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Abstract
The objective of this paper is to show that point cloud data can
under certain circumstances be clustered by strata in a plausible
way. For our purposes, we consider a stratified space to be a
collection of manifolds of different dimensions which are glued
together in a locally trivial manner inside some Euclidean space. To
adapt this abstract definition to the world of noise, we first define
a multi-scale notion of stratified spaces, providing a stratification
at different scales which are indexed by a radius parameter. We
then use methods derived from kernel and cokernel persistent
homology to cluster the data points into different strata. We prove
a correctness guarantee for this clustering method under certain
topological conditions. We then provide a probabilistic guarantee
for the clustering for the point sample setting – we provide bounds
on the minimum number of sample points required to state with
high probability which points belong to the same strata. Finally, we
give an explicit algorithm for the clustering.

1 Introduction.
Manifold learning is a basic problem in geometry, topology,
and statistical inference that has received a great deal of re-
cent attention. One formulation of the problem is: given a
point cloud of data sampled from a manifold in an ambient
space RN , infer the dimension and structure of the underly-
ing manifold. A limitation of this problem statement is that
it does not apply to sets that are not manifolds. For example,
we may consider the more general class of stratified spaces
that can be decomposed into strata – manifolds of varying
dimension each of which fit together in some uniform way
inside the higher dimensional space.

This paper is meant as a first step towards the follow-
ing problem in stratification learning: given a point cloud
sampled from a stratified space, how do we cluster points
that belong to the same stratum piece together while keep-
ing points in different strata apart. Intuitively, a reasonable
strategy would be to place two points in the same stratum
piece if they “look the same locally” – they have identical
neighborhoods within the larger space at some very small
scale. However, the notion of “local” becomes unclear in
the context of the uncertainty induced from sampling, since
everything becomes noisy at small scales (in a metaphori-
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cal sense, if one zooms in closely enough on a point cloud,
then one will always see what looks like an open set of the
top ambient dimension, no matter what the intrinsic dimen-
sion should have been). In response, we introduce a radius
or scale parameter r and define a notion of local equivalence
∼r at each scale r. The equivalences classes of ∼r will then
be taken as the connected components of our strata.

We will use tools derived from algebraic topology. In
particular, we define our equivalence relations ∼r via maps
that transfer information carried by local homology groups,
and we then use persistent homology [16] methods to infer
the properties of these maps.
Prior work. Consistency in manifold learning has often
been recast as homology inference – as the number of points
in a point cloud goes to infinity, the homology inferred
from the point cloud converges to the true homology of the
underlying space. Results of this nature have been given for
manifolds [30, 31] and a large class of compact subsets of
Euclidean space [8]. Stronger results in homology inference
for closed subsets of a metric space are given in [13].

Geometric approaches to stratification learning have
also been developed. These include inference of a mixture of
linear subspaces [27], mixture models for general stratified
spaces [23], and generalized Principal Component Analysis
(GPCA) [32] which was developed for dimension reduction
for mixtures of manifolds.

The study of stratified spaces has long been a focus of
pure mathematics; see, for example, [20, 33]. The problem
of inference for the local homology groups of a sampled
stratified space in a deterministic setting has been addressed
in [4].
Contributions. In this paper we propose an approach to
stratification learning based on local homology inference.
The results in this paper are:

1. A topological definition of two points belonging to the
same stratum by assessing the multi-scale local struc-
ture of the points through a local homology transfer map
(§3 Definition 3.1);

2. Topological conditions on the relation between the
point sample and the underlying space under which this
characterization holds (§3 Theorem 3.2);

3. Finite sample bounds for the minimum number of
points required in the sample to state with high proba-
bility which points belong to the same stratum (§4 The-
orem 4.1);



4. An algorithm that computes which points belong to the
same stratum (§5).

2 Background.
We first describe general persistence modules [34, 7], focus-
ing mainly on those that arise from maps between absolute
or relative homology groups induced by inclusions of topo-
logical spaces or pairs of such spaces. We then discuss strat-
ifications and their connection to the local homology groups
of a topological space. Basics on homology itself are as-
sumed; for a readable background, see [29] or [24], or [16]
for a more computationally oriented treatment.
Persistence modules. For simplicity, our treatment of per-
sistence modules adapted from [7] is restricted to Z/2Z-
vector spaces (in general, persistence can be defined for vec-
tor spaces over any field, Z/2Z is used here for computa-
tional simplicity). Let A be some subset of R. A persistence
module FA is a collection {Fα}α∈A of Z/2Z-vector spaces,
together with a family {fβα : Fα → Fβ}α≤β∈A of linear
maps such that α ≤ β ≤ γ implies fγα = fγβ ◦ fβα , and
fαα = idFα . We will assume that the index set A is either R
or R≥0 and not explicitly state indices unless necessary.

A real number α is said to be a regular value of the
persistence module F if there exists some ε > 0 such that
the map fα+δ

α−δ is an isomorphism for each δ < ε. Otherwise
we say that α is a critical value of the persistence module;
if A = R≥0, then α = 0 will always be considered to be
a critical value. We say that F is tame if it has a finite
number of critical values and if all the vector spaces Fα
are of finite rank. Any tame R≥0-module F must have a
smallest non-zero critical value ρ(F); we call this number
the feature size of the persistence module. Assume F is
tame and so we have a finite ordered list of critical values
0 = c0 < c1 < . . . < cm. We choose regular values {ai}mi=0

such that ci−1 < ai−1 < ci < ai for all 1 ≤ i ≤ m, and we
adopt the shorthand notation Fi := Fai and f ji : Fi → Fj ,
for 0 ≤ i ≤ j ≤ m. A vector v ∈ Fi is said to be born
at level i if v 6∈ im f ii−1, and such a vector dies at level j if
f ji (v) ∈ im f ji−1 but f j−1

i (v) 6∈ im f j−1
i−1 . This is illustrated

in Figure 1 (a). We then define P i,j to be the vector space
of vectors that are born at level i and then subsequently die
at level j, and let βi,j denote its rank. We note that it is
in general possible to have vectors which are born at −∞
or which never die, and that some care is needed with these
definitions; in our context, this will not happen, so we do not
get into these technicalities.
Persistence diagrams. Let R̄ = R ∪ {−∞,∞} denote the
extended real line. The extended plane R̄2 = R̄ × R̄ is
endowed with the l∞ norm. That is, for any two points u =
(x, y) and u′ = (x′, y′) in the extended plane, we define ||u−
u′||∞ = max{|x−x′|, |y− y′|}. The information contained
within a tame module F can be compactly represented by a
persistence diagram, Dgm(F), which is a multi-set of points

in this plane. It contains βi,j copies of the points (ci, cj), as
well as infinitely many copies of each point along the major
diagonal y = x. In Figure 3 (a) the persistence diagrams for
a curve and a point cloud sampled from it are displayed, see
below for a full explanation of this figure.

We define the bottleneck distance between any two
persistence diagrams D and D′ to be:

dB(D,D′) = inf
Γ:D→D′

sup
u∈D
||u− Γ(u)||∞,

where Γ ranges over all bijections from D to D′. Under cer-
tain conditions which we now describe, persistence diagrams
will be stable under the bottleneck distance.

Two persistence modulesF and G are said to be strongly
ε-interleaved if, for some positive ε, there exist two families
{ξα : Fα → Gα+ε}α and {ψα : Gα → Fα+ε} of linear
maps which commute with the module maps {fβα} and {gβα}
in the appropriate manner. More precisely, we require that,
for each α ≤ β, the four diagrams in Figure 2 all commute
[7].
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Figure 2: Commuting diagrams for strongly interleaving
persistence modules.

We can now state the diagram stability result ([7],
Theorem 4.4), that we will need below.

THEOREM 2.1. (DIAGRAM STABILITY THEOREM) Let F
and G be two tame persistence modules and ε >
0. If F and G are strongly ε-interleaved, then
dB(Dgm(F),Dgm(G)) ≤ ε.

When we wish to compute the persistence diagram associ-
ated to a module F , it is often convenient to substitute an-
other module G, usually one defined in terms of simplicial
complexes or other computable objects. The following theo-
rem ([16], p.159) gives a condition under which this is pos-
sible.

THEOREM 2.2. (PERSISTENCE EQUIVALENCE THEOREM)
Given two persistence modules F and G, suppose there exist
for each α isomorphisms Fα ∼= Gα which commute with the
module maps, then Dgm(F) = Dgm(G).
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Figure 1: (a) The vector v is born at level i and then it dies at level j. (b) Commuting diagrams for (co)kernel modules.
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Figure 3: (a) Illustration of a point cloud and its persistence diagram: left, X is the curve embedded as shown in the
plane and U is the point cloud; middle, the persistence diagram Dgm1(dX); right, the persistence diagram Dgm1(dU). The
diagrams are generated by thickening X (or U) while tracking the birth and death of homology classes. (b) Illustration of
relative homology and its persistence diagram: left, the space X is in solid line and the closed ball B has dotted boundary;
right, the persistence diagram for the module {H1(Xα ∩B,Xα ∩ ∂B)}. Here, α goes through four non-zero critical values
c1 < c2 < c3 < c4 that correspond to the four colored level sets, where the points in the persistence diagram correspond to
the birth and death of the four relative homology classes respectively. In particular, α4 is created when the level set at value
c2 touches B.

That is, if all the vertical maps are isomorphisms and all
squares commute in the following diagram, then Dgm(F) =
Dgm(G).

. . .→Fα → Fβ → . . .

↑∼= ↑∼=
. . .→Gα → Gβ → . . .

(Co)Kernel modules. Suppose now that we have two
persistence modules F and G along with a family of maps
{φα : Fα → Gα} which commute with the module maps
– for every pair α ≤ β, we have gβα ◦ φα = φβ ◦ fβα . In
other words, every square commutes in the diagram shown in
Figure 1 (b). Then, for each pair of real numbers α ≤ β, the
restriction of fβα to kerφα maps into kerφβ , giving rise to
a new kernel persistence module, with persistence diagram
denoted by Dgm(kerφ). Similarly, we obtain a cokernel
persistence module, with diagram Dgm(cokφ). For details
on persistent homology for kernels and cokernels, see [14].
Homology and distance functions. Consider a family of
topological spaces {Xα}, along with inclusions Xα ↪→ Xβ
for all α ≤ β. The inclusions induce maps Hj(Xα) →
Hj(Xβ), for each homological dimension j ≥ 0, and hence

we have persistence modules for each j. Defining H(Xα) =⊕
j Hj(Xα) and taking direct sums of maps in the obvious

way, will also give one large direct-sum persistence module
{H(Xα)}.

Given a compact topological spaceX embedded in some
Euclidean space RN , we define dX as the distance function
which maps each point in the ambient space to the distance
from its closest point in X. We let Xα denote the sublevel set
d−1
X [0, α]; each sublevel set should be thought of as a thick-

ening of X within the ambient space. Increasing the thick-
ening parameter produces a growing family of sublevel sets,
giving rise to the persistence module {H(Xα)}α∈R≥0; we
denote the persistence diagram of this module by Dgm(dX)
and use Dgmj(dX) for the diagrams of the individual mod-
ules for each homological dimension j. In Figure 3(a), we
see an example of such an X embedded in the plane, along
with the persistence diagram Dgm1(dX). We also have the
persistence diagram Dgm1(dU), where U is a dense point
sample of X. Note that the two diagrams are quite close in
bottleneck distance. Indeed, the bottleneck distance between
the two diagrams will always be upper-bounded by the Haus-
dorff distance between the space and its sample.



We can also have persistence modules of relative ho-
mology groups. For example, referring to the left of Fig-
ure 3(b), we let X be the space drawn in solid lines and B
the closed ball whose boundary is drawn as a dotted circle.
By restricting dX to B and also to ∂B, we produce pairs of
sublevel sets (Xα ∩ B,Xα ∩ ∂B). Using the maps induced
by the inclusions of pairs, we obtain the persistence module
{H(Xα ∩B,Xα ∩ ∂B)}α∈R≥0

of relative homology groups.
The persistence diagram, for homological dimension 1, ap-
pears in Figure 3 (b) right. Here, α goes through four non-
zero critical values c1 < c2 < c3 < c4 that correspond to the
four level sets, where the points in the persistence diagrams
(Figure 3 (b) right) correspond to the birth and death of the
four relative homology classes respectively.
Stratified spaces. We assume that we have a topological
space X embedded in some Euclidean space RN . A d-
dimensional stratification of X is a decreasing sequence of
closed subspaces X = Xd ⊇ Xd−1 ⊇ . . .X0 ⊇ X−1 =
∅, such that for each i, the i-dimensional stratum Si =
Xi − Xi−1 is a (possibly empty) i-manifold. The connected
components of each stratum Si are called i-dimensional
pieces. See Figure 4 (a) for an illustration.

One usually also imposes a requirement to ensure that
the various pieces fit together uniformly. There are a number
of different ways this can be done (see [25] for an extensive
survey). For example, one might assume that for each x ∈
Si, there exists a small enough neighborhood N(x) ⊆ X and
a (d− i− 1)-dimensional stratified space Lx (the link of x)
such that N(x) is stratum-preserving homeomorphic to the
product of an i-ball and the cone on Lx; one can then show
that the space Lx depends only up to homeomorphism on
the particular piece containing x. This definition, formally
known as a cs-space [22], is illustrated in Figure 4 (b). Since
the topology on X is that inherited from the ambient space,
this neighborhoodN(x) can take the form X∩Br(x), where
Br(x) is a small enough ball around x in the ambient space.

We note that the above definition does not require
all strata to be contained within the closure of the top-
dimensional stratum. For example, a two-dimensional plane
that has been punctured by a line would be an example of a
two-dimensional cs-space.
Local homology. Recall ([29]) that the local homology
groups of a space X at a point x ∈ X are the groups
Hi(X,X−x) in each homological dimension i. IfX happens
to be a d-manifold, or if x is simply a point in the top-
dimensional stratum of a d-dimensional stratification, then
these groups are rank one in dimension d and trivial in all
other dimensions. On the other hand, the local homology
groups for lower-stratum points can be more interesting; for
example if x is the crossing point in Figure 3 (b) (not the
center of ball B), then H1(X,X− x) has rank three.

Suppose that x and y are two points from the same piece
of a particular stratification of the cs-spaceX. Then it is easy

to show, by using the local product structure around each
point, that the local homology groups of x and y must have
the same ranks in all dimensions. The converse is certainly
false, as can be seen by examining Figure 4(b): the points
x and y must be placed into different strata, but their local
homology groups are both rank two in dimension two, and
zero otherwise. We note, however, that whenever z is a one-
stratum point sufficiently close to the pinch point x, let p = x
and q = z, the map φX(p, q, r) defined in (3.1) fails to be an
isomorphism for all small enough radii r. This is discussed
in detail in the following section.

3 Topological Inference Theorem.
In this section we build a useful analytical tool based on the
contrapositive of the statement above: given two points x and
y sampled from a space X, we can hope to state, based on
some appropriate definition of their local homology groups,
that the two points should not be placed in the same piece of
any stratification. To do this, we first adapt the definition
of these local homology groups, as well as certain maps
between them which we shall define below, into a multi-
scale and robust framework. More specifically, we introduce
a radius parameter r and a notion of local equivalence, ∼r,
which allows us to group the points of X, as well as points
of the ambient space, into strata at this radius scale. We then
give the main result of this section: topological conditions
under which the points in a point cloud U sampled from X
can be clustered according to these newly-defined strata at
different radius scales.

3.1 Local Equivalence. We begin by describing the local
homology intersection map that is crucial in our formulation.
Local homology intersection map. We assume that we are
given a cs-space X embedded in some Euclidean space in
RN . For each radius r ≥ 0, and for each pair of points
p, q ∈ RN , we define the following relative homology map
φX(p, q, r):

H(X ∩Br(p),X ∩ ∂Br(p))→(3.1)
H(X ∩Br(p) ∩Br(q),X ∩ ∂(Br(p) ∩Br(q))).

Intuitively, this map can be understood as taking a chain,
throwing away the parts that lie outside the smaller range,
and then modding out the new boundary. Alternatively,
one may think of it as being induced by a combination of
inclusion and excision. A third possibility is to consider the
map

H(X,X−Br(p))→ H(X,X− (Br(p) ∩Br(q))),(3.2)

although the former is easier to compute combinatorially
than the later. For a formal and technical definition, see
Appendix A.

For example, consider the space X drawn in the plane
as shown in Figures 5 (a), (b), and (c). For each pair
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Figure 4: (a) The coarsest stratification of a pinched torus with a spanning disc stretched across the hole. (b) The space
in (a) is a cs-space, where the points x and y are respectively in the 0-stratum and the 1-stratum, their neighborhoods are
highlighted.
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Figure 5: Let f = φX(p, q, r) and g = φX(q, p, r). The local homology classes are labeled in their corresponding locations.
(a) p and q do not have the same local structure at radius r since ker f 6= 0. (b) p and q do not have the same local
structure at radius r since cok f 6= 0. (c) p and q have the same local structure at radius r since ker f = cok f = 0 and
ker g = cok g = 0.

(p, q) of points shown in the three parts of the figure, we
let f = φX(p, q, r) and g = φX(q, p, r). Then the points p
and q are considered to have the same local structure if f and
g are both isomorphisms; equivalently, if ker f = cok f = 0
and if ker g = cok g = 0. In part (a), ker (f) 6= 0, since the
classes α2 and α3 go to zero when passing to the intersection.
In part (b), there is a class γ2 ∈ cok f . The maps f and g in
part (c) are both isomorphisms.

Returning to the general case, we use these maps to
impose an equivalence relation on RN .

DEFINITION 3.1. (LOCAL EQUIVALENCE) Two points x
and y are said to have equivalent local structure at radius
r, denoted x ∼r y, iff there exists a chain of points x =
x0, x1, . . . , xm = y from X such that, for each 1 ≤ i ≤ m,
the maps φX(xi−1, xi, r) and φX(xi, xi−1, r) are both iso-
morphisms.

In other words, x and y have the same local structure at this
radius iff they can be connected by a chain of points which
are pairwise close enough and whose local homology groups
at radius r transfer isomorphically into each other via the
intersection maps.

Different choices of r will of course lead to different
equivalence classes. For example, consider the space X
drawn in the plane as shown in the left half of Figure 6 (a).
At the radius drawn, point z is equivalent to the cross point
and is not equivalent to either the point x or y. Note that
some points from the ambient space will now be considered
equivalent to x and y, and some others will be equivalent to
z. On the other hand, a smaller choice of radius would result
in all three of x, y, and z belonging to the same equivalence
class.
(Co)Kernel persistence. In order to relate the point cloud
U to the equivalence relation ∼r, we must first define a
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Figure 6: (a) Illustration of equivalence relation: left, x ∼r y, y �r z; right, the 1-dim persistence diagram, for the kernel
of the map going from the z ball into its intersection with the y ball. A number, i.e., #2, labeling a point in the persistence
diagram indicates its multiplicity. (b) Regions in X-diagrams and U-diagrams. The point in the X-diagrams lie either along
the solid black line or in the darkly shaded region. Adding the lightly shaded regions, we get the region of possible points
in the U-diagrams.

multi-scale version of the maps φX(p, q, r); we do so by
gradually thickening the space X using the sublevel sets of
its distance function. For each p, q ∈ RN and r, α ≥ 0,
we will consider the intersection map φXα(p, q, r), which is
defined by substituting Xα for X in (3.1). Note of course
that φX(p, q, r) = φX0 (p, q, r). For the moment, we fix a
choice of p, q, and r, and we use the following shorthand,
BX
p (α) = Xα ∩Br(p), ∂BX

p (α) = Xα ∩ ∂Br(p), BX
pq(α) =

Xα ∩ Br(p) ∩ Br(q), ∂BX
pq(α) = Xα ∩ ∂(Br(p) ∩ Br(q)),

and we also often write BX
p = BX

p (0) and BX
pq = BX

pq(0).
By replacing X with U in this shorthand, we also write
BU
p (α) = Uα ∩Br(p), and so forth.

For any pair of non-negative real values α ≤ β the
inclusion Xα ↪→ Xβ gives rise to the following commutative
diagram:

H(BX
p (α), ∂BX

p (α))
φX
α−−→ H(BX

pq(α), ∂BX
pq(α))(3.3)

↓ ↓

H(BX
p (β), ∂BX

p (β))
φX
β−−→ H(BX

pq(β), ∂BX
pq(β))

Hence there are maps kerφXα → kerφXβ and cokφXα →
cokφXβ . Allowing α to increase from 0 to ∞ gives rise
to two persistence modules, {kerφXα} and {cokφXα}, with
diagrams Dgm(kerφX) and Dgm(cokφX). Recall that a
homomorphism is an isomorphism iff its kernel and cokernel
are both zero. In our context then, the map φX is an
isomorphism iff neither Dgm(kerφX) nor Dgm(cokφX)
contain any points on the y-axis above 0.
Example. As shown in the left part of Figure 6 (a), x, y, and
z are points sampled from a cross embedded in the plane.
Taking r as drawn, the right part of Figure 6 (a) displays
Dgm1(kerφX), where φX = φX(z, y, r); we now explain
this diagram in some detail. The group H1(BX

z , ∂B
X
z ) has

rank three; as a possible basis we might take the three local
homology classes represented by α1, α2, and α3, which are

pairs of segments defining the northwest-facing right angle,
the northeast-facing right angle, and the southeast-facing
right angle. Under the intersection map φX = φX0 , the first
of these classes α1 maps to the generator of H1(BX

zy, ∂B
X
zy),

while the other two map to zero. Hence kerφX0 has rank two.
As X starts to thicken into the ambient space, both classes in
this kernel eventually die, one at the α value which fills in
the northeast corner of the larger ball, and the other at the α
value which fills in the southeast corner; these two values are
the same here due to symmetry in the picture. At this value,
the map φXα becomes an isomorphism and it remains so until
the intersection of the two balls fills in completely. This gives
birth to a new kernel class which subsequently dies when the
larger ball finally fills in. The diagram Dgm1(kerφX) thus
contains three points; the leftmost two show that the map φX

is not an isomorphism, and thus that z and y do not have the
same local structure at the chosen radius level.

3.2 Topological Inference Theorem. Given a point cloud
U sampled from X, we consider the following question:
for a radius r, how can we infer whether or not any given
pair of points in U has the same local structure at this
radius? In this subsection, we prove a theorem which
describes the circumstances under which we can make the
above inference. Naturally, any inference will require that
we use U to judge whether or not the maps φX(p, q, r) are
isomorphisms. The basic idea is that if U is a dense enough
sample of X, then the (co)kernel diagrams defined by U will
be good enough approximations of the diagrams defined by
X.
(Co)Kernel stability. Again we fix p, q, and r, and write
φX = φX(p, q, r). For each α ≥ 0, we let Uα = d−1

U [0, α].
We consider φUα = φUα(p, q, r), defined by replacing X with
Uα in (3.1), as

H(Uα ∩Br(p),Uα ∩ ∂Br(p))→(3.4)
H(Uα ∩Br(p) ∩Br(q),Uα ∩ ∂(Br(p) ∩Br(q))).



Running α from 0 to ∞, we obtain two more persis-
tence modules, {kerφUα} and {cokφUα}, with diagrams
Dgm(kerφU) and Dgm(cokφU).

If U is a dense enough sample of X, then the (co)kernel
diagrams defined by U will be good approximations of
the diagrams defined by X. More precisely, we have the
following theorem,

THEOREM 3.1. ((CO)KERNEL DIAGRAM STABILITY)
The bottleneck distances between the (co)kernel diagrams
of φU and φX are upper-bounded by the Hausdorff distance
between U and X:

dB(Dgm(kerφU),Dgm(kerφX)) ≤ dH(U,X),

dB(Dgm(cokφU),Dgm(cokφX)) ≤ dH(U,X).

Proof. We prove the first inequality; the proof of the second
is identical. Put ε = dH(U,X). Then, for each α ≥ 0,
the inclusions Uα ↪→ Xα+ε and Xα ↪→ Uα+ε induce maps
kerφUα → kerφXα+ε and kerφXα → kerφUα+ε. These maps
clearly commute with the module maps in the needed way,
and hence we have the required ε-interleaving and can thus
appeal to Theorem 2.1.

Main inference result. We now suppose that we have a
point sample U of a space X, where the Hausdorff distance
between the two is no more than some ε. In this case, we
call U an ε-approximation of X. Given two points p, q ∈ U
and a fixed radius r, we set φX = φX(p, q, r), and we wish
to determine whether or not φX is an isomorphism. Since we
only have access to the point sample U, we instead compute
the diagrams Dgm(kerφU) and Dgm(cokφU); we provide
an algorithm for doing this in §5.

Given any persistence diagram D, which we recall is a
multi-set of points in the extended plane, and two positive
real numbers a < b, we letD(a, b) denote the intersection of
D with the portion of the extended plane which lies above
y = b and to the left of x = a; note that these points
correspond to classes which are born no later than a and die
no earlier than b.

For a fixed choice of p, q, r, we consider the follow-
ing two persistence modules: {H(BX

p (α), ∂BX
p (α))} and

{H(BX
pq(α), ∂BX

pq(α))}. We let σ(p, r) and σ(p, q, r) de-
note the respective feature sizes of these modules and then
set ρ(p, q, r) to their minimum. Geometrically, ρ(p, q, r) is
related to a local reach and the gradient of dX (as detailed in
[5]).

We now give the main theorem of this section, which
states that we can use U to decide whether or not φX(p, q, r)
is an isomorphism as long as ρ(p, q, r) is large enough
relative to the sampling density.

THEOREM 3.2. (TOPOLOGICAL INFERENCE THEOREM)
Suppose that we have an ε-approximation U from X.

Then for each pair of points p, q ∈ RN such that
ρ = ρ(p, q, r) ≥ 4ε, the map φX = φX(p, q, r) is an isomor-
phism iff Dgm(kerφU)(ε, 3ε) ∪Dgm(cokφU)(ε, 3ε) = ∅.

Proof. To simplify exposition, we will refer to points
in Dgm(kerφX) ∪ Dgm(cokφX) and Dgm(kerφU) ∪
Dgm(cokφU) as X-points and U-points, respectively.

Whenever 0 < α < β < 4ε < ρ, the two vertical maps
in diagram (3.3) will by definition both be isomorphisms.
This is evidently an immediate consequence of the definition
of the feature size. Hence the maps kerφXα → kerφXβ and
cokφXα → cokφXβ must also be isomorphisms, and so, as α
increases from 0 to∞, any element of the (co)kernel of φX

must live until at least 4ε, and any (co)kernel class which is
born after 0 must in fact be born after 4ε. In other words,
any X-point must lie either to the right of the line x = 4ε, or
along the y-axis and above the point (0, 4ε); see Figure 6 (b).
Recall that φX is an isomorphism iff kerφX = 0 = cokφX.
Thus φX is an isomorphism iff the black line in Figure 6 (b)
contains no X-points.

On the other hand, Theorem 3.1 requires that every U-
point must lie within ε of an X-point. That is, all U-points
are contained within the two lightly shaded regions drawn in
Figure 6 (b). Since the rightmost such region is more than ε
away from the thick black line, there will be a U-point in the
left region iff there is an X-point on the thick black line. But
the U-points within the left region are exactly the members
of Dgm(kerφU)(ε, 3ε) ∪Dgm(cokφU)(ε, 3ε).

Figure 6 (b) illustrates Theorem 3.2, that is, under
certain topological conditions, φX is an isomorphism if and
only if certain regions in the U-diagrams are empty. For
example, suppose X is the cross shown in Figure 7 (a), with
p, q, r as drawn. p and q are locally different at this radius
level, as shown by the presence of two black empty points
on the y-axis of the kernel persistence X-diagram (Figure 7
(c)). Suppose X is unknown and we are only given U, an
ε-approximation of X (Figure 7 (b)). From the kernel U-
diagram, which has two points in the relevant rectangle, we
can infer that p and q do not have the same local structure at
radius level r by applying Theorem 3.2.

4 Probabilistic Inference Theorem.
The topological inference of §3 states conditions under
which the point sample U can be used to infer stratification
properties of the space X. The basic condition is that the
Hausdorff distance between the two must be small. In this
section we describe a probabilistic model for generating the
point sampleU, and we provide an estimate of how large this
point sample should be to infer stratification properties of
the space X with a quantified measure of confidence. More
specifically, we provide a local estimate, based on ρ(p, q, r)
and ρ(q, p, r), of how many sample points are needed to in-
fer the local relationship at radius level r between two fixed
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Figure 7: (a) Space X is the black cross, with p, q, r as drawn. (b) Space U is an ε-approximation of X. (c) The kernel
persistence diagram of φX(p, q, r) (X-diagram) is shown to contain black empty points; the kernel diagram of φU(p, q, r)
(U-diagram) is shown to contain red filled points. Suppose only U is given, we can use U-diagram to infer that points p and
q are not locally equivalent.

points p and q; this same theorem can be used to give a
global estimate of the number of points needed for inference
between any pair of points whose ρ-values are above some
fixed low threshold.
Sampling strategy. We assume X to be compact. Since
the stratified space X can contain singularities and maximal
strata of varying dimensions, some care is required in the
sampling design. Consider for example a sheet of area one,
punctured by a line of length one. In this case, sampling from
a naively constructed uniform measure on this space would
result in no points being drawn from the line. This same
issue arose and was dealt with in [31], although in a slightly
different approach than we will develop.

A sampling strategy that will deal with the problem of
varying dimensions is to use a mixture model. In the example
of the sheet and line, a uniform measure would be placed on
the sheet, while another uniform measure would be placed
on the line, and a mixture probability is placed on the two
measures; for example, each measure could be drawn with
probability 1/2. We now formalize this approach. Consider
each (non-empty) i-dimensional stratum Si = Xi − Xi−1

of X. All strata that are included in the closure of some
higher-dimensional strata, in other words all non-maximal
strata, are not considered in the model. A uniform measure is
assigned to the closure of each maximal stratum, µi(Si), this
is possible since each such closure is compact. We assume a
finite number of maximal strata K and assign to the closure
of each such stratum a probability pi = 1/K. This implies
the following measure F (x) = 1

K

∑K
j=1 µi(X = x), where

µi is the measure on the closure of the i-th maximal stratum.
The point sample is generated from the following model:
U = {x1, ..., .xn}

iid∼ F (x). We call this model M .
Lower bounds on the sample size of the point cloud.
Our main theorem is the probabilistic analogue of Theorem
3.2. An immediate consequence of this theorem is that,
for two points p, q ∈ U, we can infer with probability at
least 1 − ξ whether p and q are locally equivalent, p ∼r q.

The confidence level 1 − ξ will be a monotonic function
of the size of the point sample. The theorem involves a
parameter v(ρ), for each positive ρ, which is based on the
volume of the intersection of ρ-balls with X. First we note
that each maximal stratum of X comes with its own notion
of volume: in the plane punctured by a line example, we
measure volume in the plane and in the line as area and
length, respectively. The volume vol (Y) of any subspace
Y of X is the sum of the volumes of the intersections of Y
with each maximal stratum. For ρ > 0, we define v(ρ) =

infx∈X
vol (Bρ/32(x)∩X)

vol (X) . We then have our main theorem,

THEOREM 4.1. (LOCAL PROBABILISTIC SAMPLING)
Let {x1, x2, ..., xn} be drawn from model M . Fix
a pair of points p, q ∈ RN and a positive ra-
dius r, and put ρ = min{ρ(p, q, r), ρ(q, p, r)}. If

n ≥ 1
v(ρ)

(
log 1

v(ρ) + log 1
ξ

)
, then, with probability greater

than 1 − ξ we can correctly infer whether or not φX(p, q, r)
and φX(q, p, r) are both isomorphisms.

Proof. A finite collection U = {x1, x2, ..., xn} of points in
RN is ε-dense with respect to X if X ⊆ Uε; equivalently, U
is an ε-cover of X. Let C(ε) be the ε-covering number of X,
the minimum number of sets Bε ∩ X that cover X. Let P (ε)
be the ε-packing number of X, the maximum number of sets
Bε ∩ X that can be packed into X without overlap.

We consider a cover of X with balls of radius ρ/16. If
there is a sample point in each ρ/16-ball, then U will be
an ε-approximation of X, with ε ≤ 4(ρ/16) = ρ/4. This
satisfies the condition of the topological inference theorem,
and therefore we can infer the local structure between p and
q.

The following two results from [30] will be useful in
computing the number of sample points n needed to obtain,
with confidence, such an ε-approximation.

LEMMA 4.1. (LEMMA 5.1 IN [30]) Let {A1, A2, ..., Al}
be a finite collection of measurable sets with probability



measure µ on ∪li=1Ai, such that for all Ai, µ(Ai) > α.
Let U = {x1, x2, ..., xn} be drawn iid according to µ. If
n ≥ 1

α (log l + log 1
ξ ), then, with probability 1 − ξ, ∀i,

U ∩Ai 6= ∅.

LEMMA 4.2. (LEMMA 5.2 IN [30]) Let C(ε) be the cover-
ing number of an ε-cover ofX and P (ε) be the packing num-
ber of an ε-packing, then

P (2ε) ≤ C(2ε) ≤ P (ε).

Again, we consider a cover of X by balls of radius ρ/16.
Let {yi}li=1 ∈ X be the centers of the balls contained in
a minimal sub-cover. Put Ai = Bρ/16(yi) ∩ X. Applying
Lemma 4.1, we obtain the estimate

n ≥ 1

α

(
log l + log

1

ξ

)
,

where l is the ρ/16-covering number, and α = mini
vol (Ai)
vol (X) .

Applying Lemma 4.2,

l = C(ρ/16) ≤ P (ρ/32) ≤ vol (X)

vol (Bρ/32 ∩ X)
≤ 1

v(ρ)
.

On the other hand, 1
α ≤

1
v(ρ) by definition, and the result

follows.

To extend the above theorem to a more global result, one
can pick a positive ρ and radius r, and consider the set of all
pairs of points (p, q) such that ρ ≤ min{ρ(p, q, r), ρ(q, p, r}.
Applying Theorem 4.1 uniformly to all pairs of points will
give the minimum number of sample points needed to settle
the isomorphism question for all of the intersection maps
between all pairs.

5 Algorithm.
The theorems in the previous sections give conditions under
which a point cloud U, sampled from a stratified space X,
can be used to infer the local equivalences between points on
X. We now switch gears slightly, and imagine clustering the
U-points into strata.

The basic strategy is to build a graph on the point
set, with edges corresponding to positive isomorphism judg-
ments. The connected components of this graph will then be
our proposed strata.

More precisely, we build a graph where each node in the
graph corresponds uniquely to a point from U. Two points
p, q ∈ U (where ||p − q|| ≤ 2r) are connected by an edge
iff both φX(p, q, r) and φX(q, p, r) are isomorphisms, equiv-
alently iff Dgm(kerφU)(ε, 3ε) and Dgm(cokφU)(ε, 3ε) are
empty. The connected components of the resulting graph are
our clusters. A more detailed statement of this procedure
is giving in pseudo-code, see Algorithm 5.1. Note that the

connectivity of the graph is encoded by a weight matrix, and
our clustering strategy is based on a 0/1-weight assignment.
We discuss the robustness of our algorithm in a subsequent
section.

A crucial subroutine in the clustering algorithm
is the computation of the diagrams Dgm(kerφU) and
Dgm(cokφU), for φU = φU(p, q, r) between all pairs
(p, q) ∈ U × U. We will focus our attention in this section
on the computation of the (co)kernel diagrams.

To compute the diagrams Dgm(kerφU) and
Dgm(cokφU) we require for each α ≥ 0 a simplicial
analogue of the map,

φUα : H(BU
p (α), ∂BU

p (α))→ H(BU
pq(α), ∂BU

pq(α)).

We define, for each α ≥ 0 (a) two pairs of simplicial
complexes L0(α) ⊆ L(α) and K0(α) ⊆ K(α), and (b) a
relative homology map between them

ψα : H(L(α), L0(α))→ H(K(α),K0(α)).

Later, we give a correctness proof that Dgm(kerφU) =
Dgm(kerψ) and Dgm(cokφU) = Dgm(cokψ).

5.1 Robustness of Clustering. Two types of errors in the
clustering can occur: false positives where the algorithm
connects points that should not be connected and false
negatives where points that should be connected are not. The
current algorithm we state is somewhat brittle with respect
to both false positives as well as false negatives. We will
suggest a very simple adaptation of our current algorithm
that should be more stable with respect to both false positives
and false negatives.

The false positives are driven by the condition in The-
orem 3.2 that ρ < 4ε, so if the point cloud is not sampled
fine enough we can get incorrect positive isomorphisms and
therefore incorrect edges in the graph. If we use transitive
closure to define the connected components this can be very
damaging in practice since a false edge can collapse disjoint
components into one large cluster.

The false negatives occur because our point sample U
is not fine enough to capture chains of points that connect
pairs in U through isomorphisms, there may be other points
in X which if we had sampled then the chain would be
observed. The probability of these events in theory decays
exponentially as the sample size increases and the confidence
parameter ξ controls these errors.

We now state a simple adaptation of the algorithm that
will make it more robust. It is natural to think of the 0/1-
weight assignment on pairs of points p, q ∈ U as an associ-
ation matrix W. A classic approach for robust partitioning
is via spectral graph theory [28, 26, 11]. This approach is
based an eigen-decomposition of the the graph Laplacian,
L = D−W with the diagonal matrix Dii =

∑
jWij . The



Algorithm 5.1 Strata-Inference(U, r, ε)
for all p, q ∈ U do

if ||p− q|| > 2r then
W (p, q) = 0

else
Compute Dgm(kerφU(p, q, r)) and Dgm(cokφU(p, q, r))
Compute Dgm(kerφU(q, p, r)) and Dgm(cokφU(q, p, r))
if Dgm(kerφU(p, q, r))(ε, 3ε) ∪Dgm(cokφU(p, q, r))(ε, 3ε) 6= ∅ then
W (p, q) = 0

else if Dgm(kerφU(q, p, r))(ε, 3ε) ∪Dgm(cokφU(q, p, r))(ε, 3ε) 6= ∅ then
W (p, q) = 0

else
W (p, q) = 1

end if
end if

end for
Compute connected components based on W.

smallest nontrivial eigenvalue λ1 of W is called the Fiedler
constant and estimates of how well the vertex set can be par-
titioned [18]. The corresponding eigenvector v1 is used to
partition the vertex set. There are strong connections be-
tween spectral clustering and diffusions or random walks on
graphs [11].

The problems of spectral clustering and lower dimen-
sional embeddings have been examined from a manifold
learning perspective [2, 3, 19]. The idea central to these
analyses is given a point sample from a manifold construct
an appropriate graph Laplacian and use its eigenvectors to
embed the point cloud in a lower dimensional space. A the-
oretical analysis of this idea involves proving convergence
of the graph Laplacian to the Laplace-Beltrami operator on
the manifold and the convergence of the eigenvectors of the
graph Laplacian to the eigenvalues of the Laplace-Beltrami
operator. A key quantity in this analysis is the Cheeger con-
stant which is the first nontrivial eigenvalue of the Laplace-
Beltrami operator [10]. An intriguing question is whether
the association matrix we construct from the point cloud can
be related to the Laplacian on high forms.

5.2 Preliminaries. To construct the simplicial complexes
in our algorithm, we will compute Voronoi diagrams and
nerves of sets of collections derived from these Voronoi
diagrams.
Voronoi diagram. Given a finite collection U of points in
RN and ui ∈ U, then the Voronoi cell of ui is defined to be:

Vi = V (ui) = {x ∈ RN | ||x−ui|| ≤ ||x−uj ||,∀uj ∈ U}.

The union of cells Vi covers the entire space and forms the
Voronoi diagram of RN , denoted as Vor (U|RN ). If we
restrict each Vi to some subset X ⊆ RN , then the set of
cells Vi ∩ X forms a restricted Voronoi diagram, denoted

as Vor (U|X). For a simplex σ with vertices in U, we set
Vσ = ∩ui∈σVi.
Nerves. The nerve N(C) of a finite collection of sets
C is defined to be the abstract simplicial complex with
vertices corresponding to the sets in C and with simplices
corresponding to all non-empty intersections among these
sets, N(C) = {S ⊆ C |

⋂
S 6= ∅}. Every abstract simplicial

complex can be geometrically realized, and therefore the
concept of homotopy type makes sense. Under certain
conditions, for example whenever the sets in C are all closed
and convex subsets of Euclidean space ([16], p.59), the
nerve of C has the same homotopy type, and thus the same
homology groups, as the union of sets in C. This implies we
can compute H(Uα), the absolute homology of the thickened
point cloud, by computing the nerve of the collection of sets
Vi ∩ Uα.

The nerve of the restricted Voronoi diagram Vor (U|X)
is called the restricted Delaunay triangulation, denoted as
Del (U|X). It contains the set of simplices σ for which
Vσ ∩ X 6= ∅.
Power cells, lunes, and moons. We need to com-
pute the relative homology groups H(BU

p (α), ∂BU
p (α)) and

H(BU
pq(α), ∂BU

pq(α)), for a fixed pair of points p and q. The
direct argument used to compute absolute homology based
on the nerve does not apply to computing relative homol-
ogy groups since the collection of the sets Vi ∩ ∂BU

p (α) and
Vi ∩ ∂BU

pq(α) need not be convex.
To get around this problem, we first define the power

cell with respect to Br(p), P (α), as P (α) = {x ∈ RN |
||x − p||2 − r2 ≤ ||x − u||2 − α2,∀u ∈ U}, and we set
P0(α) = Br(p) − intP (α). Replacing p with q in this
formula gives Q(α), the power cell with respect to Br(q).
Finally, we setZ(α) = P (α)∩Q(α), andZ0(α) = (Br(p)∩
Br(q))−intZ(α). These definitions are illustrated in Figure
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Figure 8: (a) Illustration of intersection power cell Z(α), as the grey shaded region. The unshaded convex regions are P (α)
and Q(α) respectively. The dark pink and black shaded regions (pointed by single and double arrows) correspond to P0(α)
and Q0(α) respectively. (b) Illustration of the lune and the moon. The shaded regions are the respective moons. The white
regions within solid circles are the respective lunes.

8 (a). Note that P0(α) and Z0(α) are both contained in Uα.
It turns out that replacing ∂BU

p (α) with P0(α) and
∂BU

pq(α) with Z0(α) has no effect on the relative homology
groups in question. That is, the spaces (BU

p (α), ∂BU
p (α))

and (BU
p (α), P0(α)) are homotopy equivalent, so are the

spaces (BU
pq(α), ∂BU

pq(α)) and (BU
pq(α), Z0(α)). Conse-

quently, their homology groups are isomorphic. The first
part of this statement was proven in [4], and a proof of the
second appears in [5]. The sets Vi ∩ P0(α) are convex, for
all points ui ∈ U [4]. Unfortunately, it is still possible for
Vi ∩ Z0(α) to be non-convex, which requires a further sub-
division of the Voronoi cells by bisection. Consider the hy-
perplane P of points in RN which are equidistant from p and
q. This will divide RN into two half-spaces with Pp and Pq
denoting the half-spaces containing p and q. Given Pp we
define the p-lune, Lp, and p-moon, Mp, as follows (see Fig-
ure 8 (b)): Lp = Pq ∩ Br(p),Mp = Pp ∩ Br(p). (Note that
here lune is defined differently from spherical lune or spher-
ical wedge.) The q-lune, Lq , and q-moon, Mq , are defined
similarly. Notice that Lp depends not only on p but also on
q.

For a fixed pair of points p and q, the lune and the moon
divide each Voronoi cell into two parts, V L

i = Vi ∩ Lp and
V M
i = Vi ∩ Mp, for all points ui ∈ U. These sets are

obviously convex, assuming they are non-empty, since they
are each the intersection of two convex sets. It also turns out
that the non-empty sets among V L

i ∩Z0(α) and V M
i ∩Z0(α)

are convex; see [5] for a proof.

5.3 Algorithm to Compute Simplicial Analogues. Our
algorithm to compute simplicial analogues contains two
steps: (a) defining the simplicial complexes via the nerves
of non-empty sets, and (b) defining the corresponding chain
maps between relative simplicial chain groups. We first
define the pairs of simplicial complexes L0(α) ⊆ L(α) and
K0(α) ⊆ K(α). SetA to be the collection of the non-empty
sets among V L

i ∩ BU
p (α) and V M

i ∩ BU
p (α). Define A0 as

the collection of the nonempty sets among V L
i ∩ P0(α) and

V M
i ∩ P0(α). Note that ∪A = BU

p (α) and ∪A0 = P0(α).
Taking the nerve of both collections, we define the simplicial
complexes L(α) = N(A) and L0(α) = N(A0). Similarly,
we define C and C0 to be the collections of the non-empty
sets among, respectively, V L

i ∩ BU
pq(α) and V M

i ∩ BU
pq(α),

and V L
i ∩Z0(α) and V M

i ∩Z0(α). We define K(α) = N(C)
and K0(α) = N(C0). See Figure 9 for an example of the
simplicial complexes constructed in R2 for a given U.

To define the map

ψα : H(L(α), L0(α))→ H(K(α),K0(α)),

we need the following technical lemma:

LEMMA 5.1. (CONTAINMENT LEMMA) Assume that a
simplex σ is in L0(α). If σ is also in K(α), then σ is in
K0(α), as well.

Proof. Recall that the lune and the moon divide each
Voronoi cell into two parts, V L

i = Vi∩Lp and V M
i = Vi∩Mp.
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Figure 9: Illustration of the simplicial complexes constructed around two points p and q. The underlying Voronoi
decomposition of the space is shown in thin dotted lines. u1 and u2 in U are the points whose restricted Voronoi regions
intersect with the lune at non-convex regions.

These are defined as the partial Voronoi cells. For simplic-
ity, for a simplex σ ∈ L(α) (similarly for a simplex in L0,
K and K0), we define V σ as the intersection of the partial
Voronoi cells that correspond to the vertices of σ. That is,
σ ∈ L(α) iff V σ ∩ BU

p (α) 6= ∅. By definition, σ ∈ L0(α)
iff there exists some point x ∈ V σ ∩ P0(α). We must show
that the set V σ ∩ Z0(α) is non-empty. Note that x ∈ P0(α)
implies that x ∈ Br(p), while x 6∈ intP (α) implies that
x 6∈ intZ(α). If x ∈ Br(q), then we are done, since
Z0(α) = Br(p) ∩Br(q)− intZ(α).

Otherwise, choose some point y ∈ V σ ∩ Uα ∩Br(p) ∩
Br(q), which is possible since σ ∈ K(α). Since both x
and y belong to the same convex set V σ ∩ Uα ∩ Br(p),
there exists a directed line segment γ from x to y within
this set connecting them. We imagine moving along γ and
first we suppose that γ intersects Br(q) before it intersects
intQ(α). Let z be the first point of intersection. Then z ∈
Br(p) ∩ Br(q), z /∈ intQ(α). Therefore z ∈ V σ ∩ Z0(α).
On the other hand, we may prove by contradiction that it
is impossible for γ to intersect Q(α) before it intersects
Br(q). Let z′ be the first point of such an intersection. Since
z′ ∈ Q(α), by definition ||z′− q||2− r2 ≤ ||z′−ui||2−α2,
∀ui ∈ U. Since z′ ∈ Uα, ∀ui ∈ σ, ||z′ − ui||2 − α2 ≤ 0.
Therefore ||z′ − q||2 − r2 ≤ ||z′ − ui||2 −α2 ≤ 0, ∀ui ∈ σ.
Since z′ is outside Br(q), ||z′ − q||2 − r2 > 0. This is a
contradiction.

To define ψα, we first construct a chain map g =
gα : C(L(α)) → C(K(α)) as follows. Given a simplex
σ ∈ L(α), we define g(σ) = σ if σ ∈ K(α), and g(σ) = 0
otherwise; we then extend g to a chain map by linearity.
Using the Containment Lemma, we see that g(C(L0(α))) ⊆
C(K0(α)), and thus g descends to a relative chain map f =
fα : C(L(α), L0(α)) → C(K(α),K0(α)). Since f clearly
commutes with all boundary operators, it induces a map on
relative homology, this is our ψ = ψα. To compute the
diagrams involving ψ, we reduce various boundary matrices
via (co)kernel persistence algorithm described in [14], in
time at most cubic in the size of the simplicial complexes
representing the data.
Correctness. We show that our algorithm is correct by
proving the following theorem. A sketch of the proof is given
here, with the details deferred to [5].

THEOREM 5.1. (CORRECTNESS THEOREM) The per-
sistence diagrams involving simplicial complexes are
equal to the persistence diagrams involving the point
cloud, that is, Dgm(kerφU) = Dgm(kerψ) and
Dgm(cokφU) = Dgm(cokψ).

Proof sketch. To prove Theorem 5.1, we will prove, for each
α ≤ β, that the following diagram (as well as a similar
diagram involving cokernels) commutes, with the vertical



maps being isomorphisms.

. . .→kerφUα → kerφUβ → . . .

↑∼= ↑∼=
. . .→kerψα → kerψβ → . . . .(5.5)

Applying Theorem 2.2 then finishes the claim. There-
fore Dgm(kerφU) = Dgm(kerψ) and Dgm(cokφU) =
Dgm(cokψ).
Simple simulations. We use a simulation on simple syn-
thetic data with points sampled from grids to illustrate how
the algorithm works. We assume we know ε and we run
our algorithm for 0 ≤ α ≤ 3ε. As shown in Figure 10
(a), if two points x and y (also, z and w) are locally equiva-
lent, their corresponding kernel and cokernel persistence di-
agrams shown in Figure 10 (b) contain the empty quadrant
predicted by our theorems. On the other hand, if two points
x and z are not equivalent, then the kernel persistence di-
agrams shown in Figure 10 (c) do not contain such empty
quadrants.

6 Discussion.
We have presented a first step towards learning stratified
spaces. There are several open issues of interest including:
algorithmic efficiency and scaling with dimension using Rips
or Witness complexes [15] instead of Delaunay triangula-
tion, robustness of the algorithm and weighting local equiva-
lence, and extensions to the noisy setting [30] when the mix-
ture is concentrated around the stratified space.

Specifically, the algorithm to compute the (co)kernel di-
agrams from the thickened point cloud is based on an adap-
tion of Delaunay triangulation and the power-cell construc-
tion. This algorithm should be quite slow when the dimen-
sionality of the ambient space is high due to the runtime com-
plexity of Delaunay triangulation. One idea to address this
bottleneck is to use Rips or Witness complexes [15]. Another
approach is to use dimension reduction techniques such as
principal components analysis (PCA) or random projection
that approximately preserve distance [12] as a preprocessing
step. Another idea that may work if the ambient dimension is
not too high is using faster algorithms to construct Delaunay
triangulations [6].

Here, computing the maps into the intersection requires
a nice and dense sampling, which is only a first step to-
wards sampling conditions that give practical results. Recent
work in reconstructing metric graph (1D stratified space)
with guarantees [1] has shown some promise towards this
direction, but still has trouble with noise. Using distance to
a measure [9] might cope with noise and outliers to a certain
extent. However deriving a sufficient sampling condition in
practice remains a challenge, especially in high dimensions.
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Appendices.
A Definition of the Intersection Map.
We give a more precise description of the map

φ = φUα : H(BU
p (α), ∂BU

p (α))→ H(BU
pq(α), ∂BU

pq(α)).

The definition will be made on the chain level and will be
given in terms of singular chains.

A.1 Background. We give here some necessary back-
ground as well as some material from algebraic topology and
homological algebra. Most of the descriptions are adapted
from [24] and [29].
Chain homotopies. For our purposes, a chain complex C is a
sequence of Z/2Z- vector spaces Cp, one for each integer p,
connected by boundary homomorphisms ∂Cp : Cp → Cp−1

such that ∂p−1 ◦ ∂p = 0 for all p. The p-th homology group
of such a chain complex is defined by Hp = ker ∂p/im ∂p+1.

A chain map η : C → D between two chain complexes
is a sequence of homomorphisms ηp : Cp → Dp which
commute with the boundary homomorphisms: ∂Dp ◦ ηp =

ηp−1 ◦ ∂Cp . Every chain map induces a map η∗ between the
homology groups of the two complexes.

A chain homotopy F between two chain maps η, η′ :
C → D is a sequence of homomorphisms Fp : Cp → Dp+1

which satisfy the following formula for each p: η − η′ =
∂Dp+1 ◦ Fp − Fp−1 ◦ ∂Cp . We say that η and η′ are chain
homotopic and note that they must then induce the same
maps on homology: η∗ = η′∗. Finally, η is called a chain
homotopy equivalence if there exists a chain map ρ : D → C
such that η ◦ ρ and ρ ◦ η are both chain homotopic to the
identity. In this case η and ρ will both induce homology
isomorphisms.
Singular homology. The standard p-simplex is the subset of
Rp+1 given by

∆p = {(t0, ..., tp) ∈ Rp+1|
p∑
i=0

ti = 1,∀i, ti ≥ 0}.
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Figure 10: Points sampled from two intersecting planes. Left: points x and y belong to the 1-stratum, points z and w belong
to the same piece of the 2-stratum. Middle: kernel and cokernel persistent diagrams with respect to pairs x and y, z and
w. Right: kernel persistent diagram with respect to pairs x and z. A number labeling a point in the persistence diagram
indicates its multiplicity.

The p+ 1 vertices of ∆p are points {ei} ⊂ Rp+1 where

e0 = (1, 0, 0, ..., 0),

e1 = (0, 1, 0, ..., 0),

...

ep = (0, 0, 0, ..., 1).

A singular p-simplex of a topological space X is a contin-
uous map δ : ∆p → X. By taking formal sums of singu-
lar simplices (using binary coefficients for our purposes) one
forms Cp(X), the singular chain group of X in dimension
p. Given points a0, ..., ap in some Euclidean space, which
need not be independent, there is a unique affine map l of
∆p that maps the vertices ei of ∆p to ai. This map defines
the linear singular simplex determined by a0, ..., ap, denoted
as l(a0, ..., ap). One then defines a boundary homomorphism
∂p : ∆p(X)→ ∆p−1(X) by:

∂p(δ) = Σpi=0(δ ◦ l(ε0, ..., ε̂i, ..., εp)),

and defines the singular homology groups Hp(X) as above.
A continuous map f from X to another topological space
Y induces a chain map f# : Cp(X) → Cp(Y ) given by
the formula f#(δ) = f ◦ δ, and thus also a homology map
f∗ : Hp(X)→ Hp(Y ).

The minimal carrier of a singular simplex δ is its image
δ(∆p), and the minimal carrier of a singular p-chain

∑
δi is

the union of the minimal carriers of the δi.
Isomorphism between simplicial and singular homology.
The (simplicial) homology groups of a simplicial complex
K and the singular homology groups of its realization |K|
are isomorphic. To show an explicit isomorphism ([29]), we
first define a chain map

η : C(K)→ C(|K|)

as follows [29]: choose a partial ordering of the vertices ofK
that induces a linear ordering on the vertices of each simplex

of K. Orient the simplices of K by using this ordering, and
define

η([v0, ..., vp]) = l(v0, ..., vp),

where v0 < ... < vp in the given ordering. We refer
to the linear singular simplex l(v0, ..., vp) as a simplicial
linear singular simplex and it is important in the subsequent
sections. The chain map η is in fact a chain equivalence
as it has a chain-homotopy inverse, for which a specific
formula can be found in [17]. Hence the induced homology
map η∗ provides an isomorphism of simiplicial with singular
homology.

A.2 Intersection Map Details. We now give the full and
formal definition of the homology map φ = φUα, starting on
the chain level. For compactness, we will use the following
shorthand:

X = BU
p (α) = Uα ∩Br(p),

B = ∂BU
p (α) = Uα ∩ ∂Br(p),

S = BU
pq(α) = Uα ∩Br(p) ∩Br(q),

A = Uα ∩Br(p)− int (S),

U = Uα ∩Br(p)− S.

Note that X − U = S = BU
pq(α) and A − U = ∂S =

∂BU
pq(α). So to define φ we need only define a chain map

j : C(X,B) → C(X − U,A − U) and then take φ as the
map induced on homology. The map j is defined as the
composition j = k ◦ i. The chain map i : C(X,B) →
C(X,A) is induced by inclusion on the second factor, while
the chain map k : C(X,A) → C(X − U,A − U) is
an excision, although this latter statement requires further
elaboration.
Excisions. The inclusion map of pairs (X − U,A − U) →
(X,A) is called an excision if it induces a homology isomor-
phism; in this case one says that U can be excised. We will



make use of the following two results about excision (see,
e.g., [21]):

THEOREM A.1. (Excision Theorem) If the closure of U is
contained in the interior of A, then U can be excised.

THEOREM A.2. (Excision Extension) Suppose V ⊂ U ⊂ A
and

(i) V can be excised.

(ii) (X−U,A−U) is a deformation retract of (X−V,A−
V ).

Then U can be excised.

In our context, the closure of U need not be contained in
the interior of A, and so we must define a suitable V ⊂ U .
Although there are many ways to do this, one direct way is
to choose some small enough positive δ.

I = Uα ∩ ∂(Br(p) ∩Br(q)) ∩ cl (U),

Iδ = {x ∈ cl (U)|dI(x) ≤ δ},
V = U − Iδ,

where dI(x) is the distance from x to the set I . It is
straightforward to verify that V ⊂ U ⊂ A satisfies the
hypotheses of Theorem A.2. In other words, the inclusion of
pairs (X − V,A− V ) → (X,A) is an excision; its induced
chain map has a chain-homotopy inverse, which we denote
as s : C(X,A) → C(X − V,A − V ). Finally, we define
k = r# ◦ s, where r# is the chain map induced by the
retraction r : (X − V,A− V )→ (X − U,A− U).
Subdivision. In order to prove the correctness of our
algorithm (see [5]), we must first decompose the maps i
and k through subdivision. Given a topological space X
and a collection A of subsets of X whose interiors form
an open cover of X , a singular simplex of X is said to be
A-small if its image set is entirely contained in a single
element of A. For each dimension p, the chain group
CAp (X) is the subgroup of Cp(X) spanned by the A-small
singular p-simplices. These groups form a chain complex,
with homology HA(X). Of course, any singular simplex
on X can be subdivided into a sum of A-small simplices,
so it is plausible, and in fact true ([24]), that the inclusion
CA(X)→ C(X) is a chain homotopy equivalence.

Returning to our context, we set A = {X − V,A} and
denote by l the chain inclusion CA(X,A) → C(X,A). We
also let ρ : C(X,B) → CA(X,B) be the chain homotopy
inverse of the chain inclusion CA(X,B) → C(X,B), and
let t : CA(X,B) → CA(X,A) be the chain map induced
by inclusion on the second factor. Finally we note that
i = l ◦ t ◦ ρ.
Summary. To summarize, our map φ = j∗, where j is the
chain map defined by the following sequence of chain maps

j = k ◦ i = (r# ◦ s) ◦ (l ◦ t ◦ ρ).
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