracies for various models using a leave-one-site-out cross validation
scheme.

2.2 Parameter Tuning via Grid Search

We tune parameters for the baselines models using grid search. We split the
dataset into 60% training, 20% validation, and 20% testing sets. We first specify
the possible set of values for each of the tunable parameters of the model. We
then train the model by using each point in the Cartesian product of the param-
eter sets using the training set and store the parameters with best performance
on the validation set. The model is then trained using the best parameters on
data obtained by merging the training and validation sets and performance is
evaluated on the test data set. This process is exponential in the cardinality of
parameters. Continuous parameters are discretized by two strategies. For un-
bounded parameters, the parameter set is created by taking a reasonable range
and taking values that differ by orders of magnitudes. For bounded parameters,
a fixed step size is used to create the parameter set.

3 Additional Results

3.1 Cross-Site Variation of Accuracy

We also perform leave-one-site-out cross validation for SVMcorr, NNcorr and
NN3PD+corr models. In this scheme, one site is used as test data while the
model is trained on all other sites. Due to site-wise differences in equipments
and processing methods, prediction is expected to be more challenging for data
from previously unseen sites. This is reflected in our results in Table 1 where



Autism Classification Using Topological Features 5

the mean accuracies of the models is lower than models trained using the 5-fold
cross validation scheme.

3.2 Dimensionality Reduction on Correlation Features

We evaluate the SVMcorr model on lower dimensional projection of the CC200
and CC400 datasets using principal component analysis (PCA) . We keep the
components corresponding to top k eigenvalues that explain 99% variance in
each dataset. This leads to a value of k = 45 for CC200 and k = 67 for CC400
and yields classification accuracy of 65.12% and 65.24% respectively.

References

1. Adams, H., Emerson, T., Kirby, M., Neville, R., Peterson, C., Shipman, P., Chep-
ushtanova, S., Hanson, E., Motta, F., Ziegelmeier, L.: Persistence images: A stable
vector representation of persistent homology. Journal of Machine Learning Research
18(1), 218–252 (2017)

2. Carriére, M.: sklearn-tda: a scikit-learn compatible python package for machine
learning and tda. https://github.com/MathieuCarriere/sklearn-tda

3. Carrière, M., Cuturi, M., Oudot, S.: Sliced Wasserstein kernel for persistence dia-
grams. Proceedings of the 34th International Conference on Machine Learning 70,
664–673 (2017)

4. Edelsbrunner, H., Harer, J.: Persistent homology–a survey. Contemporary mathe-
matics 453, 257–282 (2008)

5. Hofer, C., Kwitt, R., Niethammer, M., Uhl, A.: Deep learning with topological sig-
natures. Advances in Neural Information Processing Systems pp. 1634–1644 (2017)

6. Kusano, G., Fukumizu, K., Hiraoka, Y.: Kernel method for persistence diagrams via
kernel embedding and weight factor. Journal of Machine Learning Research 18(1),
6947–6987 (2017)

7. Le, T., Yamada, M.: Persistence fisher kernel: A Riemannian manifold kernel for per-
sistence diagrams. Advances in Neural Information Processing Systems 31, 10028–
10039 (2018)

8. Reininghaus, J., Huber, S., Bauer, U., Kwitt, R.: A stable multi-scale kernel for
topological machine learning. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition pp. 4741–4748 (2015)


