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Abstract
We introduce a novel interactive framework for visualizing and exploring high-dimensional datasets based on
subspace analysis and dynamic projections. We assume the high-dimensional dataset can be represented by a
mixture of low-dimensional linear subspaces with mixed dimensions, and provide a method to reliably estimate
the intrinsic dimension and linear basis of each subspace extracted from the subspace clustering. Subsequently,
we use these bases to define unique 2D linear projections as viewpoints from which to visualize the data. To
understand the relationships among the different projections and to discover hidden patterns, we connect these
projections through dynamic projections that create smooth animated transitions between pairs of projections. We
introduce the view transition graph, which provides flexible navigation among these projections to facilitate an
intuitive exploration. Finally, we provide detailed comparisons with related systems, and use real-world examples
to demonstrate the novelty and usability of our proposed framework.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1 Introduction

As our ability to collect a wide variety of large, com-
plex datasets grows, techniques to understand and mine such
data are becoming increasingly important. Typically, data is
given as points in high-dimensional space describing any-
thing from physical experiments to collections of images.
However, visualizing and understanding high-dimensional
datasets is still a challenging task. We lack the ability to
directly display such spaces and the cognitive capability
to instantly perceive the structures within. Therefore, indi-
rect low-dimensional (typically 2D) visual representations
based on the scatterplot matrix, dimensionality reduction,
or parallel coordinates have been utilized. However, there
are some obvious trade-offs. Dimensionality reduction tech-
niques (i.e., [Ize12, TSL00]) approximately preserve the in-
trinsic structures of the data, but their results can be hard to
interpret. Understanding a scatterplot matrix is straightfor-
ward, but its axis-aligned views may miss important struc-
tures in the high-dimensional space. In addition, the number
of plots grows quadratically with the number of dimensions,
making the evaluations of individual plots impractical.

In our proposed framework, we try to strike a balance be-

tween capturing the intrinsic structures and generating in-
terpretable results. We assume the high-dimensional dataset
can be represented by a mixture of low-dimensional lin-
ear subspaces with mixed dimensions, based on recent ad-
vances in subspace clustering [Vid11, LLY∗13]. Once the
data is clustered into subspaces based on their intrinsic low-
dimensional structures, the linear basis that supports each
subspace naturally defines a number of interesting 2D pro-
jections (views), without the need to rank their interesting-
ness explicitly [TMF∗12,WAG05]. On the other hand, when
there are outliers or the subspaces intersect, subspace clus-
ters may not be perfect. To estimate the dimension and basis
of each subspace, applying traditional dimension estimation
(e.g., PCA) to the subspace clusters may produce suboptimal
results (see Section 3.1.2). In this work, we provide a novel
dimension and basis estimation algorithm that is less sus-
ceptible to outliers or intersecting subspaces, and can better
discriminate the different subspaces, compared to PCA (Sec-
tion 3.1.2). Given a collection of informative 2D projections
(subspace views) created from the subspace basis vectors,
we utilize the dynamic projections, which create smooth an-
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imated transitions among these views, to better understand
their relationships and to gain intuition from the data.

Since the promotion of exploratory data analysis by John
W. Tukey, a number of methods have been introduced that
utilize the dynamic graphs to aid the understanding of the
high-dimensional datasets. For example, the projection pur-
suit [FT73] tries to identify the structure-revealing projec-
tions automatically. Grand tour [Asi85] generates a continu-
ous projection (i.e., a tour) that attempts to cover the entire
high-dimensional space. Even though the use of animated
transitions is proven to be effective in conveying structural
information, the complexity of the high-dimensional space
requires a lengthy tour that prevents effective exploration.
A more recent work [CBCH95] tries to address such an is-
sue by making projection pursuit results the targets along
the tour’s path. However, the projection pursuit is optimized
for the entire space, which may fail to capture even very
simple linear structures in the subsets of the data. In addi-
tion, organizing data projections as a sequential tour lim-
its the user’s involvement in the exploratory process. In our
work, we address these issues that potentially prevent effec-
tive use of dynamic projections. By utilizing subspace anal-
ysis to identify low-dimensional subspaces and to generate
informative views, we reduce the massive search space of
all possible projections into a few selected ones that capture
the intrinsic structures of the data. By introducing a view
navigation graph that provides flexible navigations among
these views, we allow intuitive exploration of the high-
dimensional space.

Our core contributions are summarized below:

• We introduce a novel interactive framework for exploring
high-dimensional datasets based on subspace analysis and
dynamic projections.

• We provide a novel approach based on graph embedding
principles to perform dimension and basis estimation for
each subspace.

• We augment dynamic projections with a view navigation
graph to allow effective exploration among the informa-
tive views created from subspace analysis.

2 Related Work

Subspace Clustering. Conventional approaches such as
PCA [Fuk90] assume the high-dimensional data lies in a sin-
gle, low-dimensional, linear subspace of the ambient space.
However, in practice, this assumption can be restrictive, and
hence we often use a more general assumption that the data
samples are drawn from a union of subspaces. The mem-
berships of the samples to the subspaces are unknown, and
each of the subspaces can be of different dimensions. Such
an approach is more challenging as there is a need to si-
multaneously cluster the data into multiple subspace clusters
and to find a low-dimensional linear subspace fitting each
group of samples. Existing subspace clustering methods can
be algebraic, iterative, or spectral. In our work, we use meth-

ods [EV09, LLY∗13] based on spectral clustering [NJW01]
that construct graph affinities that capture the subspace struc-
tures.

Analysis through Subsets of Dimensions. Some of the re-
cent advances in high-dimensional data visualization rely on
selecting the related subsets of dimensions for analysis. Ap-
proaches such as representative factor generation [TLLH12]
and dimension projection matrix/tree [YRWG13] allow in-
teractive exploration in the space of the dimensions and the
space of the data. Other methods, such as the TripAdvisorND

[NM13], adopt the clustering algorithm (ENCLUS [CFZ99])
to identify related subsets of dimensions. In [TMF∗12], the
authors propose a method for summarizing the large number
of dimension groups generated by a similar clustering algo-
rithm. These clustering algorithms, which originated from
database and knowledge discovery communities, are also re-
ferred to as subspace clustering. Here the “subspace” is used
to describe the relevant subset of dimensions. These algo-
rithms [PHL04] introduce some very interesting exploration
strategies for high-dimensional datasets, and can be partic-
ularly effective when the dimensions are not tightly cou-
pled. More visualization works utilizing grouping of dimen-
sion can be found in [YWRH03, TZB∗12, SNR14]. There
are some issues associated with such approaches. For exam-
ple, only axis-aligned features are easily discoverable; using
partial information based on subsets of dimensions makes
it difficult to determine whether the discovered features are
indeed meaningful structures or just artifacts due to incom-
plete data. Despite having the same name, the subspace clus-
tering approach we apply is very different. It groups points
that share common low-dimensional linear spaces, therefore
more reliably captures the intrinsic structures in the high-
dimensional space.

Animation Augmented Exploration. Besides identifying
suitable/informative views, navigation and animated transi-
tions between scatterplots have been introduced to enhance
perception and to gain intuition. 3D projection based ex-
ploration has been introduced in [PEP∗11], where familiar
3D manipulation can be used to study the high-dimensional
data. The “Rolling the Dice” approach for navigating a scat-
terplot matrix [EDF08] provides smooth 3D transformation
animations to help visualize the relationship between scatter-
plots. In NavGraph [HO11], an interesting subset of scatter-
plots in the scatterplot matrix is selected (based on Graph-
Theoretic Scagnostics [WAG05]) to form a graph. Navi-
gating along the edges of the graph creates smooth ani-
mated transitions that mimic the rigid body rotations be-
tween the scatterplots. Compared to NavGraph, our work
relies on a very different view selection scheme. Instead
of attempting to find interesting views among all scatter-
plots, which include only limited axis-aligned views, we
use subspace clustering to capture the data’s intrinsic low-
dimensional structures. The GGobi system [STBC03] intro-
duces the guided tour concept, which combines grand tour
[Asi85] with projection pursuit [FT73] to guide the transi-
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tions towards more “interesting” views based on projection
pursuit indices. Anand et al. [AWD12] adopt random pro-
jections to help scale the projection pursuit to much larger
dimensions. Instead of relying on a fully animated transi-
tion, the TripAdvisorND [NM13] system employs a limited
“tilting” around the existing projection to create a motion
parallax effect. Finally, the iPCA [JZF∗09] work utilizes in-
teraction and animation to help users better understand the
high-dimensional space and the PCA computation.

3 The Proposed Visualization Framework

Our proposed framework contains two major compo-
nents: the subspace analysis and the interactive exploration.
As illustrated in Figure 2, the subspace analysis (highlighted
in the blue box) is responsible for subspace identification
and basis estimation. The visual exploration (highlighted in
the orange box) enables users to visualize and interact with
the subspace analysis results. It generates subspace views
(2D projections marked by colored rectangular boxes) from
the corresponding basis, creates the navigation infrastructure
(the view navigation graph), and produces animated transi-
tions between subspace views (we illustrate the transition
from the black subspace view to the yellow 2D subspace
view). The interactive exploration communicates with the
subspace analysis when a clustering or a model estimation
parameter is modified, triggering a recomputation of the sub-
space information.

3.1 Subspace Analysis
The underlying assumption of fitting a single linear sub-

space makes PCA ineffective in modeling complex, high-
dimensional data. We consider a more general assumption of
fitting a union of subspaces. We adopt an existing subspace
clustering approach to partition data into multiple subspaces.
Following this, we propose a novel technique to estimate the
parameters of each subspace (dimension and basis).

Figure 1: An intuitive explanation of the subspace clustering. Left:
The PCA view shows the projection from the side of the two 2D
planes. By subspace clustering, we obtain two 2D subspaces (middle
and right) that correspond to the two planes, respectively.
3.1.1 Subspace Clustering

Let us assume that the set of samples {xi ∈ RD}T
i=1 is

drawn from an unknown union of n ≥ 1 linear subspaces
{S j}n

j=1. The dimensions of the subspaces, 0 < d j < D
( j = 1, · · · ,n), are unknown and each subspace is described
as S j = {x ∈ RD : x = U jy}, where U j ∈ RD×d j is a basis
for the subspace S j and y ∈ Rd j is the low-dimensional rep-
resentation of a sample x. When n = 1, this problem reduces
to PCA. A wide variety of algorithms have been proposed

in the machine learning literature to determine the multiple
subspaces [Vid11], and in particular methods based on spec-
tral clustering [NJW01] have been very effective.

Spectral clustering requires an affinity matrix A ∈ RT×T ,
where Ai j measures the similarity between samples i and j
[NJW01]. Subspace clustering is a special case where A cap-
tures the subspace relationships, i.e., samples belonging to
the same subspace have a strong affinity between them. In
particular, the affinity matrix is constructed by representing
each sample as a linear combination of other samples, i.e.,
X ≈ XW, s.t. Wii = 0 (i = 1 · · ·T ). Here, W = [wi]

T
i=1

is the affinity matrix and the condition Wii = 0 ensures that
a sample is not used for its own reconstruction. Since this
problem is highly ill-posed, different forms of regulariza-
tion (e.g., sparsity, low-rank) can be considered [LLY∗13].
In addition to allowing the user to specify the number of
clusters, we also integrate the spectral clustering auto-tuning
method [ZMP04] to aid the selection. To provide some in-
tuition, we use a simple synthetic dataset to help illustrate
the process. The dataset contains two intersecting 2D planes
embedded in 3D. As shown in Figure 1 the subspace clus-
tering identifies two subspace clusters that correspond to the
two planes, respectively (see the video for details).

3.1.2 Subspace Construction
Basis Estimation. Given the subspace associations, using
PCA on samples belonging to each cluster can provide the
basis spanning that subspace. However, since PCA attempts
to determine directions of maximal variance, outliers that
might arise due to subspace clustering can significantly af-
fect this process. Instead, we propose to use a more general
graph embedding approach that allows us to exploit the re-
lationships between the different subspaces (encoded in the
affinity matrix) to discriminate the different subspaces and
improve the resilience to outliers.

The affinity matrix constructed during subspace cluster-
ing will contain strong edges between samples within a sub-
space and weak edges across subspaces. We extract a block-
diagonal matrix from the affinity matrix W, corresponding
to only the samples in that subspace to compute the basis
vectors. For a subspace S j , we denote the set of indices of
samples belonging to the respective cluster by Λ j. We solve
the following optimization problem to estimate the basis:

U j = argminU ∑i∈Λ j

∥∥∥UT xi−∑k 6=i,k∈Λ j
WikUT xk

∥∥∥2

2
s.t. UT U = I. Here the matrix I is the identity matrix, U j ∈
RD×d j contains the set of basis functions, and d j is the di-
mension of the subspace. The solution to this problem can
be obtained using generalized eigenvalue decomposition.

Dimension Estimation. The basis estimation process as-
sumes the knowledge of the subspace dimension, d j. Our di-
mension estimation technique relies on the assumption that
the basis set estimated for a cluster must be ineffective in
describing samples from other clusters. We achieve this by
picking the dimension that results in the maximal separation
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Figure 2: An overview of our workflow.

of a subspace from the subspace estimated using all sam-
ples not belonging to the cluster considered. For a subspace
S j, the set of samples {x ∈ S j} is used to estimate the basis
U j, whereas the out-of-sample basis Ū j is obtained using the
samples {x /∈ S j}. We vary the dimension d j between 2 and
D−1, measure the distance between the U j ∈RD×d j and Ū j
in each case, and pick the dimension where sufficient separa-
tion is achieved. The subspace separation is measured using
the Grassmannian distance (see Section 3.2).

Figure 3: For the subspace corresponding to each class, we show the
average accuracy of samples in finding neighbors sharing their class
label, using different subspace analysis strategies. We also show the
subspace dimension in each case.

Comparison to PCA. Using a real dataset example, we
demonstrate the superior performance of the proposed sub-
space analysis. We use the USPS handwritten digits dataset
that contains 2500 images belonging to 10 classes [USP]. We
consider three different analysis strategies: (i) A global PCA
subspace for the entire data, (ii) Estimate a PCA subspace for
each class independently, and (iii) Estimate a subspace for
each class using the proposed approach. In the first case, we
project all samples onto the single PCA subspace and with a
fixed neighborhood size (k = 10), for each sample, we mea-
sure the number of samples in the neighborhood that share
its class label. For cases (ii) and (iii), we measure the neigh-
borhood recovery performance for each class by projecting
all samples onto its corresponding subspace. Figure 3 shows
the average accuracy for each of the classes, obtained using
the three approaches, along with their corresponding sub-

space dimensions. As expected, the single linear PCA sub-
space is insufficient for describing the complex relationships
in the dataset and has the least accuracy in all cases. Even
with the union of subspace assumption, using PCA to esti-
mate the basis can erroneously project samples from differ-
ent classes close to each other and hence its performance is
only marginally better. Finally, by considering the relation-
ships between the different subspaces, our method faithfully
recovers the neighborhood.

3.2 Visual Exploration of the Subspaces
Through the subspace analysis, we acquire a simplified

representation of the high-dimensional space in the form of
low-dimensional linear subspaces. For each subspace, a set
of 2D views (projections) can be generated in a similar fash-
ion as the scatterplot matrix, i.e., by choosing all pairs of
vectors from the basis. To better understand these views and
their relationships, we organize them in a multi-level View
Navigation Graph. The exploration of the subspaces focuses
on the manipulation of the graph and the seamless transi-
tions between individual 2D views. However, a direct lin-
ear interpolation between the point locations leads to non-
linear and uninterpretable frames in the animation. In the
proposed framework, we adopt the dynamic projection ap-
proach [STBC03,BCAH05], where the animation is defined
by a set of intermediate linear subspaces that smoothly tran-
sition from one 2D subspace to another. The pipeline of our
interactive exploration is illustrated in Figure 2.

The Grassmann Distance. Understanding the distance be-
tween subspaces is crucial for subspace view exploration. A
Grassmannian manifold, Gr(d,D), is a set of d−dimensional
subspaces in RD, where each subspace maps to a unique
point on the manifold [Har92]. Given two points on a Grass-
mannian manifold, represented by their orthonormal bases,
A and B of size D× d, the distance measured along the
geodesic is the Grassmann distance. The geodesic distance
can be computed by decomposing AT B using its SVD and

obtaining ∑
d
i=1

(
θ2

i
) 1

2 . Here, θi denotes a principal angle and
is obtained as cos−1 σi, where σi is the corresponding singu-
lar value. When considering two subspaces of different di-
mensions [YL14], A ∈ Gr(d1,D) and B ∈ Gr(d2,D) (with
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d1 < d2), the distance can be calculated by finding a d2-
dimensional plane C contained in B that is closest to A, and
measuring the distance between A and C. Given two projec-
tions, the intermediate subspaces created through dynamic
projection [STBC03,BCAH05] are points along the shortest
geodesic path between the two. Importantly, each frame in
the animation is indeed a linear projection. Hence, compar-
ing two subspaces is equivalent to comparing their basis sets
that span the subspaces. Note that the commonly adopted
Euclidean distance is not an appropriate metric for compar-
ing subspace basis sets. Linear subspaces are known to lie on
a Grassmannian manifold, and hence the geodesic distance
on this manifold allows accurate comparison of subspaces.
In contrast to to existing subspace comparison approaches
[NM13], the Grassmann distance is invariant to the ordering
of the basis vectors and axis rotations within a subspace (for
example, the rotation of the 2D projection orientation within
the 2D plane). However, estimating the Grassmann distance
involves SVD evaluation, making it computationally expen-
sive. Hence, we resort to using a computationally efficient
Grassmann distance metric, the Chordal distance [YL14].

(a) (b) (c)

Figure 4: The views navigation graph. (a) The square glyph indexed
by subspace ID corresponds to the representative view of a given
subspace. The circle glyph corresponds to a non-representative view
or the PCA projection. For each subspace with dimension three or
higher, we can dynamically expand its representative into multiple
2D views generated from its basis (e.g., (b) & (c)).

View Navigation Graph. The subspace views (i.e., 2D lin-
ear projections), defined by all pairs of vectors in the basis,
are generated for each subspace. Compared to the scatter-
plot matrix or other subspace clustering methods that try to
find axis-aligned features, our technique produces a much
smaller number of views. However, without proper organiza-
tion, navigating among these views can still be daunting. We
introduce the view navigation graph (Figure 4) to help man-
age the views and guide the exploration. Instead of display-
ing all the views together, we organize the views into groups
corresponding to their respective subspaces. Each group (a
subspace) has a representative view (i.e., projection), defined
by the two most dominant basis directions.

We start the initial exploration with only the representa-
tives of each subspace. In the view navigation graph (Fig-
ure 4), each subspace representative is denoted by a square
glyph marked with the subspace dimension at its lower right
corner. All the representative nodes are connected via a

(a) (c)(b)

Figure 5: kNN graphs with varying k. (a) k = 1. (b) k = 2. (c) k = 3.
From all of the graphs (a)-(c), we can infer two groups of subspaces
with strong intra-cluster relationships: the orange and black sub-
spaces; and the PCA, brown, purple, and cyan subspaces.

k-nearest neighborhood (kNN) graph constructed from the
Grassmann distance between subspaces. Such a graph pro-
vides a global overview of the subspaces and captures the
inter-subspace relationships. We can then expand each three
or higher dimensional subspace for a more focused study.
During the expansion, the selected representative is replaced
by a subgraph formed by all individual 2D views generated
from the subspace basis. Such a dynamic graph construc-
tion ensures interactive, multi-scale exploration of the space
of subspace views. Although the choice of k can be impor-
tant for the kNN graph, Figure 5 demonstrates that in our
cases, a small variation in the choice of k does not have
a great impact on understanding the inter-cluster relation-
ships. Other alternative neighborhood graphs can be consid-
ered for future study, such as the Gabriel graph [GS69] or
β-skeletons [KR85]. It would be interesting to define these
graphs beyond the Euclidean metrics, that is, in the setting
of Grassmann distance.
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Figure 6: The software architecture.

4 System Implementation

Software Architecture. Our system architecture (Figure 6)
is designed to be easily configurable and extentable. It pro-
vides infrastructures for combining different components to
create an environment adaptable for future demands. The
core functionalities are implemented in C++, and Qt is used
for all the GUI and drawing tasks. The architecture consists
of several major modules. The Core module includes the es-
sential algorithms and abstract data models and operations.
The IO module handles all the tasks related to the file IO.
We design an XML-based binary file format and its accom-
panying library, where new types of data can be easily inte-
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grated. The UI module includes individual GUI components
(view navigation graph panel, dynamic projection panel, par-
allel coordinates, data operation panel, etc.), which can be
customized for different tasks. To provide the utmost flex-
ibility, our tool integrates an embedded Python interpreter
in the Core Module, which enables the seamless integration
of Python script and C++ code. Such a design allows us to
implement the subspace clustering code in Python, taking
advantages of fast prototyping, quick iterations, and readily
available machine learning libraries. Since the Python imple-
mentation contains mostly matrix computation, which indi-
rectly invokes the C library, the speed of our implementation
is comparable to an optimized C/C++ implementation (the
performance and scalability issues are discussed in Section
6).

(B) (A)

(A-1)

(A-3)

(A-2)

Figure 7: User interface. (A) The dynamic projection panel. (B) The
subspace view navigation panel.

User Interface and Interaction. Figure 7 shows the inter-
face of the system when it is configured for interactive ex-
ploration tasks. (A) is the main display panel demonstrating
the dynamic projections (A-1) at its center. We augment each
projection with a bi-plot (which consists of axes that corre-
spond to basis vectors scaled by their coefficients). Along-
side the projection view (A-1), we include two small in-
sets: (A-2) shows both the source and the target projections,
where the slider between the thumbnails allows the user to
play the animation back and forth; (A-3) presents the meta-
information of the data (e.g., images) when available. (B) is
the view navigation panel that contains the view navigation
graph, which provides an interface for guiding the explo-
ration process.

5 Examples

Combustion Simulation Dataset. This dataset contains a
collection of 2.8K samples from a large-scale combustion
simulation [HSPC06]. Each sample is drawn from a 10D in-
put parameter space that corresponds to the concentrations
of 10 chemical compounds (e.g., H2, O2) involved in the
simulation, with the temperature as the observed variable
(the spatial information is not modeled here as we focus on
the chemical composition of the parameter space). Scientists
are interested in understanding how input parameters affect

the local minimum temperature observed under the extinc-
tion and re-ignition phenomenon.

As shown in the view navigation graph (Figure 8(a)), the
subspace analysis of this dataset gives three 2D subspaces
(#0-black, #4-brown, and #3-cyan) and two 3D subspaces
(#1-purple and #2-orange). The subspace views belong to
two well-separated clusters in the view navigation graph:
The cyan, purple, and brown subspace views are positioned
in proximity to each other; and similarly for the black and or-
ange subspace views. A PCA view is also added to the view
navigation graph.

Via dynamic projections, we start our exploration from
the PCA view to the cyan, purple, and brown subspace views
sequentially, as illustrated in Figure 8(b) and the supplemen-
tary video. These views are close to one another in the view
navigation graph. We observe that there is a small amount
of tilting during such transitions, indicating small rotational
angles among basis vectors of these subspaces. Such ob-
servation likely indicates that these three subspaces are ap-
proximations of a gently curved, non-linear structure in the
data. We further transition from the brown subspace view
to the orange one, which causes a drastic expansion of the
orange cluster and a compression of the brown, purple, and
cyan clusters. This animation indicates that the orientation
of the orange subspace is very different from the previous
three subspaces. Finally, we transition from the orange to
the black subspace view, where the animation demonstrates
their similarities in terms of the small rotational angle. These
observations give us intuitive understanding of the structure
in the data, namely, the cyan, purple, and brown subspaces
share structural similarities; the orange and black subspaces
are closely related; yet both sets of subspaces are structurally
very different (see the supplementary video for details).

(d)

(a) (b)

(c)

Figure 9: Combustion dataset. (a) PCA view colored by point-wise
distortion measure. (b) Yellow subspace view colored by point-wise
distortion measure. (c) Yellow subspace view colored by tempera-
ture. (d) Yellow subspace view colored by HO2 concentration.

Further insights regarding the data could be obtained by
close examination of the dynamic transitions between the
PCA view and the orange subspace view. The PCA finds
the best single linear subspace to represent the data but fails
to capture the structure of each subspace with equal accu-
racy. As shown in Figure 9(a), relatively high inaccuracy
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(a) (b)

Figure 8: Combustion dataset. (a) View navigation graph. (b) From left to right, top to bottom: we transition from the PCA view, to the cyan,
purple, and brown subspace views; then to the orange, and finally to the black subspace view. Two snapshots of the dynamic transition between
the orange and the black subspace views connected by black arrows are included.

is observed in the circled region (that corresponds to the
orange subspace) based on projection distortion measures
[LWBP14,MLGH13]. This is due to the fact that PCA max-
imizes variance across all dimensions while the orange sub-
space contains only two dominant dimensions (i.e., O2 and
HO2 in its bi-plot in Figure 9(c)) with large variance. On
the other hand, when transitioning from the PCA view to the
orange subspace view, intrinsic structure of the orange sub-
space is better preserved while the high distortion region is
shifted elsewhere (Figure 9(b)). In addition, through the or-
ange subspace view, we obtain additional understanding of
the extinction pheonomina. As highlighted in Figure 9(c)-
(d), temperature profile (c) indicates two distinct local min-
ima (pointed by two red arrows) in the data, while the HO2
concentrations (d) exhibit significant variations surrounding
these minima (pointed by two red arrows). According to the
domain experts, the differences in the HO2 concentration
correspond to two distinct types of extinction conditions, one
of which is not readily visible in the PCA view.

(a) (b)

Figure 11: Yale face dataset. (a) View navigation graph. (b) illus-
trates the correlation between the points distribution and the lighting
directions in the PCA view.

Yale Face Dataset. The Yale face dataset is a subsample
from the original database [BHK97]. It consists of 439 face
images from seven people, which we roughly label as (in no
particular order): one African female, one Asian female, two
Asian males, one Caucasian male, one Indian male, and one
Middle Eastern male. During the visual analysis, we suppose
the true labels are unknown and later use these labels to vali-

date our observations. The original images have a resolution
of 32×32. We use random projection to reduce their resolu-
tion to 10×10; therefore, the points are embedded in 100D
space. As shown in the view navigation graph (Figure11(a)),
the subspace analysis gives four 2D subspaces (#2-orange,
#3-cyan, #4-brown, #6-red) and three 3D subspaces (#0-
black, #1-purple, #5-green). We start our exploration of the
data from the PCA view (Figure 11(b)). Although the PCA
view gives poor separations among different subspace clus-
ters, we notice that points from each cluster are arranged in a
circular fashion according to the continuously varying light-
ing directions. This observation helps us examine the shifts
in lighting conditions within target subspace views during
dynamic projections.

(a) (b)

Figure 12: Yale face dataset. (a) The cyan subspace view. (b) The
brown subspace view.

Now we transition from the PCA view to the orange sub-
space view (Figure 10(a)). We observe a rotational motion
around a horizontal axis during such a transition (see the
video for details), which leads to a side angle viewing of
the data. In the orange subspace view (Figure 10(b)), we see
that the green, purple, and orange clusters form three strat-
ified sets. By validating with the face images, we see that
these three clusters contains mostly images from an Asian
female and two Asian males, respectively. Furthermore, we
observe that the amount of shadow in the images increases
as we move along the dominating direction of each cluster
towards its overlapping region. In addition, as illustrated in
Figure 10(c), the misclassified points (highlighted in the dot-
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(b) (c) 

(e) (f) 

(a) 

(d) 

Figure 10: Yale face dataset. (a)-(b) Dynamic transition from the PCA to the orange subspace view; two snapshots of the animations are
included. (b) Shows the three stratified sets and highlights the image variation (the amount of shadow) along their dominant directions. (c)
highlights the mis-classification (circled area) caused by poor lighting conditions. (d)-(e) Dynamic transition from the PCA to the red subspace
view; two snapshots of the animation are included. (f) Shows the red points in the red space view where their corresponding images vary along
the cluster’s dominating direction according to the differences in lighting direction.

ted circle) appear at the top of the embedding that corre-
spond to the face images where most facial features are in
deep shadows. Similarly, when transitioning from the PCA
view to the brown and cyan subspace views, respectively, we
observe clear class separations among the target subspace
views. That is, the brown and the cyan clusters (mostly con-
tains images of an Indian male and a Caucasian male, re-
spectively) are shown to be well-separated from the rest of
the data points (see Figure 12(a)-(b) and the video).

Finally, when transitioning from the PCA view to the red
subspace view (which contains mostly images of an African
woman), we observe a slightly different rotation, and the re-
sulting embedding does not exhibit clear class separation be-
tween the red cluster and the remaining points (Figure 10
(d)-(e) and video). Further exploration (Figure 10 (f)) re-
veals that along the dominant direction, the images in the
red cluster vary according to the directions of lighting. This
trend is very different from that the one green, purple, and or-
ange subspace clusters (which all contain images of people
of Asian origin) share, where images vary along the domi-
nating direction according to the amount of shadow. Such a
distinction between the two groups is likely caused by the
differences in facial features and skin tone.

(a) (b) (c) (d) 

Figure 13: GGobi results using the grand tour and projection pursuit
holes index; example frames for the combustion (a)-(b) and face
datasets (c)-(d).

6 Evaluation and Discussion

Comparisons with Existing Systems. We provide compar-
isons between our proposed framework and three relevant
systems: GGobi [STBC03], Scatterplot dice [EDF08], and
TripAdvisorND [NM13]. These systems either utilize some
forms of subspace finding algorithms or use animated tran-
sitions between a pair of 2D views for data exploration.

The GGobi [STBC03] system utilizes the dynamic pro-
jection by defining a series of transition target projec-
tions, either by random generation [Asi85] or by switching
among different projection pursuit indices (e.g., holes, cen-
tral mass). Due to the random nature of such transitions,
it may take significantly longer time for a user to identify
the informative views representing meaningful structures.
Meanwhile, the projection pursuit indices try to capture a
pre-defined set of properties, which may not be meaningful
for a given dataset. Such limitation is illustrated in Figure 13,
where we apply the GGobi system to our example datasets
based on the holes index and capture a few frames within
their dynamic projection results (see video for details). A
“hole”-like structure is detected by the projection pursuit in-
dex within the face dataset, but such a structure does not exist
for the combustion dataset. In our proposed framework, the
source and target views are obtained through subspace anal-
ysis, which naturally captures the intrinsic structure of the
data. With the help of the view navigation graph, we believe
our tool is more effective in exploring the space of projec-
tions and revealing important structures.

The Scatterplot dice [EDF08] approach is built on top of
the scatterplot matrix. A 3D transition between a pair of plots
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in the scatterplot matrix can be obtained when they share one
axis (i.e., shared dimension). The system automatically gen-
erates a series of 3D animations to connect any two plots.
The system is easy to understand, and the animations pro-
vide valuable information. However, one of the fundamental
limitations of such a system is the lack of scalability as the
number of dimensions goes up. One of our examples con-
tains a 100D dataset. Using the scatterplot matrix, we will
end up with a large number of unique projections that is al-
most impossible to be explored interactively.

The TripAdvisorND [NM13] system provides a Fo-
cus+Context approach, where a number of “tourist sites”,
each corresponding to the best view of each subspace (the
subset of dimensions), is given as an overview of the
data. The user can delve into each of these tourist sites
for a more focused study by tilting the projection plane
around a local neighborhood. Our framework differs from
the TripAdvisorND in three ways. First, instead of finding
related subsets of dimensions, our proposed approach de-
composes the data into clusters, each represented by a simple
(not necessarily axis-aligned) linear subspace. Second, com-
pared to an ad-hoc similarity measure, we define a distance
measure between a pair of views rigorously through the
Grassmann distance. Third, while TripAdvisorND allows
local neighborhood exploration around one projection, our
framework allows full transitions among multiple structural-
revealing projections, and helps the user obtain insights via
both local and global exploration.

Interviews with the Experts. To better evaluate the usabil-
ity of our tool, and in particular, the effectiveness of dynamic
projections, we conduct in-depth interviews with two com-
puter science faculties, one in machine learning (Expert A)
and one in information visualization (Expert B). We obtain
their opinions and suggestions on various aspects of the sys-
tem.

Expert A finds our tool to be useful in "providing an alter-
native, interesting way to visualize high-dimensional data",
compared to the traditional dimensionality reduction meth-
ods. The subspaces captured by our algorithm reveal local
linear relationships that may otherwise be hidden by a pro-
jection optimized for global properties (such as PCA). Local
views are linked by the navigation graph to form a global
picture. To evaluate the effectiveness of dynamic projec-
tions, Expert A first inspects individual subspace views, and
then he enables and explores animated transitions between
them. He states that “the animated transition is very useful
in tracking changes between two projections, and the transi-
tions are easy to follow.” In addition, each frame is computed
from a linear projection, thereby making it easy to interpret
the animation. Expert A also suggests we include other lin-
ear projections methods (e.g., Linear Discriminate Analy-
sis for labeled data) in our tool to obtain additional insights.
Since high-dimensional data visualization techniques are in-
dispensable for better understanding machine learning algo-
rithms, Expert A is interested in using our tool for visualiz-

ing certain natural language processing (NLP) word vector
datasets; such a collaboration is currently underway.

Expert B points out that the most significant advantage of
using dynamic projection in our tool is the ability to track the
correspondences among individual points between the start-
ing and ending projections; such correspondences could be
further highlighted by enabling motion trails (an optional vi-
sual component implemented in our current system). Com-
bining the dynamic transitions with cluster labels, the user
can infer the overall changes easily in cluster configurations.
Expert B emphasizes that extra caution is needed when in-
ferring high-dimensional structures based on the intuitions
we obtained from the 3D space. He suggests that a slider
be added to allow the user to play the animated transitions
back and forth, which could facilitate the understanding of
dynamic projection. We have integrated such a functionality
in our tool.

System Scalability and Flexibility. The usability of our tool
depends greatly on its scalability and flexibility. The sub-
space clustering (O(n2k)) and basis estimation (O(k2) ) al-
gorithm have a combined time complexity of O(n2k + k2)
(where the n is the number of points, and k is the number of
dimensions). For the example datasets, the subspace analy-
sis computation takes between 15-120 seconds on an Intel
Core i5 2.8GHz desktop computer. Our system allows both
runtime turning of model parameters and pre-computation
with multiple parameter configurations. The n2 factor limits
the subspace clustering algorithm for processing extremely
large datasets directly. However, by utilizing smart sampling
and summarization, we have been able to scale the system
to handle very large datasets that contains several million
points [LWT∗14]. To handle a large data dimension (e.g., the
face dataset), we apply random projection to reduce the di-
mension to a manageable size. With a volume rendering ex-
tension, the core functionality of our system can be adopted
for designing multi-dimensional transfer function for visu-
alizing multivariate volume dataset [LWT∗14], which exem-
plifies the flexibility of the proposed framework.
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