
Sketching Merge Trees
Mingzhe Li
School of Computing, University of Utah
Salt Lake City, UT, USA
mingzhel@cs.utah.edu

Sourabh Palande
School of Computing, University of Utah
Salt Lake City, UT, USA
sourabh@sci.utah.edu

Bei Wang1

School of Computing, University of Utah
Salt Lake City, UT, USA
beiwang@sci.utah.edu

Abstract
Merge trees are a type of topological descriptors that record the connectivity among the sublevel sets
of scalar fields. In this paper, we are interested in sketching a set of merge trees. That is, given a set
T of merge trees, we would like to find a basis set S such that each tree in T can be approximately
reconstructed from a linear combination of merge trees in S. A set of high-dimensional vectors can
be sketched via matrix sketching techniques such as principal component analysis and column subset
selection. However, up until now, topological descriptors such as merge trees have not been known
to be sketchable. We develop a framework for sketching a set of merge trees that combines the
Gromov-Wasserstein framework of Chowdhury and Needham with techniques from matrix sketching.
We demonstrate the applications of our framework in sketching merge trees that arise from data
ensembles in scientific simulations.

2012 ACM Subject Classification Theory of computation: Randomness, geometry and discrete
structures: Computational geometry

Keywords and phrases Merge trees, sketching, topological data analysis, applications, experiments,
implementations

Funding DOE DE-SC0021015

Acknowledgements We thank Jeff Phillips for discussions involving column subset selection and
Benwei Shi for his implementation on length squared sampling. We also thank Ofer Neiman for
sharing the code on low stretch spanning tree. We thank Lin Yan for sharing ensemble datasets and
generating scalar field visualization shown in Figure 2 and Figure 6.

1 Introduction

Topological descriptors such as merge trees, contour trees, Reeb graphs, and Morse–Smale
complexes serve to describe and identify characteristics associated with scalar fields, with
many applications in the analysis and visualization of scientific data [44, 51]. In this paper,
we are interested in sketching a set of topological descriptors.

We are motivated by the idea of matrix sketching. A set of high-dimensional vectors
is sketchable via matrix sketching techniques such as principle component analysis (PCA),
and column subset selection (CSS), as illustrated in Figure 1 (gray box). Given a dataset of
N points with d features, represented as a d×N matrix A (with row-wise zero empirical

1 Corresponding author

https://orcid.org/0000-0003-0355-1919
mailto:mingzhel@cs.utah.edu
https://orcid.org/0000-0002-1404-8238
mailto:sourabh@sci.utah.edu
https://orcid.org/0000-0002-9240-0700
mailto:beiwang@sci.utah.edu

2 Sketching Merge Trees

mean), together with a parameter k, PCA aims to find a k-dimensional subspace H of Rd
that minimizes the average squared distance between the points and their corresponding
projections onto H. Equivalently, for every input point ai (a column vector of A), PCA finds
a k-dimensional embedding yi (a column vector of Y) along the subspace H to minimize
||A − Â||2F = ||A − BY ||2F . B is a d × k matrix whose columns b1, b2, . . . , bk form an
orthonormal basis for H. Y is a k × N coefficient matrix, whose column yi encodes the
coefficients for approximating ai using the basis from B. That is, ai ≈ âi =

∑k
j=1 bjYj,i.

Another technique we discuss is CSS, whose goal is to find a small subset of the columns
in A to form B such that the projection error of A to the span of the chosen columns is
minimized, that is, to minimize ||A− Â||2F = ||A−BY ||2F , where we restrict B to come from
columns of A. Such a restriction is important for data summarization, feature selection,
and interpretable dimensionality reduction. Thus, with either PCA or CSS, given a set of
high-dimensional vectors, we could find a set of basis vectors such that each input vector can
be approximately reconstructed from a linear combination of the basis vectors.

Now, what if we replace a set of high-dimensional vectors by a set of objects that encode
topological information of data, specifically topological descriptors? Until now, topological
descriptors have not been known to be sketchable. In this paper, we focus on merge trees,
which are a type of topological descriptors that record the connectivity among the sublevel
sets of scalar fields. We address the following question: given a set T of merge trees, can we
find a basis set S such that each tree in T can be approximately reconstructed from a linear
combination of merge trees in S?

<latexit sha1_base64="WIGhEHFpHsPzLBEykGMguNt3GLo=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBhPBU9gNiB6DXjxGMA9JljA7mU2GzGOZmRVDyFd48aCIVz/Hm3/jJNmDJhY0FFXddHdFCWfG+v63l1tb39jcym8Xdnb39g+Kh0dNo1JNaIMornQ7woZyJmnDMstpO9EUi4jTVjS6mfmtR6oNU/LejhMaCjyQLGYEWyc9lLs4SbR6KveKJb/iz4FWSZCREmSo94pf3b4iqaDSEo6N6QR+YsMJ1pYRTqeFbmpogskID2jHUYkFNeFkfvAUnTmlj2KlXUmL5urviQkWxoxF5DoFtkOz7M3E/7xOauOrcMJkkloqyWJRnHJkFZp9j/pMU2L52BFMNHO3IjLEGhPrMiq4EILll1dJs1oJLir+XbVUu87iyMMJnMI5BHAJNbiFOjSAgIBneIU3T3sv3rv3sWjNednMMfyB9/kDTzuQFA==</latexit>⇡ <latexit sha1_base64="XNq1KCjknNERdwucabvPpxoSA9o=">AAAB73icbVBNS8NAEJ34WetX1aOXxVbwVJKC6LHoxWMF+wFtKJvtpl262cTdiVBC/4QXD4p49e9489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfj25nffuLaiFg94CThfkSHSoSCUbRSp9JDEXFT6ZfKbtWdg6wSLydlyNHol756g5ilEVfIJDWm67kJ+hnVKJjk02IvNTyhbEyHvGuponaLn83vnZJzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7HkyEJozlBNLKNPC3krYiGrK0EZUtCF4yy+vklat6l1W3ftauX6Tx1GAUziDC/DgCupwBw1oAgMJz/AKb86j8+K8Ox+L1jUnnzmBP3A+fwBxZI+S</latexit>⇥

<latexit sha1_base64="RNpPLJ9/hp7yQ9s06Eoys5nV5tY=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LLaCp5IURI+lXjxWsB/QhrDZbNqlm03YnRRK6D/x4kERr/4Tb/4bt20O2vpg4PHeDDPzglRwDY7zbZW2tnd298r7lYPDo+MT+/Ssq5NMUdahiUhUPyCaCS5ZBzgI1k8VI3EgWC+Y3C/83pQpzRP5BLOUeTEZSR5xSsBIvm3XWn4e4iHwmGk8mdd8u+rUnSXwJnELUkUF2r79NQwTmsVMAhVE64HrpODlRAGngs0rw0yzlNAJGbGBoZKYRV6+vHyOr4wS4ihRpiTgpfp7Iiex1rM4MJ0xgbFe9xbif94gg+jOy7lMM2CSrhZFmcCQ4EUMOOSKURAzQwhV3NyK6ZgoQsGEVTEhuOsvb5Juo+7e1J3HRrXZKuIoowt0ia6Ri25REz2gNuogiqboGb2iNyu3Xqx362PVWrKKmXP0B9bnDzYGkrs=</latexit>

Bd⇥k

<latexit sha1_base64="l54Del0rvIkAaPCYkl93Haa5HK4=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURI9FLx4rNLXQhrLZbtqlm03YnQil9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YSqFQdf9dgobm1vbO8Xd0t7+weFR+fikbZJMM+6zRCa6E1LDpVDcR4GSd1LNaRxK/hiO7+b+4xPXRiSqhZOUBzEdKhEJRtFKfrXVF9V+ueLW3AXIOvFyUoEczX75qzdIWBZzhUxSY7qem2IwpRoFk3xW6mWGp5SN6ZB3LVU05iaYLo6dkQurDEiUaFsKyUL9PTGlsTGTOLSdMcWRWfXm4n9eN8PoJpgKlWbIFVsuijJJMCHzz8lAaM5QTiyhTAt7K2EjqilDm0/JhuCtvrxO2vWad1VzH+qVxm0eRxHO4BwuwYNraMA9NMEHBgKe4RXeHOW8OO/Ox7K14OQzp/AHzucP4wiOEg==</latexit>

Ti

<latexit sha1_base64="a3bMqSMFVMLU+3POKRYY3IhbeCk=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURI9FLx4rmLbQhjLZbtqlm03Y3Qil9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5YSq4Nq777RQ2Nre2d4q7pb39g8Oj8vFJSyeZosyniUhUJ0TNBJfMN9wI1kkVwzgUrB2O7+Z++4kpzRP5aCYpC2IcSh5xisZKfhX7vNovV9yauwBZJ15OKpCj2S9/9QYJzWImDRWodddzUxNMURlOBZuVeplmKdIxDlnXUokx08F0ceyMXFhlQKJE2ZKGLNTfE1OMtZ7Eoe2M0Yz0qjcX//O6mYlugimXaWaYpMtFUSaIScj8czLgilEjJpYgVdzeSugIFVJj8ynZELzVl9dJq17zrmruQ73SuM3jKMIZnMMleHANDbiHJvhAgcMzvMKbI50X5935WLYWnHzmFP7A+fwB9uOOHw==</latexit>ai

<latexit sha1_base64="MMaL/Q1M66VdkodgO/tnguiizmc=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBhPBU9gNiF6EoBePEc0DkiXMTmaTIbOzy0yvEEI+wYsHRbz6Rd78GyfJHjSxoKGo6qa7K0ikMOi6305ubX1jcyu/XdjZ3ds/KB4eNU2casYbLJaxbgfUcCkUb6BAyduJ5jQKJG8Fo9uZ33ri2ohYPeI44X5EB0qEglG00kP5utwrltyKOwdZJV5GSpCh3it+dfsxSyOukElqTMdzE/QnVKNgkk8L3dTwhLIRHfCOpYpG3PiT+alTcmaVPgljbUshmau/JyY0MmYcBbYzojg0y95M/M/rpBhe+ROhkhS5YotFYSoJxmT2N+kLzRnKsSWUaWFvJWxINWVo0ynYELzll1dJs1rxLirufbVUu8niyMMJnMI5eHAJNbiDOjSAwQCe4RXeHOm8OO/Ox6I152Qzx/AHzucPRP2NHw==</latexit>=

<latexit sha1_base64="cDcVKo3ZElhbtQQGhkQZqfVJAUc=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURI9FLx4r2A9oQ9lsN+3STTbsToQS+jO8eFDEq7/Gm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNirVjLeYkkp3A2q4FDFvoUDJu4nmNAok7wSTu7nfeeLaCBU/4jThfkRHsQgFo2ilXrU/ppjR2UBUB+WKW3MXIOvEy0kFcjQH5a/+ULE04jEySY3peW6CfkY1Cib5rNRPDU8om9AR71ka04gbP1ucPCMXVhmSUGlbMZKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPRJykyGO2XBSmkqAi8//JUGjOUE4toUwLeythY6opQ5tSyYbgrb68Ttr1mndVcx/qlcZtHkcRzuAcLsGDa2jAPTShBQwUPMMrvDnovDjvzseyteDkM6fwB87nD8mKkOw=</latexit>

âi

1

3

<latexit sha1_base64="OK2GvYdDZUcPTEcrgt6noBD2o9o=">AAAB9HicbVDLSgNBEOyNrxhfUY9eBhPBU9gNiB6DXjxGyENIljA7mU2GzD6c6Q2EZb/DiwdFvPox3vwbJ8keNLGgoajqprvLi6XQaNvfVmFjc2t7p7hb2ts/ODwqH590dJQoxtsskpF69KjmUoS8jQIlf4wVp4Enedeb3M397pQrLaKwhbOYuwEdhcIXjKKR3Gp/TDFtZYNUZNVBuWLX7AXIOnFyUoEczUH5qz+MWBLwEJmkWvccO0Y3pQoFkzwr9RPNY8omdMR7hoY04NpNF0dn5MIoQ+JHylSIZKH+nkhpoPUs8ExnQHGsV725+J/XS9C/cVMRxgnykC0X+YkkGJF5AmQoFGcoZ4ZQpoS5lbAxVZShyalkQnBWX14nnXrNuarZD/VK4zaPowhncA6X4MA1NOAemtAGBk/wDK/wZk2tF+vd+li2Fqx85hT+wPr8AYC5kes=</latexit>

T̂i

<latexit sha1_base64="E0TU784zLYRYAjZVFNeFyiascCA=">AAAB7HicbVBNS8NAEJ34WetX1aOXxVbwVJKC6LHoxWMF0xbaUDbbabt2swm7G6GE/gYvHhTx6g/y5r9x2+agrQ8GHu/NMDMvTATXxnW/nbX1jc2t7cJOcXdv/+CwdHTc1HGqGPosFrFqh1Sj4BJ9w43AdqKQRqHAVji+nfmtJ1Sax/LBTBIMIjqUfMAZNVbyK2HvsdIrld2qOwdZJV5OypCj0St9dfsxSyOUhgmqdcdzExNkVBnOBE6L3VRjQtmYDrFjqaQR6iCbHzsl51bpk0GsbElD5urviYxGWk+i0HZG1Iz0sjcT//M6qRlcBxmXSWpQssWiQSqIicnsc9LnCpkRE0soU9zeStiIKsqMzadoQ/CWX14lzVrVu6y697Vy/SaPowCncAYX4MEV1OEOGuADAw7P8ApvjnRenHfnY9G65uQzJ/AHzucP+e+OIQ==</latexit>

bj

<latexit sha1_base64="jWFCd1DtJ+yLE/M9zUDuHcuNrVY=">AAAB7HicbVBNTwIxEJ3FL8Qv1KOXRjDxRHZJjB6JXjxidIEENqRbulDptpu2a0I2/AYvHjTGqz/Im//GAntQ8CWTvLw3k5l5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRS8tUEeoTyaXqhFhTzgT1DTOcdhJFcRxy2g7HNzO//USVZlI8mElCgxgPBYsYwcZKfvW+/1jtlytuzZ0DrRIvJxXI0eyXv3oDSdKYCkM41rrruYkJMqwMI5xOS71U0wSTMR7SrqUCx1QH2fzYKTqzygBFUtkSBs3V3xMZjrWexKHtjLEZ6WVvJv7ndVMTXQUZE0lqqCCLRVHKkZFo9jkaMEWJ4RNLMFHM3orICCtMjM2nZEPwll9eJa16zbuouXf1SuM6j6MIJ3AK5+DBJTTgFprgAwEGz/AKb45wXpx352PRWnDymWP4A+fzB+MGjhI=</latexit>

Sj

Input
Merge Tree

Sketched
Merge Tree

Basis
Merge Tree

2

<latexit sha1_base64="wKir74qOzpoR1L9mo7U144yY6bw=">AAAB/3icbVDLSsNAFJ34rPUVFdy4GWwFVyUpiC6rblxJBfuAJoTJdNIOnTyYuRFKzMJfceNCEbf+hjv/xmmbhbYeuHA4517uvcdPBFdgWd/G0vLK6tp6aaO8ubW9s2vu7bdVnErKWjQWsez6RDHBI9YCDoJ1E8lI6AvW8UfXE7/zwKTicXQP44S5IRlEPOCUgJY887DqDAlkl7mX9bEDPGQK3+ZVz6xYNWsKvEjsglRQgaZnfjn9mKYhi4AKolTPthJwMyKBU8HyspMqlhA6IgPW0zQiepGbTe/P8YlW+jiIpa4I8FT9PZGRUKlx6OvOkMBQzXsT8T+vl0Jw4WY8SlJgEZ0tClKBIcaTMHCfS0ZBjDUhVHJ9K6ZDIgkFHVlZh2DPv7xI2vWafVaz7uqVxlURRwkdoWN0imx0jhroBjVRC1H0iJ7RK3oznowX4934mLUuGcXMAfoD4/MH+DeVag==</latexit>

Âd⇥N
<latexit sha1_base64="TozikI6wecKv1MtTW4NV6hylYMM=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69LLaCp5IURI9VL56kgrWFNoTNZtMu3WzC7qZQQv+JFw+KePWfePPfuG1z0NYHA4/3ZpiZF6ScKe0431ZpbX1jc6u8XdnZ3ds/sA+PnlSSSULbJOGJ7AZYUc4EbWumOe2mkuI44LQTjG5nfmdMpWKJeNSTlHoxHggWMYK1kXzbrl37eYj6msVUoftpzberTt2ZA60StyBVKNDy7a9+mJAspkITjpXquU6qvRxLzQin00o/UzTFZIQHtGeowGaRl88vn6Izo4QoSqQpodFc/T2R41ipSRyYzhjroVr2ZuJ/Xi/T0ZWXM5FmmgqyWBRlHOkEzWJAIZOUaD4xBBPJzK2IDLHERJuwKiYEd/nlVfLUqLsXdeehUW3eFHGU4QRO4RxcuIQm3EEL2kBgDM/wCm9Wbr1Y79bHorVkFTPH8AfW5w8IRpKd</latexit>

Ad⇥N

<latexit sha1_base64="+O0fjaAKGMR4QJbT7sC96p+2QMc=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LLaCp5IURI9FLx4rmLbQhrLZbtqlm92wuxFC6G/w4kERr/4gb/4bt20O2vpg4PHeDDPzwoQzbVz32yltbG5t75R3K3v7B4dH1eOTjpapItQnkkvVC7GmnAnqG2Y47SWK4jjktBtO7+Z+94kqzaR4NFlCgxiPBYsYwcZKfj0bsvqwWnMb7gJonXgFqUGB9rD6NRhJksZUGMKx1n3PTUyQY2UY4XRWGaSaJphM8Zj2LRU4pjrIF8fO0IVVRiiSypYwaKH+nshxrHUWh7YzxmaiV725+J/XT010E+RMJKmhgiwXRSlHRqL552jEFCWGZ5Zgopi9FZEJVpgYm0/FhuCtvrxOOs2Gd9VwH5q11m0RRxnO4BwuwYNraME9tMEHAgye4RXeHOG8OO/Ox7K15BQzp/AHzucPG5qONw==</latexit>yi

<latexit sha1_base64="nFCGpBe/5/aZqV73AIqwEL5ujjw=">AAAB+XicbVDLSgNBEOyNrxhfqx69DCaCp7AbED0GvXiSCCZGkmWZnUySIbMPZnoDYcmfePGgiFf/xJt/4yTZgyYWNBRV3XR3BYkUGh3n2yqsrW9sbhW3Szu7e/sH9uFRS8epYrzJYhmrdkA1lyLiTRQoeTtRnIaB5I/B6GbmP4650iKOHnCScC+kg0j0BaNoJN+2K09+NiJdFCHX5G5a8e2yU3XmIKvEzUkZcjR8+6vbi1ka8giZpFp3XCdBL6MKBZN8WuqmmieUjeiAdwyNqFnkZfPLp+TMKD3Sj5WpCMlc/T2R0VDrSRiYzpDiUC97M/E/r5Ni/8rLRJSkyCO2WNRPJcGYzGIgPaE4QzkxhDIlzK2EDamiDE1YJROCu/zyKmnVqu5F1bmvlevXeRxFOIFTOAcXLqEOt9CAJjAYwzO8wpuVWS/Wu/WxaC1Y+cwx/IH1+QM435K8</latexit>

Yk⇥N

<latexit sha1_base64="AnkIWaquQYn9QENZEgVPWYpKKLo=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CbaCBym7BdFj0YvHCvaLdinZNNvGJtklyQpl6a/w4kERr/4cb/4b03YP2vpg4PHeDDPzgpgzbVz328mtrW9sbuW3Czu7e/sHxcOjpo4SRWiDRDxS7QBrypmkDcMMp+1YUSwCTlvB+Hbmt56o0iySD2YSU1/goWQhI9hYqVPu9NPHCzYt94slt+LOgVaJl5ESZKj3i1+9QUQSQaUhHGvd9dzY+ClWhhFOp4VeommMyRgPaddSiQXVfjo/eIrOrDJAYaRsSYPm6u+JFAutJyKwnQKbkV72ZuJ/Xjcx4bWfMhknhkqyWBQmHJkIzb5HA6YoMXxiCSaK2VsRGWGFibEZFWwI3vLLq6RZrXiXFfe+WqrdZHHk4QRO4Rw8uIIa3EEdGkBAwDO8wpujnBfn3flYtOacbOYY/sD5/AHitY/N</latexit>

Yj,i

Matrix Sketching

4 5

Figure 1 The overall pipeline for sketching a set of merge trees.

Our overall pipeline is illustrated in Figure 1 and detailed in Section 4. In steps 1 and 2,
given a set of N merge trees T = {T1, T2, · · · , TN} as input, we represent each merge tree
Ti as a metric measure network and employ the Gromov-Wasserstein (GW) framework of
Chowdhury and Needham [21] to map it to a column vector ai in the data matrix A. In
step 3, we apply matrix sketching techniques, in particular, column subset selection (CSS)
and non-negative matrix factorization (NMF), to obtain an approximated matrix Â, where
A ≈ Â = B × Y . In step 4, we convert each column in Â into a merge tree (referred to as a
sketched merge tree) using spanning trees, in particular, minimum spanning trees (MST) and
low-stretch spanning trees (LSST). Finally, in step 5, we return a set of basis merge trees S

M.Li, S. Palande, and B.Wang 3

by applying LSST or MST to each column bj in B. Each entry Yj,i in the coefficient matrix
Y defines the coefficient for basis tree Sj in approximating Ti. Thus, intuitively, with the
above pipeline, given a set of merge trees, we could find a set of basis trees such that each
input tree can be approximately reconstructed from a linear combination of the basis trees.

Our contribution is two-fold. First, we combine the notion of GW distances with matrix
sketching techniques to give a class of algorithms for sketching a set of merge trees. Second,
we provide experimental results that demonstrate the utility of our framework in sketching
merge trees that arise from scientific simulations. Understanding the sketchability properties
of merge trees can be particularly useful for the analysis and visualization of scientific
ensembles, where our framework can be used to find good ensemble representatives and to
identify outliers.

2 Related Work

In this section, we review relevant work on merge trees, Gromov-Wasserstein distances, graph
alignment and averaging, matrix sketching, and spanning trees.

Merge Trees. Merge trees (also known as barrier trees [36] or join trees [18]) are a type of
topological descriptors that record the connectivity among the sublevel sets of scalar fields.
They are rooted in Morse theory [60], which characterizes scalar field data by the topological
changes in its sublevel sets at isolated critical points. Other types of topological descriptors for
scalar fields include contour trees [18], Reeb graphs [67], and Morse–Smale complexes [30, 29].
In this paper, instead of a direct comparison between a pair of merge trees using existing
metrics for merge tree or Reeb graphs (e.g., [9, 11, 8, 10, 70, 20, 61, 24, 62, 12]), we treat
merge trees as metric measure networks and utilize the Gromov-Wasserstein framework
described in Section 3 to obtain their alignment and vector representations.

Gromov-Wasserstein Distances. Gromov introduced Gromov-Hausdorff (GH) distances [39]
while presenting a systematic treatment of metric invariants for Riemannian manifolds. GH
distances can be employed as a tool for shape matching and comparison (e.g., [16, 53, 54,
57, 58]): shapes are treated as metric spaces, and two shapes are considered equal if they
are isometric. Memoli [55] modified the formulation of GH distances by introducing a
relaxed notion of proximity between objects, thus generalizing GH distances to the notion of
Gromov-Wasserstein (GW) distances for practical considerations. Since then, GW distances
have had a number of variants based on optimal transport [72, 73] and measure-preserving
mappings [56]. Apart from theoretical explorations [55, 71], GW distances have been utilized
in the study of graphs and networks [45, 75, 76], machine learning [34, 17], and word embed-
dings [6]. Recently, Memoli et al. [59] considered the problem of approximating (sketching)
metric spaces using GW distance. Their goal was to approximate a (single) metric measure
space modeling the underlying data by a smaller metric measure space. The work presented
in this paper focuses on approximating a set of merge trees (modeled as a set of metric
measure networks) with a smaller set of merge trees.

Aligning and Averaging Graphs. Graph alignment or graph matching is a key ingredient
in performing comparisons and statistical analysis on the space of graphs (e.g., [33, 40]). It
is often needed to establish node correspondences between graphs of different sizes. The
works most relevant here are the ones that utilize Riemannian geometry in studying statistics
on graphs. Jain and Obermayer [47] imposed a metric structure on the space of graphs
for performing alignment and estimating the mean of a distribution on attributed graphs.
Guo et al. [43, 42] utilized the metric structure in [47] to quantify graph differences and to

4 Sketching Merge Trees

compute optimal deformations between graphs. They further established a framework for
computing mean, covariance, and PCA of graphs. For merge trees specifically, Gasparovic et
al. [37] studied the metric 1-center of a set of labeled merge trees, which found applications
in visualization [77]. However, these works focused on aligning graph nodes or tree nodes
over permutations, thus creating “hard matchings” [21]. On the other hand, the approaches
based on the GW distances [64, 21] are rooted in measure theory and employ probabilistic or
“soft matchings” of nodes. Information in a graph can be captured by a symmetric positive
semidefinite matrix that encodes distances or similarities between pairs of nodes. Dryden
et al. [28] described a way to perform statistical analysis and to compute the mean of such
matrices. Agueh et al. [4] considered barycenters of several probability measures, whereas
Cuturi et al. [23] and Benamou et al. [13] developed efficient algorithms to compute such
barycenters. Peyre et al. [64] combined these ideas with the notion of GW distances [55]
to develop GW averaging of distance/similarity matrices. Chowdhury and Needham [21]
built upon the work in [64] and provided a GW framework to compute a Frechét mean
among these matrices using measure couplings. In this paper, we utilize the GW framework
proposed in [21] for “soft matching” among merge trees.

Matrix Sketching. Many matrix sketching techniques build upon numerical linear algebra
and vector sketching. For simplicity, we formulate the problem as follows: Given a d×N
matrix A, we would like to approximate A using fewer columns, as a d× k matrix B such
that A and B are considered to be close with respect to some problem of interest. Basic
approaches for matrix sketching include truncated singular value decomposition (SVD),
column or row sampling [26, 27], random projection [68], and frequent directions [38, 50];
see [65, 74] for surveys.

The column (or row) sampling approach carefully chooses a subset of the columns (or
rows) of A proportional to their importance, where the importance is determined by the
squared norm (e.g., [26]) or the (approximated) leverage scores (e.g., [27]). The random
projection approach takes advantage of the Johnson-Lindenstrauss (JL) Lemma [48] to create
an N × k linear projection matrix S (e.g., [68]), where B = AS. The frequent directions
approach [50, 38] focuses on replicating properties of the SVD. The algorithm processes each
column of A at a time while maintaining the best rank-k approximation as the sketch.

Spanning Trees of Weighted Graphs. Given an undirected, weighted graph G, a spanning
tree is a subgraph of G that is a tree that connects all the vertices of G with a minimum
possible number of edges. We consider two types of spanning trees: the minimal spanning
tree (MST) and the low stretch spanning tree (LSST) [1, 2, 3]. Whereas the MST tries to
minimize the sum of edge weights in the tree, LSST tries to minimize the stretch (relative
distortion) of pairwise distances between the nodes of G. LSSTs were initially studied in the
context of road networks [5]. They also play an important role in fast solvers for symmetric
diagonally dominant (SDD) linear systems [31, 49].

A LSST does not stretch distances of G too much, in a sense that the distance between
any two nodes in the tree is at most a small constant times the distance between the same
nodes in G. Alon et al. [5] studied LSSTs in the context of the k-server problem on a road
network and provided the first theoretical bound on the average stretch of LSSTs. Elkin et
al. [31] used LSSTs to improve the running time for solving symmetric diagonally dominant
(SDD) linear systems [69]. Koutis et al. [49] further improved upon the running time of
LSST computation to provide a faster SDD solver. In a series of papers, Abraham and
coauthors [1, 2, 3] proposed incrementally faster algorithms to compute LSSTs, while at the
same time improving the bound on the average stretch. Most of these works focused on

M.Li, S. Palande, and B.Wang 5

bounding the average stretch. The problem of finding a spanning tree that minimizes the
max stretch, referred to as the Minimum Max-Stretch spanning Tree (MMST), is known
to be NP-hard. However, Emek and Peleg [32] presented an approximation algorithm for
MMST which is a variation of the LSST.

3 Technical Background

We begin by reviewing the notion of a merge tree that arises from a scalar field. We then
introduce the technical background needed to map a merge tree to a column vector in the
data matrix. We primarily utilize the Gromov-Wasserstein (GW) framework of Chowdhury
and Needham [21], which builds upon theoretical results on GW distances [54, 55], with a
few ingredients from Peyre et al. [64].

Figure 2 Two examples of merge trees from scalar (height) fields. For each example, from left to
right: 2D scalar fields visualization, merge trees embedded in the graphs of the scalar fields, and
abstract visualization of merge trees as rooted trees equipped with height functions.

Merge Trees. Let f : M→ R be a scalar field defined on the domain of interest M, where M
can be a manifold or a subset of Rd. For our experiments in Section 5, M ⊂ R2. Merge trees
capture the connectivity among the sublevel sets of f , i.e., Ma = f−1(−∞, a]. Formally, two
points x, y ∈M are equivalent, denoted by x ∼ y, if f(x) = f(y) = a, and x and y belong to
the same connected component of a sublevel set Ma. The merge tree, T (M, f) = M/∼, is
the quotient space obtained by gluing together points in M that are equivalent under the
relation ∼. To describe a merge tree procedurally, as we sweep the function value a from
−∞ to ∞, we create a new branch originating at a leaf node for each local minimum of f .
As a increases, such a branch is extended as its corresponding component in Ma grows until
it merges with another branch at a saddle point. If M is connected, all branches eventually
merge into a single component at the global maximum of f , which corresponds to the root of
the tree. For a given merge tree, leaves, internal nodes, and root node represent the minima,
merging saddles, and global maximum of f , respectively. Figure 2 displays a set of two
scalar fields with their corresponding merge trees embedded in the graphs of the scalar fields.
In a nutshell, a merge tree T is a rooted tree equipped with a scalar function defined on its
node set, f : V → R.

Gromov-Wasserstein Distance for Measure Networks. The Gromov-Wasserstein (GW)
distance was proposed by Memoli [54, 55] for metric measure spaces. Peyre et al. [64]
introduced the notion of a measure network and defined the GW distance between such
networks. The key idea is to find a probabilistic matching between a pair of networks by
searching over the convex set of couplings of the probability measures defined on the networks.

A finite, weighted graph G can be represented as a measure network using a triple
(V,W, p), where V is the set of n nodes, W is a weighted adjacency matrix, and p is a
probability measure supported on the nodes of G. For our experiments, p is taken to be
uniform, that is, p = 1

n1n, where 1n = (1, 1, . . . , 1)T ∈ Rn.
Let G1(V1,W1, p1) and G2(V2,W2, p2) be a pair of graphs with n1 and n2 nodes, respect-

ively. Let [n] denote the set {1, 2, . . . , n}. V1 = {xi}i∈[n1] and V2 = {yj}j∈[n2]. A coupling

6 Sketching Merge Trees

between probability measures p1 and p2 is a joint probability measure on V1 × V2 whose
marginals agree with p1 and p2. That is, a coupling is represented as an n1×n2 non-negative
matrix C such that C1n2 = p1 and CT1n1 = p2. Given matrix C, its binarization is an
n1 × n2 binary matrix, denoted as 1C>0: this matrix has 1 where C > 0, and 0 elsewhere.

The distortion of a coupling C with an arbitrary loss function L is defined as [64]

E(C) =
∑

i,k∈[n1],j,l∈[n2]

L(W1(i, k),W2(j, l))Ci,jCk,l. (1)

Let C = C(p1, p2) denote the collection of all couplings between p1 and p2. The Gromov-
Wasserstein discrepancy [64] is defined as

D(C) = min
C∈C
E(C). (2)

In this paper, we consider the quadratic loss function L(a, b) = 1
2 |a− b|

2. The Gromov-
Wasserstein distance [21, 55, 64] dGW between G1 and G2 is defined as

dGW (G1, G2) = 1
2 min
C∈C

∑
i,k∈[n1],j,l∈[n2]

|W1(i, k)−W2(j, l)|2Ci,jCk,l. (3)

It follows from the work of Sturm [71] that such minimizers always exist and are referred to
as optimal couplings. Memoli [55] showed that (dGW)1/2 defines a distance on the “space of
metric measure spaces quotient by measure-preserving isometries” [64].

Alignment and Blowup. Given a pair of graphs G1 and G2, a coupling C ∈ C(p1, p2) can
be used to align their nodes. For each node xi ∈ V1, let ui = |{yj ∈ V2 : C(i, j) > 0}| denote
the number of nodes in V2 that have a nonzero coupling probability with xi. We define a
new node set V ′1 =

⋃
xi∈V1

{(xi, l) : 1 ≤ l ≤ ui}, which, roughly speaking, contains ui copies
of each xi ∈ V1. For xi ∈ V1, let {yil}l∈[ui] denote the nodes in V2 such that C(xi, yil) > 0.
We define a new distribution on V ′1 as p′1((xi, l)) = C(i, il). Finally, for x, x′ ∈ V1, l ∈ [ux],
and l′ ∈ [ux′], we define a new weight matrix W ′ such that W ′1((x, l), (x′, l′)) = W1(x, x′).
The new graph G′1 = (V ′1 ,W ′1, p′1) is the blowup of G1. G′1 can be possibly enlarged w.r.t.
G1. Similarly, we can construct the blowup G′2 = (V ′2 ,W ′2, p′2) of G2.

An optimal coupling C expands naturally to a coupling C ′ between p′1 and p′2. After
taking appropriate blowups, C ′ can be binarized to an n × n permutation matrix (where
n1, n2 ≤ n), and used to align the nodes of the two blown-up graphs. The GW distance is
given by a formulation equivalent to Equation 3 based on an optimal coupling,

dGW (G1, G2) = 1
2
∑
i,j

|W ′1(i, j)−W ′2(i, j)|2p′1(i)p′1(j). (4)

Fréchet Mean. Given a collection of graphs G = {G1, G2, . . . , GN}, a Fréchet mean [21] G
of G is a minimizer of the functional F (H,G) = 1

N

∑N
i=1 dGW (Gi, H) over the space N of

measure networks,

G = min
H∈N

1
N

N∑
i=1

dGW (Gi, H). (5)

Chowdhury and Needham [21] defined the directional derivative and the gradient of the
functional F (H,G) at H and provided a gradient descent algorithm to compute the Fréchet
mean. Their iterative optimization begins with an initial guess H0 of the Fréchet mean. At

M.Li, S. Palande, and B.Wang 7

the kth iteration, there is a two-step process: each Gi is first blown-up and aligned to the
current Fréchet mean, Hk; then Hk is updated using the gradient of the functional F (Hk,G)
at Hk. Such a two-step process is repeated until convergence where the gradient vanishes.
For the complete algorithmic and implementational details, see [21]. If G = (V ,W, p) is the
Fréchet mean, then we have

W (i, j) = 1
N

N∑
k=1

W ′k(i, j),

where W ′k is the weight matrix obtained by blowing-up and aligning Gk ∈ G to G. That is,
when all the graphs in G are blown-up and aligned to G, the weight matrix of G is given by
a simple element-wise average of the weight matrices of the graphs.

a b c

2
66666666664

0 0 0 0 0 0.12
0 0 0.04 0 0.08 0
0 0 0.12 0 0 0
0 0.12 0 0 0 0

0.08 0.04 0 0 0 0
0 0 0 0 0.08 0.04

0.08 0 0 0.04 0 0
0 0 0 0.12 0 0

3
77777777775

<latexit sha1_base64="Fvkze7glVMJouv6SmkMNJllmIHQ=">AAAC5nicbVLLSsNAFJ3Ed3xVXboZLIqrkhTBLkU3LhVsKzShTKa37eBkEmYmYgl+gBsXirj1m9z5MYKTNNKHXjLM4Z5zbu7cmTDhTGnX/bLshcWl5ZXVNWd9Y3Nru7Kz21JxKik0acxjeRsSBZwJaGqmOdwmEkgUcmiHdxc5374HqVgsbvQogSAiA8H6jBJtUt3Kt99x/BAGTGRhRLRkD4+Oi49wscotXzWv7vsTpuaeTGAj32ZYr46nvL/UXBofFUzpn6o47zPC8VdIC+WUsVQU/t+aeLbzUuL4IHqTY/qB061UjbEI/Bd4JaiiMq66lU+/F9M0AqEpJ0p1PDfRQUakZpSDqZkqSAi9IwPoGChIBCrIimt6xIcm08P9WJolNC6y046MREqNotAoTY9DNc/lyf+4Tqr7jSBjIkk1CDr+UT/lWMc4v3PcYxKo5iMDCJXM9IrpkEhCtXkZ+RC8+SP/Ba16zTOzvK5Xz87LcayifXSAjpGHTtEZukRXqImoRa0n68V6tYf2s/1mv4+ltlV69tBM2B8/VXm/Cg==</latexit><latexit sha1_base64="Fvkze7glVMJouv6SmkMNJllmIHQ=">AAAC5nicbVLLSsNAFJ3Ed3xVXboZLIqrkhTBLkU3LhVsKzShTKa37eBkEmYmYgl+gBsXirj1m9z5MYKTNNKHXjLM4Z5zbu7cmTDhTGnX/bLshcWl5ZXVNWd9Y3Nru7Kz21JxKik0acxjeRsSBZwJaGqmOdwmEkgUcmiHdxc5374HqVgsbvQogSAiA8H6jBJtUt3Kt99x/BAGTGRhRLRkD4+Oi49wscotXzWv7vsTpuaeTGAj32ZYr46nvL/UXBofFUzpn6o47zPC8VdIC+WUsVQU/t+aeLbzUuL4IHqTY/qB061UjbEI/Bd4JaiiMq66lU+/F9M0AqEpJ0p1PDfRQUakZpSDqZkqSAi9IwPoGChIBCrIimt6xIcm08P9WJolNC6y046MREqNotAoTY9DNc/lyf+4Tqr7jSBjIkk1CDr+UT/lWMc4v3PcYxKo5iMDCJXM9IrpkEhCtXkZ+RC8+SP/Ba16zTOzvK5Xz87LcayifXSAjpGHTtEZukRXqImoRa0n68V6tYf2s/1mv4+ltlV69tBM2B8/VXm/Cg==</latexit><latexit sha1_base64="Fvkze7glVMJouv6SmkMNJllmIHQ=">AAAC5nicbVLLSsNAFJ3Ed3xVXboZLIqrkhTBLkU3LhVsKzShTKa37eBkEmYmYgl+gBsXirj1m9z5MYKTNNKHXjLM4Z5zbu7cmTDhTGnX/bLshcWl5ZXVNWd9Y3Nru7Kz21JxKik0acxjeRsSBZwJaGqmOdwmEkgUcmiHdxc5374HqVgsbvQogSAiA8H6jBJtUt3Kt99x/BAGTGRhRLRkD4+Oi49wscotXzWv7vsTpuaeTGAj32ZYr46nvL/UXBofFUzpn6o47zPC8VdIC+WUsVQU/t+aeLbzUuL4IHqTY/qB061UjbEI/Bd4JaiiMq66lU+/F9M0AqEpJ0p1PDfRQUakZpSDqZkqSAi9IwPoGChIBCrIimt6xIcm08P9WJolNC6y046MREqNotAoTY9DNc/lyf+4Tqr7jSBjIkk1CDr+UT/lWMc4v3PcYxKo5iMDCJXM9IrpkEhCtXkZ+RC8+SP/Ba16zTOzvK5Xz87LcayifXSAjpGHTtEZukRXqImoRa0n68V6tYf2s/1mv4+ltlV69tBM2B8/VXm/Cg==</latexit><latexit sha1_base64="Fvkze7glVMJouv6SmkMNJllmIHQ=">AAAC5nicbVLLSsNAFJ3Ed3xVXboZLIqrkhTBLkU3LhVsKzShTKa37eBkEmYmYgl+gBsXirj1m9z5MYKTNNKHXjLM4Z5zbu7cmTDhTGnX/bLshcWl5ZXVNWd9Y3Nru7Kz21JxKik0acxjeRsSBZwJaGqmOdwmEkgUcmiHdxc5374HqVgsbvQogSAiA8H6jBJtUt3Kt99x/BAGTGRhRLRkD4+Oi49wscotXzWv7vsTpuaeTGAj32ZYr46nvL/UXBofFUzpn6o47zPC8VdIC+WUsVQU/t+aeLbzUuL4IHqTY/qB061UjbEI/Bd4JaiiMq66lU+/F9M0AqEpJ0p1PDfRQUakZpSDqZkqSAi9IwPoGChIBCrIimt6xIcm08P9WJolNC6y046MREqNotAoTY9DNc/lyf+4Tqr7jSBjIkk1CDr+UT/lWMc4v3PcYxKo5iMDCJXM9IrpkEhCtXkZ+RC8+SP/Ba16zTOzvK5Xz87LcayifXSAjpGHTtEZukRXqImoRa0n68V6tYf2s/1mv4+ltlV69tBM2B8/VXm/Cg==</latexit>

d e

Figure 3 An optimal coupling between two simple merge trees (a) and (c). The coupling matrix
is visualized in (b): yellows means high and dark blue means low probability. Couplings between
the Fréchet mean T with T1 and T2 are shown in (d) and (e), respectively.

A Simple Example. We give a simple example involving a pair of merge trees in Figure 3.
T1 in (a) and T2 in (c) contain 8 and 6 nodes, respectively (nodes are labeled starting with
a 0 index). The optimal coupling C obtained by the gradient descent algorithm of [21] is
visualized in (b). C is an 8× 6 matrix, and it shows that node x0 in T1 is matched to node
y5 in T2 with the highest probability (red stars). Similarly, x2 is matched with y2 (orange
stars), and x3 is matched with y1 (blue stars), respectively. Node x4 in T1 is coupled with
both y0 and y1 in T2 (green stars), with y0 having a higher probability (0.08) than y1 (0.04).

Now, we align both T1 and T2 to their Fréchet mean (denoted as T) via blown-ups. T
has 12 nodes. This gives rise to a coupling matrix between T and T1 (of size 12× 8), and a
coupling matrix between T and T2 (of size 12× 6), respectively. As shown in Figure 3, node
z0 of T is matched with node x0 of T1 in (d) and node y5 of T2 in (e), respectively; and z5 is
matched with x4 in (d) as well as y0 in (e). Now both trees T1 and T2 are blown-up to be T ′1
and T ′2, each with 12 nodes, and can be vectorized into column vectors of the same size.

4 Methods

Given a set T of N merge trees as input, our goal is to find a basis set S such that each
tree in T can be approximately reconstructed from a linear combination of merge trees in S.
We propose to combine the GW framework [21] with techniques from matrix sketching to
achieve this goal. We detail our pipeline to compute S, as illustrated in Figure 1.

Step 1: Representing Merge Trees as Metric Measure Networks. The first step is to
represent merge trees as metric measure networks as described in Section 3. Each merge tree

8 Sketching Merge Trees

T ∈ T can be represented using a triple (V,W, p), where V is the node set, W is a matrix of
pairwise distances between its nodes, and p is a probability distribution on V .

In this paper, we define p as a uniform distribution, i.e., p = 1
|V |1|V |. To define W ,

recall that each node x ∈ V is associated with a scalar value f(x). For a pair of adjacent
nodes x, x′ ∈ V , W (x, x′) = |f(x)− f(x′)|, i.e., the weight W (x, x′) is the absolute difference
in function value between them. We define W in such a way to encode information in f ,
which is inherent to a merge tree. For a pair of nonadjacent nodes x, x′ ∈ V , W (x, x′) is
the shortest path distance between them in T ; where a shortest path between x and x′ by
construction goes through their lowest common ancestor in T .

Step 2: Merge Tree Vectorization via Blowup and Alignment to the Fréchet Mean. The
second step is to convert each merge tree into a column vector of the same size via blowup
and alignment to the Fréchet mean. Having represented each merge tree as a metric measure
network, we can use the GW framework to compute a Fréchet mean of T , denoted as
T = (V ,W, p). Let n = |V |. In theory, n may become as large as

∏N
i=1 |Vi|. In practice, n is

chosen to be much smaller; in our experiments, we choose n to be a small constant factor (2
or 3) times the size of the largest input tree. The optimal coupling C between T and T = Ti
is an n×ni matrix with at least n nonzero entries. If the number of nonzero entries is greater
than n, we keep only the largest value in each row. That is, if a node of T has a nonzero
probability of coupling with more than one node of T , we consider the mapping with only
the highest probability, so that each coupling matrix C has exactly n nonzero entries. We
then blow up each T to obtain T ′ = (V ′,W ′, p′), and align T with T ′. The above procedure
ensures that each blown-up tree T ′ has exactly n nodes, and the binarized coupling matrix
C ′ between T and T ′ induces a node matching between them.

We can now vectorize (i.e., flatten) each W ′ (an n× n matrix) to form a column vector
a ∈ Rd of matrix A (where d = n2), as illustrated in Figure 1 (step 2)2. Each a is a vector
representation of the input tree T with respect to the Fréchet mean T .

Step 3: Merge Tree Sketching via Matrix Sketching. The third step is to sketch merge
trees by applying matrix sketching to the data matrix A, as illustrated in Figure 1 (step 3).
By construction, A is a d×N matrix whose column vectors ai are vector representations
of Ti. We apply matrix sketching techniques to approximate A by Â = B × Y . In our
experiments, we use two linear sketching techniques, namely, column subset selection (CSS)
and non-negative matrix factorization (NMF). See Section 6 for implementation details.

Using CSS, the basis set is formed by sampling k columns of A. Let B denote the matrix
formed by k columns of A and let Π = BB+ denote the projection onto the k-dimensional
space spanned by the columns of B. The goal of CSS is to find B such that ‖A−ΠA‖F is
minimized. We experiment with two variants of CSS.

In the first variant of CSS, referred to as Length Squared Sampling (CSS-LSS), we sample
(without replacement) columns of A with probabilities qi proportional to the square of their
Euclidean norms, i.e., qi = ‖ai‖2

2/‖A‖2
F . We modify the algorithm slightly such that before

selecting a new column, we factor out the effects from columns that are already chosen.
In the second variant of CSS, referred to as the Iterative Feature Selection (CSS-IFS), we

use the algorithm proposed by Ordozgoiti et al. [63]. Instead of selecting columns sequentially
as in CSS-LSS , CSS-IFS starts with a random subset of k columns. Then each selected
column is either kept or replaced with another column, based on the residual after the other
selected columns are factored out simultaneously.

2 In practice, d = (n+ 1)n/2 as we store only the upper triangular matrix.

M.Li, S. Palande, and B.Wang 9

In the case of NMF, the goal is to compute non-negative matrices B and Y such
that ‖A − Â‖F = ‖A − BY ‖F is minimized. We use the implementation provided in the
decomposition module of the scikit-learn package [22, 35]. The algorithm initializes matrices
B and X = Y T and minimizes the residual Q = A−BXT + bjx

T
j alternately with respect

to column vectors bj and xj of B and X, respectively, subject to the constraints bj ≥ 0 and
xj ≥ 0.

Step 4: Reconstructing Sketched Merge Trees. For the fourth step, we convert each
column in Â as a sketched merge tree. Let Â = BY , where matrices B and Y are obtained
using CSS or NMF. Let â = âi denote the ith column of Â. We reshape â as an n× n weight
matrix Ŵ ′. We then obtain a tree structure T̂ ′ from Ŵ ′ by computing its MST or LSST.

A practical consideration is the simplification of a sketched tree T̂ ′ coming from NMF.
T̂ ′ without simplification is an approximation of the blow-up tree T ′. It contains many more
nodes compared to the original tree T . Some of these are internal nodes with exactly one
parent node and one child node. In some cases, the distance between two nodes is almost
zero. We further simplify T̂ ′ to obtain a final sketched tree T̂ by removing internal nodes
and nodes that are too close to each other; see Section 6 for details.

Step 5: Returning Basis Trees. Finally, we return a set of basis merge trees S using
information encoded in the matrix B. Using CSS, each column bj of B corresponds directly
to a column in A; therefore, the set S is trivially formed by the corresponding merge trees
from T . Using NMF, we obtain each basis tree by applying MST or LSST to columns bj of
B with appropriate simplification, as illustrated in Figure 1 (step 5).

Error Analysis. For each of our experiments, we compute the global sketch error ε = ‖A−Â‖2
F ,

as well as column-wise sketch error εi = ‖ai − âi‖2
2, where ε =

∑N
i=1 εi. By construction,

εi ≤ ε. For merge trees, we measure the GW distance between each tree Ti and its sketched
version T̂i, that is τi = dGW (Ti, T̂i), referred to as the element-wise GW loss. The global GW
loss is defined to be τ =

∑N
i=1 τi. For theoretical considerations, see discussions in Section 7.

A Simple Synthetic Example. We give a simple synthetic example to illustrate our pipeline.
A time-varying scalar field f is a mixture of 2D Gaussians that translate and rotate on the
plane. We obtain a set of merge trees (indexed from 0) from 12 consecutive time steps,
referred to as the Rotating Gaussian. In Figure 4(a) and (b), we show the scalar fields and
the corresponding merge trees, respectively. Each merge tree is computed from −f ; thus, its
leaves correspond to the local maxima (red), internal nodes are saddles (white), and the root
node is the global minimum (blue) of f (see Figure 4(a)).

Since the dataset is quite simple, a few basis trees are sufficient to get good sketching results.
With two basis trees (k = 2), both CSS algorithms select S = {T1, T6}. The topological
structures of T1 and T6 are recognizably distinct among the input trees. For k = 3, CSS-LSS
returns S = {T1, T6, T10}, while CSS-IFS gives S = {T4, T6, T11}. In Figure 4(a) and (b), we
highlight the three basis trees selected with CSS-IFS and their corresponding scalar fields,
respectively, with green boxes. These basis trees clearly capture rather unique structural
representatives in the set. It is important to note that although T4 and T11 share a similar
tree topology, they are of different heights (T4 has a height of 30, whereas T11 has a height
of 24), and the branching nodes (black arrows) are positioned differently w.r.t. the root.

We also show a few input trees {T0, T1, T9, T10} (blue boxes) and their sketched versions
(red boxes) in Figure 4(c). The input and the sketched trees are almost indistinguishable
for T0, T1, and T9 (ignoring differences in tree layouts), but there are minor differences for
T10. We also visualize the data matrix A, Â, B, and highlight the coefficient matrix Y

in Figure 4(d). The Frechét mean tree T contains 11 nodes. The matrix Y in Figure 4(d),

10 Sketching Merge Trees

0 1 2 3

4 5 6 7

8 9 10 11

0 1 2

4

3

5 6 7

8 9 10 11

0 0 1 1

<latexit sha1_base64="RNpPLJ9/hp7yQ9s06Eoys5nV5tY=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LLaCp5IURI+lXjxWsB/QhrDZbNqlm03YnRRK6D/x4kERr/4Tb/4bt20O2vpg4PHeDDPzglRwDY7zbZW2tnd298r7lYPDo+MT+/Ssq5NMUdahiUhUPyCaCS5ZBzgI1k8VI3EgWC+Y3C/83pQpzRP5BLOUeTEZSR5xSsBIvm3XWn4e4iHwmGk8mdd8u+rUnSXwJnELUkUF2r79NQwTmsVMAhVE64HrpODlRAGngs0rw0yzlNAJGbGBoZKYRV6+vHyOr4wS4ihRpiTgpfp7Iiex1rM4MJ0xgbFe9xbif94gg+jOy7lMM2CSrhZFmcCQ4EUMOOSKURAzQwhV3NyK6ZgoQsGEVTEhuOsvb5Juo+7e1J3HRrXZKuIoowt0ia6Ri25REz2gNuogiqboGb2iNyu3Xqx362PVWrKKmXP0B9bnDzYGkrs=</latexit>

Bd⇥k
<latexit sha1_base64="TozikI6wecKv1MtTW4NV6hylYMM=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69LLaCp5IURI9VL56kgrWFNoTNZtMu3WzC7qZQQv+JFw+KePWfePPfuG1z0NYHA4/3ZpiZF6ScKe0431ZpbX1jc6u8XdnZ3ds/sA+PnlSSSULbJOGJ7AZYUc4EbWumOe2mkuI44LQTjG5nfmdMpWKJeNSTlHoxHggWMYK1kXzbrl37eYj6msVUoftpzberTt2ZA60StyBVKNDy7a9+mJAspkITjpXquU6qvRxLzQin00o/UzTFZIQHtGeowGaRl88vn6Izo4QoSqQpodFc/T2R41ipSRyYzhjroVr2ZuJ/Xi/T0ZWXM5FmmgqyWBRlHOkEzWJAIZOUaD4xBBPJzK2IDLHERJuwKiYEd/nlVfLUqLsXdeehUW3eFHGU4QRO4RxcuIQm3EEL2kBgDM/wCm9Wbr1Y79bHorVkFTPH8AfW5w8IRpKd</latexit>

Ad⇥N

<latexit sha1_base64="wKir74qOzpoR1L9mo7U144yY6bw=">AAAB/3icbVDLSsNAFJ34rPUVFdy4GWwFVyUpiC6rblxJBfuAJoTJdNIOnTyYuRFKzMJfceNCEbf+hjv/xmmbhbYeuHA4517uvcdPBFdgWd/G0vLK6tp6aaO8ubW9s2vu7bdVnErKWjQWsez6RDHBI9YCDoJ1E8lI6AvW8UfXE7/zwKTicXQP44S5IRlEPOCUgJY887DqDAlkl7mX9bEDPGQK3+ZVz6xYNWsKvEjsglRQgaZnfjn9mKYhi4AKolTPthJwMyKBU8HyspMqlhA6IgPW0zQiepGbTe/P8YlW+jiIpa4I8FT9PZGRUKlx6OvOkMBQzXsT8T+vl0Jw4WY8SlJgEZ0tClKBIcaTMHCfS0ZBjDUhVHJ9K6ZDIgkFHVlZh2DPv7xI2vWafVaz7uqVxlURRwkdoWN0imx0jhroBjVRC1H0iJ7RK3oznowX4934mLUuGcXMAfoD4/MH+DeVag==</latexit>

Âd⇥N

<latexit sha1_base64="nFCGpBe/5/aZqV73AIqwEL5ujjw=">AAAB+XicbVDLSgNBEOyNrxhfqx69DCaCp7AbED0GvXiSCCZGkmWZnUySIbMPZnoDYcmfePGgiFf/xJt/4yTZgyYWNBRV3XR3BYkUGh3n2yqsrW9sbhW3Szu7e/sH9uFRS8epYrzJYhmrdkA1lyLiTRQoeTtRnIaB5I/B6GbmP4650iKOHnCScC+kg0j0BaNoJN+2K09+NiJdFCHX5G5a8e2yU3XmIKvEzUkZcjR8+6vbi1ka8giZpFp3XCdBL6MKBZN8WuqmmieUjeiAdwyNqFnkZfPLp+TMKD3Sj5WpCMlc/T2R0VDrSRiYzpDiUC97M/E/r5Ni/8rLRJSkyCO2WNRPJcGYzGIgPaE4QzkxhDIlzK2EDamiDE1YJROCu/zyKmnVqu5F1bmvlevXeRxFOIFTOAcXLqEOt9CAJjAYwzO8wpuVWS/Wu/WxaC1Y+cwx/IH1+QM435K8</latexit>

Yk⇥N

<latexit sha1_base64="WIGhEHFpHsPzLBEykGMguNt3GLo=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBhPBU9gNiB6DXjxGMA9JljA7mU2GzGOZmRVDyFd48aCIVz/Hm3/jJNmDJhY0FFXddHdFCWfG+v63l1tb39jcym8Xdnb39g+Kh0dNo1JNaIMornQ7woZyJmnDMstpO9EUi4jTVjS6mfmtR6oNU/LejhMaCjyQLGYEWyc9lLs4SbR6KveKJb/iz4FWSZCREmSo94pf3b4iqaDSEo6N6QR+YsMJ1pYRTqeFbmpogskID2jHUYkFNeFkfvAUnTmlj2KlXUmL5urviQkWxoxF5DoFtkOz7M3E/7xOauOrcMJkkloqyWJRnHJkFZp9j/pMU2L52BFMNHO3IjLEGhPrMiq4EILll1dJs1oJLir+XbVUu87iyMMJnMI5BHAJNbiFOjSAgIBneIU3T3sv3rv3sWjNednMMfyB9/kDTzuQFA==</latexit>⇡ <latexit sha1_base64="XNq1KCjknNERdwucabvPpxoSA9o=">AAAB73icbVBNS8NAEJ34WetX1aOXxVbwVJKC6LHoxWMF+wFtKJvtpl262cTdiVBC/4QXD4p49e9489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfj25nffuLaiFg94CThfkSHSoSCUbRSp9JDEXFT6ZfKbtWdg6wSLydlyNHol756g5ilEVfIJDWm67kJ+hnVKJjk02IvNTyhbEyHvGuponaLn83vnZJzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7HkyEJozlBNLKNPC3krYiGrK0EZUtCF4yy+vklat6l1W3ftauX6Tx1GAUziDC/DgCupwBw1oAgMJz/AKb86j8+K8Ox+L1jUnnzmBP3A+fwBxZI+S</latexit>⇥<latexit sha1_base64="MMaL/Q1M66VdkodgO/tnguiizmc=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBhPBU9gNiF6EoBePEc0DkiXMTmaTIbOzy0yvEEI+wYsHRbz6Rd78GyfJHjSxoKGo6qa7K0ikMOi6305ubX1jcyu/XdjZ3ds/KB4eNU2casYbLJaxbgfUcCkUb6BAyduJ5jQKJG8Fo9uZ33ri2ohYPeI44X5EB0qEglG00kP5utwrltyKOwdZJV5GSpCh3it+dfsxSyOukElqTMdzE/QnVKNgkk8L3dTwhLIRHfCOpYpG3PiT+alTcmaVPgljbUshmau/JyY0MmYcBbYzojg0y95M/M/rpBhe+ROhkhS5YotFYSoJxmT2N+kLzRnKsSWUaWFvJWxINWVo0ynYELzll1dJs1rxLirufbVUu8niyMMJnMI5eHAJNbiDOjSAwQCe4RXeHOm8OO/Ox6I152Qzx/AHzucPRP2NHw==</latexit>=

9 9 10 10

a b

c

d

1

Figure 4 Rotating Gaussian: CSS-IFS with MST. (a) Visualizing a time-varying mixture of
Gaussian functions together with (b) their corresponding merge trees. (c) Examples of input merge
trees (blue boxes) with their sketched versions (red boxes). (d) Visualizing data matrices associated
with the sketching, while highlighting the coefficient matrix Y .

for instance, shows that T1 (orange box) is a linear combination of basis trees T4, T6, and
T11, with coefficient 0.56, −0.01, and 0.57, respectively. In addition, columns in Y with high
(yellow or light green) coefficients (w.r.t. the given basis) may be grouped together, forming
clusters such as {T0, T2, T3, T5, T6, T7, T8}, whose elements look structurally similar.

On the other hand, using NMF, when k = 2, we display the data matrices together with
basis trees (obtained via MST) in Figure 5. The most interesting aspect of using NMF is
that the basis trees (green boxes) are not elements of T ; however, they very much resemble
the basis trees obtained by CSS algorithms. In addition, columns in Y with high coefficients
(w.r.t. the same basis tree) may be grouped together that show, for instance, structural
similarities among the input trees T1, T4, T9, T10, and T11.

M.Li, S. Palande, and B.Wang 11

<latexit sha1_base64="RNpPLJ9/hp7yQ9s06Eoys5nV5tY=">AAAB+XicbVBNS8NAEN3Ur1q/oh69LLaCp5IURI+lXjxWsB/QhrDZbNqlm03YnRRK6D/x4kERr/4Tb/4bt20O2vpg4PHeDDPzglRwDY7zbZW2tnd298r7lYPDo+MT+/Ssq5NMUdahiUhUPyCaCS5ZBzgI1k8VI3EgWC+Y3C/83pQpzRP5BLOUeTEZSR5xSsBIvm3XWn4e4iHwmGk8mdd8u+rUnSXwJnELUkUF2r79NQwTmsVMAhVE64HrpODlRAGngs0rw0yzlNAJGbGBoZKYRV6+vHyOr4wS4ihRpiTgpfp7Iiex1rM4MJ0xgbFe9xbif94gg+jOy7lMM2CSrhZFmcCQ4EUMOOSKURAzQwhV3NyK6ZgoQsGEVTEhuOsvb5Juo+7e1J3HRrXZKuIoowt0ia6Ri25REz2gNuogiqboGb2iNyu3Xqx362PVWrKKmXP0B9bnDzYGkrs=</latexit>

Bd⇥k
<latexit sha1_base64="TozikI6wecKv1MtTW4NV6hylYMM=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69LLaCp5IURI9VL56kgrWFNoTNZtMu3WzC7qZQQv+JFw+KePWfePPfuG1z0NYHA4/3ZpiZF6ScKe0431ZpbX1jc6u8XdnZ3ds/sA+PnlSSSULbJOGJ7AZYUc4EbWumOe2mkuI44LQTjG5nfmdMpWKJeNSTlHoxHggWMYK1kXzbrl37eYj6msVUoftpzberTt2ZA60StyBVKNDy7a9+mJAspkITjpXquU6qvRxLzQin00o/UzTFZIQHtGeowGaRl88vn6Izo4QoSqQpodFc/T2R41ipSRyYzhjroVr2ZuJ/Xi/T0ZWXM5FmmgqyWBRlHOkEzWJAIZOUaD4xBBPJzK2IDLHERJuwKiYEd/nlVfLUqLsXdeehUW3eFHGU4QRO4RxcuIQm3EEL2kBgDM/wCm9Wbr1Y79bHorVkFTPH8AfW5w8IRpKd</latexit>

Ad⇥N

<latexit sha1_base64="wKir74qOzpoR1L9mo7U144yY6bw=">AAAB/3icbVDLSsNAFJ34rPUVFdy4GWwFVyUpiC6rblxJBfuAJoTJdNIOnTyYuRFKzMJfceNCEbf+hjv/xmmbhbYeuHA4517uvcdPBFdgWd/G0vLK6tp6aaO8ubW9s2vu7bdVnErKWjQWsez6RDHBI9YCDoJ1E8lI6AvW8UfXE7/zwKTicXQP44S5IRlEPOCUgJY887DqDAlkl7mX9bEDPGQK3+ZVz6xYNWsKvEjsglRQgaZnfjn9mKYhi4AKolTPthJwMyKBU8HyspMqlhA6IgPW0zQiepGbTe/P8YlW+jiIpa4I8FT9PZGRUKlx6OvOkMBQzXsT8T+vl0Jw4WY8SlJgEZ0tClKBIcaTMHCfS0ZBjDUhVHJ9K6ZDIgkFHVlZh2DPv7xI2vWafVaz7uqVxlURRwkdoWN0imx0jhroBjVRC1H0iJ7RK3oznowX4934mLUuGcXMAfoD4/MH+DeVag==</latexit>

Âd⇥N

<latexit sha1_base64="nFCGpBe/5/aZqV73AIqwEL5ujjw=">AAAB+XicbVDLSgNBEOyNrxhfqx69DCaCp7AbED0GvXiSCCZGkmWZnUySIbMPZnoDYcmfePGgiFf/xJt/4yTZgyYWNBRV3XR3BYkUGh3n2yqsrW9sbhW3Szu7e/sH9uFRS8epYrzJYhmrdkA1lyLiTRQoeTtRnIaB5I/B6GbmP4650iKOHnCScC+kg0j0BaNoJN+2K09+NiJdFCHX5G5a8e2yU3XmIKvEzUkZcjR8+6vbi1ka8giZpFp3XCdBL6MKBZN8WuqmmieUjeiAdwyNqFnkZfPLp+TMKD3Sj5WpCMlc/T2R0VDrSRiYzpDiUC97M/E/r5Ni/8rLRJSkyCO2WNRPJcGYzGIgPaE4QzkxhDIlzK2EDamiDE1YJROCu/zyKmnVqu5F1bmvlevXeRxFOIFTOAcXLqEOt9CAJjAYwzO8wpuVWS/Wu/WxaC1Y+cwx/IH1+QM435K8</latexit>

Yk⇥N

<latexit sha1_base64="WIGhEHFpHsPzLBEykGMguNt3GLo=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBhPBU9gNiB6DXjxGMA9JljA7mU2GzGOZmRVDyFd48aCIVz/Hm3/jJNmDJhY0FFXddHdFCWfG+v63l1tb39jcym8Xdnb39g+Kh0dNo1JNaIMornQ7woZyJmnDMstpO9EUi4jTVjS6mfmtR6oNU/LejhMaCjyQLGYEWyc9lLs4SbR6KveKJb/iz4FWSZCREmSo94pf3b4iqaDSEo6N6QR+YsMJ1pYRTqeFbmpogskID2jHUYkFNeFkfvAUnTmlj2KlXUmL5urviQkWxoxF5DoFtkOz7M3E/7xOauOrcMJkkloqyWJRnHJkFZp9j/pMU2L52BFMNHO3IjLEGhPrMiq4EILll1dJs1oJLir+XbVUu87iyMMJnMI5BHAJNbiFOjSAgIBneIU3T3sv3rv3sWjNednMMfyB9/kDTzuQFA==</latexit>⇡ <latexit sha1_base64="XNq1KCjknNERdwucabvPpxoSA9o=">AAAB73icbVBNS8NAEJ34WetX1aOXxVbwVJKC6LHoxWMF+wFtKJvtpl262cTdiVBC/4QXD4p49e9489+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfj25nffuLaiFg94CThfkSHSoSCUbRSp9JDEXFT6ZfKbtWdg6wSLydlyNHol756g5ilEVfIJDWm67kJ+hnVKJjk02IvNTyhbEyHvGuponaLn83vnZJzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7HkyEJozlBNLKNPC3krYiGrK0EZUtCF4yy+vklat6l1W3ftauX6Tx1GAUziDC/DgCupwBw1oAgMJz/AKb86j8+K8Ox+L1jUnnzmBP3A+fwBxZI+S</latexit>⇥<latexit sha1_base64="MMaL/Q1M66VdkodgO/tnguiizmc=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBhPBU9gNiF6EoBePEc0DkiXMTmaTIbOzy0yvEEI+wYsHRbz6Rd78GyfJHjSxoKGo6qa7K0ikMOi6305ubX1jcyu/XdjZ3ds/KB4eNU2casYbLJaxbgfUcCkUb6BAyduJ5jQKJG8Fo9uZ33ri2ohYPeI44X5EB0qEglG00kP5utwrltyKOwdZJV5GSpCh3it+dfsxSyOukElqTMdzE/QnVKNgkk8L3dTwhLIRHfCOpYpG3PiT+alTcmaVPgljbUshmau/JyY0MmYcBbYzojg0y95M/M/rpBhe+ROhkhS5YotFYSoJxmT2N+kLzRnKsSWUaWFvJWxINWVo0ynYELzll1dJs1rxLirufbVUu8niyMMJnMI5eHAJNbiDOjSAwQCe4RXeHOm8OO/Ox6I152Qzx/AHzucPRP2NHw==</latexit>=

Figure 5 Rotating Gaussian: data matrices together with basis tress returned by NMF.

5 Experimental Results

We demonstrate the applications of our merge tree sketching framework with three ensemble
datasets from scientific simulations. The key takeaway is that for each ensemble dataset,
our framework obtains basis merge trees that capture structural transitions and structural
diversity among the ensemble members. In general, CSS gives better sketched trees than
NMF; Iterative Feature Selection (CSS-IFS) performs slightly better than Length Squared
Sampling (CSS-LSS), based on error analysis. MST gives more visually appealing trees in
practice than LSST. All source codes and data will be made publicly available.

a

b

c

Figure 6 Visualizing a scalar field f that arises from a vorticity field of (a) Heated Cylinder
dataset, (b) Corner Flow dataset, and a velocity magnitude field of (c) Red Sea dataset, respectively.
Critical points (after de-noising) are shown in red (maxima) and white (saddles). Global minima
are in blue. Land is colored blue in (c). All merge trees are computed from −f .

Heated Cylinder Dataset. Two of our datasets come from numerical simulations available
online3. The first dataset, referred to as the Heated Cylinder with Boussinesq Approximation
(Heated Cylinder in short), comes from the simulation of a 2D flow generated by a heated
cylinder using the Boussinesq approximation [41, 66]. The dataset shows a time-varying
turbulent plume containing numerous small vortices. We convert each time instance of the
flow into a scalar field using its vorticity. We generate a set of merge trees from these scalar

3 https://cgl.ethz.ch/research/visualization/data.php

12 Sketching Merge Trees

fields based on 31 time steps (they correspond to steps 600-630 from the original 1310 time
steps). This set captures the evolution of small vortices over time. An instance of the scalar
field after de-noising is illustrated in Figure 6(a).

Corner Flow Dataset. The second dataset, referred to as the Cylinder Flow Around
Corners (Corner Flow in short), arises from the simulation of a viscous 2D flow around two
cylinders [7, 66]. The channel into which the fluid is injected is bounded by solid walls. A
vortex street is initially formed at the lower left corner, which then evolves around the two
corners of the bounding walls. We generate a set of merge trees from the vorticity fields of
the first 100 time instances, which describe the formation of a one-sided vortex street on the
upper right corner; see Figure 6(b) for an example.

Red Sea Dataset. The third dataset, referred to as the Red Sea eddy simulation (Red Sea in
short) dataset, originates from the IEEE Scientific Visualization Contest 20204. The dataset
was generated using a high-resolution MITgcm (Massachusetts Institute of Technology general
circulation model), together with remote sensing satellite observations. It is used to study the
circulation dynamics and eddy activities of the Red Sea (see [46, 78, 79]). For our analysis,
we use merge trees that arise from velocity magnitude fields of an ensemble (named 001.tgz)
with 60 times steps. Figure 6(c) shows a latter time step that captures the formation of
various eddies, which are circular movements of water important for transporting energy and
biogeochemical particles in the ocean.

5.1 Heated Cylinder Dataset
Given merge trees T = {T0, . . . , T30} from the Heated Cylinder dataset, we apply both CSS
and NMF to obtain a set of basis trees S and reconstruct the sketched trees. We compare all
sketching techniques by setting k = 5, all of which give fairly good sketching results.

Coefficient Matrices and Basis Trees from CSS and NMF. As shown in Figure 7, CSS-IFS
produces five basis trees: T4, T8, T12, T18, and T25. Figure 7(d) visualizes these basis trees
while highlighting their structural differences (purple circles). The coefficient matrix Y in
Figure 7(c) contains a number of yellow or light green blocks, indicating that consecutive
input trees are grouped together into clusters, and represented by one or two shared basis.
The columns of Y corresponding to the basis trees are highlighted with orange boxes in
Figure 7(c). The basis trees appear to be good representatives of the clusters.

Further investigation of the input trees reveals that these basis trees capture structural
transitions in the underlying scalar fields, even though such changes are not easy to detect
directly from their corresponding scalar fields (see Figure 9). In Figure 8, we see noticeable
structural transitions (purple circles) among trees from adjacent time steps: T7 → T8,
T14 → T15, T23 → T24, etc. The input trees with similar structures can be clustered based
on such transitions, where the basis trees are selected as representatives of each cluster.

On the other hand, CSS-LSS gives five basis trees, S = {T2, T8, T19, T25, T30}, which are
quite similar to the results of CSS-IFS, as shown in Figure 10. Using NMF, we show the five
basis trees together with coefficient matrix Y in Figure 11. It is interesting to notice the
star-like basis trees, although it is unclear if there is an intuitive explanation.

Sketched Trees. As illustrated in Figure 7(a) and (b), the column-wise sketch error and
the element-wise GW loss can be used to guide our investigation into individual trees. Using

4 https://kaust-vislab.github.io/SciVis2020/

M.Li, S. Palande, and B.Wang 13

3

b

a

4 8 12 18 25

4 8 12 2518

3 22

GW Loss

Sketch Error

Coefficient Matrix

3 22 22
19

19 19

2619

c

d

e

f Tree 22

Figure 7 Heated Cylinder, CSS-IFS with MST: (a) column-wise sketch error, (b) element-wise
GW loss, (c) coefficient matrix Y , (d) basis trees, (e) input trees (blue boxes) with their sketched
versions (red boxes), (f) weight matrices associated with T22 during the sketching process.

87 14 15 23 24

Figure 8 Heated Cylinder : CSS-IFS with MST. Instances of structural transitions among
consecutive merge trees.

CSS-IFS , we give an example of a well-sketched tree (T3) with a couple of outliers (T19 and
T22) based on the error analysis. In Figure 7(e), we compare each input tree (blue box)

14 Sketching Merge Trees

4 8 12 18 25

Figure 9 Heated Cylinder : scalar fields that correspond to the basis trees selected by CSS-IFS.

<latexit sha1_base64="nFCGpBe/5/aZqV73AIqwEL5ujjw=">AAAB+XicbVDLSgNBEOyNrxhfqx69DCaCp7AbED0GvXiSCCZGkmWZnUySIbMPZnoDYcmfePGgiFf/xJt/4yTZgyYWNBRV3XR3BYkUGh3n2yqsrW9sbhW3Szu7e/sH9uFRS8epYrzJYhmrdkA1lyLiTRQoeTtRnIaB5I/B6GbmP4650iKOHnCScC+kg0j0BaNoJN+2K09+NiJdFCHX5G5a8e2yU3XmIKvEzUkZcjR8+6vbi1ka8giZpFp3XCdBL6MKBZN8WuqmmieUjeiAdwyNqFnkZfPLp+TMKD3Sj5WpCMlc/T2R0VDrSRiYzpDiUC97M/E/r5Ni/8rLRJSkyCO2WNRPJcGYzGIgPaE4QzkxhDIlzK2EDamiDE1YJROCu/zyKmnVqu5F1bmvlevXeRxFOIFTOAcXLqEOt9CAJjAYwzO8wpuVWS/Wu/WxaC1Y+cwx/IH1+QM435K8</latexit>

Yk⇥N

2 8 19 25

2 8 19 25 30

30

Figure 10 Heated Cylinder : CSS-LSS with MST.

<latexit sha1_base64="nFCGpBe/5/aZqV73AIqwEL5ujjw=">AAAB+XicbVDLSgNBEOyNrxhfqx69DCaCp7AbED0GvXiSCCZGkmWZnUySIbMPZnoDYcmfePGgiFf/xJt/4yTZgyYWNBRV3XR3BYkUGh3n2yqsrW9sbhW3Szu7e/sH9uFRS8epYrzJYhmrdkA1lyLiTRQoeTtRnIaB5I/B6GbmP4650iKOHnCScC+kg0j0BaNoJN+2K09+NiJdFCHX5G5a8e2yU3XmIKvEzUkZcjR8+6vbi1ka8giZpFp3XCdBL6MKBZN8WuqmmieUjeiAdwyNqFnkZfPLp+TMKD3Sj5WpCMlc/T2R0VDrSRiYzpDiUC97M/E/r5Ni/8rLRJSkyCO2WNRPJcGYzGIgPaE4QzkxhDIlzK2EDamiDE1YJROCu/zyKmnVqu5F1bmvlevXeRxFOIFTOAcXLqEOt9CAJjAYwzO8wpuVWS/Wu/WxaC1Y+cwx/IH1+QM435K8</latexit>

Yk⇥N

Figure 11 Heated Cylinder : NMF with MST.

against its sketched version (red box). T3 and its sketched version T̂3 are indistinguishable.
Even though T19 and T22 are considered outliers relative to other input trees, they both
share similar subtrees (whose roots are pointed by black arrows) with their sketched versions.

In Figure 7(f), we further investigate the weight matrices from different stages of the

M.Li, S. Palande, and B.Wang 15

sketching pipeline for T22. From left to right, we show the weight matrix W22 of the input
tree, its blow-up matrix W ′22 (which is linearized to a22), the approximated column vector
â22 after sketching (reshaped into a square matrix), the weight matrix Ŵ ′22 of the MST
derived from the reshaped â22, the weight matrix of the MST after simplification, and root
alignment Ŵ22 w.r.t. T22. We observe minor changes between W22 (blue box) and Ŵ22 (red
box), which explains the structural variation between T22 and T̂22.

Reconstructing Merge Trees with LSST. For comparative purposes, instead of MST, we
demonstrate the tree reconstruction results using LSST for CSS-IFS , as shown in Figure 12.
The reconstructed tree using LSST for T22 (blue box) is visually less appealing compared to
the reconstruction using MST. The star-like features are most likely a consequence of the
petal decomposition algorithm of LSST. However, the weight matrix view shows that the
LSST preserves distances fairly well (red box vs. blue box).

22 22

Figure 12 Heated Cylinder : CSS-IFS with LSST.

Error Analysis. Finally, we discuss our results quantitatively. The global sketch error for
CSS-IFS , CSS-LSS , and NMF is 70.17, 93.22, and 53.91, respectively. Using MST, the global
GW loss for CSS-IFS , CSS-LSS , and NMF is 0.15, 0.25, and 0.33, respectively. Using LSST,
the global GW loss for CSS-IFS , CSS-LSS , and NMF is 0.39, 0.35, and 0.47, respectively.
Therefore, for this particular dataset, NMF gives the best matrix approximation but less
visually appealing merge trees, while CSS-IFS performs best among the three sketching
techniques in terms of preserving tree topology measured by the GW distance.

5.2 Corner Flow Dataset
The Corner Flow dataset contains 100 merge trees. We start with an error analysis with the
coefficient matrices, and then describe the sketching results in detail.

Error Analysis with Coefficient Matrices. First, we compare the coefficient matrices
generated using both CSS algorithms, for k = 15 and k = 30, respectively. In Figure 13(a), the
matrix Y for CSS-IFS contains a larger number of yellow rows (indicating large coefficients) in
comparison with Figure 13(b), which means that consecutive input trees can be reconstructed
with a small number of shared basis. This result implies that CSS-IFS produces basis
(columns) that are better cluster representatives than CSS-LSS . In terms of errors, CSS-IFS
has a smaller global GW loss: 14.41 (k = 15) and 10.90 (k = 30) for CSS-IFS , and 23.35
(k = 15) and 16.21 (k = 30) for CSS-LSS , respectively. CSS-IFS also has a smaller (6886.91)
global sketch error than CSS-LSS (11641.56), for k = 15. The column-wise sketch error is
visualized in Figure 14(a), and the element-wise GW loss is shown in Figure 14(b).

Basis Trees. We report the sketching results with 15 basis under CSS-IFS . The basis trees
are T2, T7, T11, T15, T20, T26, T35, T60, T72, T75, T78, T85, T86, T89, and T99; see Figure 14(c-
d). Similar to the Heated Cylinder dataset, we observe noticeable structural transitions
among some pairs of adjacent input trees, which partition the set into clusters with similar

16 Sketching Merge Trees

15 basis

ba

30 basis

15 basis

30 basis

Figure 13 Corner Flow dataset: CSS-IFS (a) and CSS-LSS (b) with MST. Visualizing weight
matrices Y with 15 and 30 basis trees, respectively.

structures (blocks of yellow). As illustrated in Figure 14(c), the basis trees (orange boxes)
serve as good cluster representatives, as they are mostly selected among yellow blocks. In
particular, they capture structural transitions in the set, which are highlighted in purple
circles in Figure 14(d). Such structural transitions may not be obvious in their scalar fields
counterparts; see Figure 15.

2620 35 60 7211

2 7 11 15 20 26 35 60 75 78 8572 89 9986

GW Loss

74
Sketch Error 52 9216 22 7031a

b

c

d

Figure 14 Corner Flow: CSS-IFS with MST. Visualizing column-wise sketch error (a), element-
wise GW loss (b), weight matrix Y with weights associated with basis trees, and (d) a subset of
basis trees. Purple circles highlight structural changes between basis trees.

Outliers among Sketched Merge Trees. Finally, we investigate individual sketched trees.
We utilize the column-wise sketch error in Figure 14(a) with element-wise GW loss in Fig-
ure 14(b) to select outliers among the sketched trees, such as T16, T52, T74, and T92 (magenta
boxes). Figure 14(c) shows that such outlier trees are linear combinations of basis trees with
fairly uniform weights. In Figure 16(b), we observe that these outlier trees are less visually

M.Li, S. Palande, and B.Wang 17

11 20 26

35 60 72

Figure 15 Corner Flow: CSS-IFS with MST. Scalar fields that correspond to the basis.

appealing, where their sketched versions (red boxes) contain a number of star-like features.
For instance, Figure 16(d) shows noticeable amount of changes in comparing the merge tree
weight matrices for T52 (blue box) and T̂52 (red box).

On the other hand, in Figure 16(a), trees with lower element-wise GW loss are structurally
similar to basis trees, and thus have a good approximation of their topology. For instance,
the sketched tree T̂70 (red box) is indistinguishable w.r.t. to the original input T70.

74 745216 16 52

31

70

Tree 52Tree 70

a

b

c d

70 7022 22 31

Figure 16 Corner Flow: CSS-IFS with MST. Individual sketched trees with high and low errors.

18 Sketching Merge Trees

5.3 Red Sea Dataset
The Red Sea dataset comes with 60 merge trees. The input set does not exhibit natural
clustering structures because many adjacent time steps give rise to trees with noticeable
structural changes. Nevertheless, we report our sketching results and discuss how such results
improve with an increasing number of basis.

Coefficient Matrices. Using both CSS-IFS and CSS-LSS , we compare the coefficient
matrices Y for k = 10, 15 and 30, respectively; see Figure 17. For k = 10, S contains T2, T3,
T4, T11, T12, T17, T21, T24, T34, T56. For k = 15, S includes T0, T1, T2, T4, T6, T7, T8, T12,
T17, T18, T21, T23, T45, T56, and T57. Since CSS-IFS is not a deterministic algorithm, as we
increase k, the basis set for k = 10 does not necessarily form a subset of the basis set for
k = 15. The input trees appear to have diverse structures, since the clustering among them
is unclear. This phenomenon is evident by the lack of long yellow rows in the matrices Y . It
is also interesting to notice that for both CSS algorithms, there exists a subset of consecutive
columns that contain few selected basis (orange boxes for k = 30).

In general, the global sketch error and GW loss improve as we increase the number of
basis. With 15 basis, the global GW loss for CSS-IFS , CSS-LSS , and NMF is 1.23629,
1.52865, and 6.91503, respectively; the global sketch error is 1385.71, 1408.21, and 1115.27,
respectively. Globally, therefore, NMF best approximates the matrix, whereas CSS-IFS best
preserves the tree topology.

10 basis

15 basis

30 basis

10 basis

15 basis

30 basis

ba

Figure 17 Red Sea dataset: CSS-IFS (a), CSS-LSS (b). Visualizing weight matrix Y with 10,
15, and 30 basis trees, respectively.

Basis Trees and Sketched Trees. We now discuss basis trees obtained using CSS-IFS with
15 basis. In Figure 18(d), we show a subset of the basis trees, T0, T1, T7, T8, and T9 to
demonstrate the diverse structures. We include column-wise sketch errors and element-wise
GW losses in Figure 18(a) and Figure 18(b), respectively. Similar to the Corner Flow dataset,
we could use these errors to study examples of well-sketched trees (green boxes) and outliers
(magenta boxes). Well-sketched trees are those with low GW losses and sketch errors, like

M.Li, S. Palande, and B.Wang 19

T3, T16, and T50. Given the diversity of the input trees, with just 15 basis, we still observe
very similar subtree structures among these trees (whose roots are pointed by black arrows),
see Figure 18(e).

Sketch Error

GW Loss

3726 48163 50

50

0 1 7 8 4523

b

a

c

d

e

Weight Matrix Y

3

16

503

16

50

Figure 18 Red Sea dataset: CSS-IFS , k = 15. Visualizing column-wise sketch error (a), element-
wise GW loss (b), weight matrix Y (c), a subset of basis trees (d), and examples of well-sketched
trees (e). Basis trees are encoded by green boxes. Input trees and their sketched version are encoded
by blue and red boxes, respectively.

6 Implementation Details

In this section, we provide some implementation details for various algorithms employed in
our merge tree sketching framework.

Matrix Sketching Algorithms. We use two variants of column subset selection (CSS)
algorithms, as well as non-negative matrix factorization (NMF) to sketch the data matrix A.
Here, we provide pseudocode for these matrix sketching algorithms.

Modified Length Squared Sampling (CSS-LSS)
1. s← 0, B is an empty matrix, A′ = A.
2. s← s+1. Select column c from A′ with the largest squared norm (or select c randomly

proportional to the squared norm) and add it as a column to B. Remove c from A′.

20 Sketching Merge Trees

3. For each remaining column c′ in A′ (i.e., c′ 6= c), factor out the component along c as:
a. u← c/‖c‖
b. c′ ← c′ − 〈u, c′〉u

4. While s < k, go to step 2.

Iterative Feature Selection (CSS-IFS)
1. Choose a subset of k column indices r = {i1, i2, . . . , ik} uniformly at random.
2. Construct subset Br = [ai1 , ai2 , . . . , aik] of A with columns indexed by r.
3. Repeat for j = 1, 2, . . . , k:

a. Let Xjl denote matrix formed by replacing column aij with column al in Br, where
l ∈ [n] \ r. Let X+

jl denote its Moore-Penrose pseudoinverse.
b. Find w = argminl∈[n]\r‖A−XjlX

+
jlA‖F .

c. Br ← Xjw.
d. r ← (r \ {ij})

⋃
{w}.

Non-Negative Matrix Factorization (NMF)
1. Given A and k, initialize B ∈ Rd×k, Y = XT ∈ Rk×N using the non-negative double

singular value decomposition algorithm of Boutsidis and Gallopoulos [14].
2. Normalize columns of B and X to unit L2 norm. Let E = A−BXT .
3. Repeat until convergence: for j = 1, 2, . . . , k,

a. Q← E + bjx
T
j .

b. xj ← [QT bj]+.
c. bj ← [Qxj]+.
d. bj ← bj/‖bj‖.
e. E ← Q− bjxTj .

Here, [Q]+ means that all negative elements of the matrix Q are set to zero.

LSST Algorithm. We construct low stretch spanning trees (LSST) using the petal decom-
position algorithm of Abraham and Neiman [3]. Given a graph G, its LSST is constructed by
recursively partitioning the graph into a series of clusters called petals. Each petal P (x0, t, r)
is determined by three parameters: the center of the current cluster x0, the target node of
the petal t, and the radius of the petal r.

A cone C(x0, x, r) is the set of all nodes v such that d(x0, x) + d(x, v)− d(x0, v) ≤ r. A
petal is defined as a union of cones of varying radii. Suppose x0 → x1 → · · · → xk = t is the
sequence of nodes on the shortest path between nodes x0 and t. Let dk denote the distance
d(xk, t). Then the petal P (x0, t, r) is defined as the union of cones C(x0, xk, (r − dk)/2) for
all xk such that dk ≤ r.

Beginning with a vertex x0 specified by the user, the algorithm partitions the graph into
a series of petals. When no more petals can be obtained, all the remaining nodes are put
into a cluster called the stigma. A tree structure, rooted in the stigma, is constructed by
connecting the petals and the stigma using some of the intercluster edges. All other edges
between clusters are dropped. This process is applied recursively within each petal (and the
stigma) to obtain a spanning tree structure.

Merge Tree Simplification. To reconstruct a sketched tree, we reshape the sketched column
vector â of Â into an n× n matrix Ŵ ′, and obtain a tree structure T̂ ′ by computing its MST
or LSST. T̂ ′ is an approximation of the blow-up tree T ′. To get a tree approximation closer
to the original input tree T , we further simplify T̂ ′ as described below.

The simplification process has two parameters. The first parameter α is used to merge
internal nodes that are too close (≤ α) to each other. Let R be the diameter of T̂ ′ and n

M.Li, S. Palande, and B.Wang 21

the number of nodes in T̂ ′. α is set to be cαR/n2 for cα ∈ {0.5, 1, 2}. A similar parameter
was used in simplifying LSST in [3]. The second parameter β = cβR/n is used to merge leaf
nodes that are too close (≤ β) to the parent node, where cβ ∈ {0.5, 1, 2}. Let Ŵ ′ be the
weight matrix of T̂ ′. The simplification process is as follows:
1. Remove from T̂ ′ all edges (u, v) where Ŵ ′(u, v) ≤ α.
2. Merge all leaf nodes u with their respective parent node v if Ŵ ′(u, v) ≤ β.
3. Remove all the internal nodes.
The tree T̂ obtained after simplification is the final sketched tree.

Merge Tree Layout. To visualize both input merge trees and sketched merge trees, we
experiment with a few strategies. To draw an input merge tree T equipped with a function
defined on its nodes, f : V → R, we set each node u ∈ V to be at location (xu, yu); where
yu = f(u), and xu is chosen within a bounding box while avoiding edge intersections. The
edge (u, v) is drawn proportional to its weight W (u, v) = |f(u)− f(v)| = |yu − yv|.

To draw a sketched tree as a merge tree, we perform the following steps:
1. Fix the root of the sketched tree at (0, 0).
2. The y-coordinate of each child node is determined by the weight of the edge between the

node and its parent.
3. The x-coordinate, which determines the left-to-right ordering of the child nodes, is

computed using a heuristic strategy described below.
a. Sort the child nodes by their distance to the parent node in descending order.
b. Suppose the order of child nodes after sorting is c1, c2, . . . , ct. If t is odd, we reorder

the nodes from left to right as ct, ct−2, ct−4, . . . , c3, c1, c2, c4, . . . , ct−3, ct−1. If t is even,
we reorder the nodes as ct−1, ct−3, ct−5, . . . , c3, c1, c2, c4, . . . , ct−2, ct.

The idea is to keep the child nodes that have a larger distance to the parent near the center
to avoid edge crossings between sibling nodes and their subtrees.

Our layout strategy assumes that the trees are rooted. However, T̂ , which is our
approximation of T , is not rooted. In our experiments, we use two different strategies to
pick a root for T̂ and align T and T̂ for visual comparison.

Using the balanced layout strategy, we pick the node u of T̂ that minimizes the sum
of distances to all other nodes. Set u to be the balanced root of T̂ . Similarly, we find the
balanced root v of the input tree T . T and T̂ are drawn using the balanced roots.

Using the root alignment strategy, we compute the optimal coupling between T and T̂
using the GW framework. Then we find the node u from T̂ that has the highest coupling
probability with the root node v in T and layout T̂ rooted at u.

Programming Language and Included Packages. Our framework is mainly implemented
in Python. The code to compute LSST and MST from a given weight matrix is implemented
in Java. The CSS-IFS algorithm for matrix sketching is implemented in MATLAB. For data
processing and merge tree visualization, we use Python packages, including numpy, matplotlib,
and networkx. In addition, the GW framework of Chowdhury and Needham [21] requires the
Python Optimal Transport (POT) package.

7 Theoretical Considerations

We discuss some theoretical considerations in sketching merge trees. In the first two steps of
our framework, we represent merge trees as metric measure networks and vectorize them
via blow-up and alignment to a Fréchet Mean using the GW framework [21]. Each merge
tree T = (V,W, p) ∈ T is mapped to a column vector a in matrix A, where W captures the

22 Sketching Merge Trees

shortest path distances using function value differences as weights. The computation of the
Fréchet mean T is an optimization process, but the blow-up of T and its alignment to T
does not change the underlying distances between the tree nodes, which are encoded in W .
Therefore, reshaping the column vector a back to a pairwise distance matrix and computing
its corresponding MST fully recovers the original input merge tree.

In the third step, we sketch the matrix A using either NMF or CSS. Both matrix
sketching techniques (albeit with different constraints) aim to obtain an approximation
Â = BY of A that minimizes the error ε = ‖A− Â‖F . Let Ak denote the (unknown) best
rank-k approximation of A. In the case of CSS, the theoretical upper bound was given as
a multiplicative error of the form ε ≤ εk · ‖A − Ak‖F , where εk depends on the choice of
k [25, 15], or it was given as an additive error ε ≤ ‖A−Ak‖F + εk,A, where εk,A depends on
k and ‖A‖F [26, 52]. ‖A− Ak‖F is often data dependent. In the case of NMF, a rigorous
theoretical upper bound on ε remains unknown.

Given an approximation Â of A, the next step is to reconstruct a sketched merge tree
from each column vector â of Â. We reshape â into an n × n matrix Ŵ and construct a
sketched tree T̂ by computing the MST or the LSST of Ŵ . The distance matrix D̂ of the
sketched tree T̂ thus approximates the distance matrix W ′ of the blow-up tree T ′.

When a sketched merge tree is obtained via a LSST, there is a theoretical upper
bound on the relative distortion of the distances [3], that is, θ ≤ O(logn log logn) for
θ = 1

(n
2)
∑
x,x′

(
D̂(x, x′)/Ŵ (x, x′)

)
. When a sketched merge tree is obtained via a MST,

the theoretical bounds on ‖Ŵ − D̂‖F are unknown, although, in practice, MST typically
provides better sketched trees in comparison with LSST, as demonstrated in Section 5.
Finally, although the smoothing process does not alter the tree structure significantly, it
does introduce some error in the final sketched tree, whose theoretical bound is not yet
established.

Therefore, while we have obtained good experimental results in sketching merge trees,
there is still a gap between theory and practice for individual sketched trees. Filling such a
gap is left for future work.

8 Conclusion

In this paper, we present a framework to sketch merge trees. Given a set T of merge trees of
(possibly) different sizes, we compute a basis set of merge trees S such that each tree in T
can be approximately reconstructed using S. We demonstrate the utility of our framework in
sketching merge trees that arise from scientific simulations. Our approach is flexible enough
to be generalized to sketch other topological descriptors such as contour trees, Reeb graphs,
and Morse–Smale graphs (e.g., [19]), which is left for future work.

References
1 Ittai Abraham, Yair Bartal, and Ofer Neiman. Embedding metrics into ultrametrics and

graphs into spanning trees with constant average distortion. Proceedings of the 18th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 502–511, 2007.

2 Ittai Abraham, Yair Bartal, and Ofer Neiman. Nearly tight low stretch spanning trees. IEEE
Symposium on Foundations of Computer Science, pages 781–790, 2008.

3 Ittai Abraham and Ofer Neiman. Using petal-decompositions to build a low stretch spanning
tree. ACM Symposium on Theory of Computing, pages 395–406, 2012.

4 Martial Agueh and Guillaume Carlier. Barycenters in the Wasserstein space. SIAM Journal
on Mathematical Analysis, 43(2):904–924, 2011.

M.Li, S. Palande, and B.Wang 23

5 Noga Alon, Richard M. Karp, David Peleg, and Douglas West. A graph-theoretic game and
its application to the k-server problem. SIAM Journal on Computing, 24(1):78–100, 1995.

6 David Alvarez-Melis and Tommi Jaakkola. Gromov-Wasserstein alignment of word embedding
spaces. Proceedings of the Conference on Empirical Methods in Natural Language Processing,
pages 1881–1890, 2018.

7 Irene Baeza Rojo and Tobias Günther. Vector field topology of time-dependent flows in a steady
reference frame. IEEE Transactions on Visualization and Computer Graphics, 26(1):280–290,
2020.

8 U. Bauer, B. Di Fabio, and C. Landi. An edit distance for Reeb graphs. Proceedings of the
Eurographics Workshop on 3D Object Retrieval, pages 27–34, 2016.

9 Ulrich Bauer, Xiaoyin Ge, and Yusu Wang. Measuring distance between reeb graphs. Proceed-
ings of the 30th Annual Symposium on Computational Geometry, page 464, 2014.

10 Ulrich Bauer, Claudia Landi, and Facundo Memoli. The Reeb graph edit distance is universal.
Foundations of Computational Mathematics, 2017.

11 Ulrich Bauer, Elizabeth Munch, and Yusu Wang. Strong equivalence of the interleaving
and functional distortion metrics for Reeb graphs. In Lars Arge and János Pach, editors,
31st International Symposium on Computational Geometry, volume 34 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 461–475, Dagstuhl, Germany, 2015. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik.

12 Kenes Beketayev, Damir Yeliussizov, Dmitriy Morozov, Gunther Weber, and Bernd Hamann.
Measuring the distance between merge trees. Topological Methods in Data Analysis and
Visualization III: Theory, Algorithms, and Applications, Mathematics and Visualization, pages
151–166, 2014.

13 Jean-David Benamou, Guillaume Carlier, Marco Cuturi, Luca Nenna, and Gabriel Peyré.
Iterative Bregman projections for regularized transportation problems. SIAM Journal on
Scientific Computing, 37(2):A1111–A1138, 2015.

14 Christos Boutsidis and Efstratios Gallopoulos. SVD based initialization: A head start for
nonnegative matrix factorization. Pattern Recognition, 41(4):1350–1362, 2008.

15 Christos Boutsidis, Michael W. Mahoney, and Petros Drineas. An improved approximation
algorithm for the column subset selection problem. Proceedings of the 20th Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 968–977, 2009.

16 Alexander M. Bronstein, Michael M. Bronstein, and Ron Kimmel. Efficient computation
of isometry-invariant distances between surfaces. SIAM Journal on Scientific Computing,
28(5):1812–1836, 2006.

17 Charlotte Bunne, David Alvarez-Melis, Andreas Krause, and Stefanie Jegelka. Learning
generative models across incomparable spaces. International Conference on Machine Learning,
pages 851–861, 2019.

18 Hamish Carr, Jack Snoeyink, and Ulrike Axen. Computing contour trees in all dimensions.
Computational Geometry, 24(2):75–94, 2003.

19 Michael J. Catanzaro, Justin M. Curry, Brittany Terese Fasy, Janis Lazovskis, Greg Malen,
Hans Riess, Bei Wang, and Matthew Zabka. Moduli spaces of Morse functions for persistence.
Journal of Applied and Computational Topology, 4:353–385, 2020.

20 Frédéric Chazal, David Cohen-Steiner, Marc Glisse, Leonidas J. Guibas, and Steve Y. Oudot.
Proximity of persistence modules and their diagrams. Proceedings of the 25th Annual Sym-
posium on Computational Geometry, pages 237–246, 2009.

21 Samir Chowdhury and Tom Needham. Gromov-Wasserstein averaging in a Riemannian
framework. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 842–843, 2020.

22 Andrzej Cichocki and Anh-Huy Phan. Fast local algorithms for large scale nonnegative matrix
and tensor factorizations. IEICE transactions on fundamentals of electronics, communications
and computer sciences, 92(3):708–721, 2009.

24 Sketching Merge Trees

23 Marco Cuturi and Arnaud Doucet. Fast computation of Wasserstein barycenters. Proceedings
of the 31st International Conference on Machine Learning, PMLR, 32(2):685–693, 2014.

24 Vin de Silva, Elizabeth Munch, and Amit Patel. Categorified Reeb graphs. Discrete &
Computational Geometry, pages 1–53, 2016.

25 Amit Deshpande and Santosh Vempala. Adaptive sampling and fast low-rank matrix approx-
imation. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, pages 292–303, 2006.

26 Petros Drineas, Ravi Kannan, and Michael W. Mahoney. Fast Monte Carlo algorithms for
matrices ii: Computing a low-rank approximation to a matrix. SIAM Journal on Computing,
36:158–183, 2006.

27 Petros Drineas, Malik Magdon-Ismail, Michael W. Mahoney, and David P. Woodruff. Fast
approximation of matrix coherence and statistical leverage. Journal of Machine Learning
Research, 13:3441–3472, 2012.

28 Ian L. Dryden, Alexey Koloydenko, and Diwei Zhou. Non-Euclidean statistics for covariance
matrices, with applications to diffusion tensor imaging. Annals of Applied Statistics, 3(3):1102–
1123, 2009.

29 Herbert Edelsbrunner, John Harer, Vijay Natarajan, and Valerio Pascucci. Morse-Smale
complexes for piece-wise linear 3-manifolds. Proceedings of the 19th Annual symposium on
Computational Geometry, pages 361–370, 2003.

30 Herbert Edelsbrunner, John Harer, and Afra J. Zomorodian. Hierarchical Morse-Smale
complexes for piecewise linear 2-manifolds. Discrete & Computational Geometry, 30:87–107,
2003.

31 Michael Elkin, Yuval Emek, Daniel A. Spielman, and Shang-Hua Teng. Lower-stretch spanning
trees. Proceedings of the 27th Annual ACM Symposium on Theory of Computing, 2005.

32 Yuval Emek and David Peleg. Approximating minimum max-stretch spanning trees on
unweighted graphs. SIAM Journal on Computing, 38(5):1761–1781, 2009.

33 Frank Emmert-Streib, Matthias Dehmer, and Yongtang Shi. Fifty years of graph matching,
network alignment and network comparison. Information Sciences, 346–347:180–197, 2016.

34 Danielle Ezuz, Justin Solomon, Vladimir G Kim, and Mirela Ben-Chen. GWCNN: A metric
alignment layer for deep shape analysis. Computer Graphics Forum, 36:49–57, 2017.

35 Cédric Févotte and Jérôme Idier. Algorithms for nonnegative matrix factorization with the
β-divergence. Neural computation, 23(9):2421–2456, 2011.

36 Christoph Flamm, Ivo L. Hofacker, Peter F. Stadler, and Michael T. Wolfinger. Barrier trees
of degenerate landscapes. Zeitschrift für Physikalische Chemie, 216(2), 2002.

37 Ellen Gasparovic, Elizabeth Munch, Steve Oudot, Katharine Turner, Bei Wang, and Yusu
Wang. Intrinsic interleaving distance for merge trees. arXiv preprint arXiv:1908.00063, 2019.

38 Mina Ghashami, Edo Liberty, Jeff M Phillips, and David P Woodruff. Frequent directions:
Simple and deterministic matrix sketching. SIAM Journal of Computing, 45(5):1762–1792,
2016.

39 Mikhail Gromov. Metric Structures for Riemannian and Non-Riemannian Spaces, volume 152
of Progress in mathematics. Birkhäuser, Boston, USA, 1999.

40 Shawn Gu and Tijana Milenković. Data-driven network alignment. PLoS ONE, 15(7):e0234978,
2020.

41 Tobias Günther, Markus Gross, and Holger Theisel. Generic objective vortices for flow
visualization. ACM Transactions on Graphics, 36(4):141:1–141:11, 2017.

42 Xiaoyang Guo and Anuj Srivastava. Representations, metrics and statistics for shape analysis
of elastic graphs. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, 2020.

43 Xiaoyang Guo, Anuj Srivastava, and Sudeep Sarkar. A quotient space formulation for statistical
analysis of graphical data. arXiv preprint arXiv:1909.12907, 2019.

M.Li, S. Palande, and B.Wang 25

44 C. Heine, H. Leitte, M. Hlawitschka, F. Iuricich, L. De Floriani, G. Scheuermann, H. Hagen,
and C. Garth. A survey of topology-based methods in visualization. Computer Graphics
Forum, 35(3):643–667, 2016.

45 Reigo Hendrikson. Using Gromov-Wasserstein distance to explore sets of networks. Master’s
thesis, University of Tartu, 2016.

46 Ibrahim Hoteit, Xiaodong Luo, Marc Bocquet, Armin Köhl, and Boujemaa Ait-El-Fquih.
Data assimilation in oceanography: Current status and new directions. In Eric P. Chassignet,
Ananda Pascual, Joaquin Tintoré, and Jacques Verron, editors, New Frontiers in Operational
Oceanography. GODAE OceanView, 2018.

47 Brijnesh J Jain and Klaus Obermayer. Learning in Riemannian orbifolds. arXiv preprint
arXiv:1204.4294, 2012.

48 William B Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert
space. Contemporary Mathematics, 26:189–206, 1984.

49 Ioannis Koutis, Gary L. Miller, and Richard Peng. A nearly-m logn time solver for SDD
linear systems. Procedings of the IEEE 52nd Annual Symposium on Foundations of Computer
Science, 2011.

50 Edo Liberty. Simple and deterministic matrix sketching. Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 581–588, 2013.

51 Shusen Liu, Dan Maljovec, Bei Wang, Peer-Timo Bremer, and Valerio Pascucci. Visualizing
high-dimensional data: Advances in the past decade. IEEE Transactions on Visualization and
Computer Graphics, 23(3):1249–1268, 2017.

52 Michael W. Mahone and Petros Drineas. Structural properties underlying high-quality
randomized numerical linear algebra algorithms. In M. Kane P. Buhlmann, P. Drineas and
M. van de Laan, editors, Handbook of Big Data, pages 137–154. Chapman and Hall, 2016.

53 Facundo Mémoli. Estimation of distance functions and geodesics and its use for shape
comparison and alignment: theoretical and computational results. PhD thesis, University of
Minnesota, 2005.

54 Facundo Mémoli. On the use of Gromov-Hausdorff distances for shape comparison. Eurographics
Symposium on Point-Based Graphics, pages 81–90, 2007.

55 Facundo Mémoli. Gromov-Wasserstein distances and the metric approach to object matching.
Foundations of Computational Mathematics, 11(4):417–487, 2011.

56 Facundo Mémoli and Tom Needham. Gromov-Monge quasi-metrics and distance distributions.
arXiv preprint arXiv:1810.09646, 2020.

57 Facundo Mémoli and Guillermo Sapiro. Comparing point clouds. Proceedings of the Euro-
graphics/ACM SIGGRAPH Symposiumon Geometry Processing, pages 32–40, 2004.

58 Facundo Mémoli and Guillermo Sapiro. A theoretical and computational framework for
isometry invariant recognition of point cloud data. Foundations of Computational Mathematics,
5:313–347, 2005.

59 Facundo Memoli, Anastasios Sidiropoulos, and Kritika Singhal. Sketching and clustering
metric measure spaces. arXiv preprint arXiv:1801.00551, 2018.

60 J. Milnor. Morse Theory. Princeton University Press, New Jersey, 1963.
61 Dmitriy Morozov, Kenes Beketayev, and Gunther Weber. Interleaving distance between merge

trees. Proceedings of Topology-Based Methods in Visualization (TopoInVis), 2013.
62 Elizabeth Munch and Anastasios Stefanou. The `∞-cophenetic metric for phylogenetic trees as

an interleaving distance. In Research in Data Science, Association for Women in Mathematics
Series, pages 109–127. Springer International Publishing, 2019.

63 Bruno Ordozgoiti, Sandra Gómez Canaval, and Alberto Mozo. A fast iterative algorithm for
improved unsupervised feature selection. IEEE 16th International Conference on Data Mining,
pages 390–399, 2016.

64 Gabriel Peyré, Marco Cuturi, and Justin Solomon. Gromov-Wasserstein averaging of kernel
and distance matrices. Proceedings of the 33rd International Conference on Machine Learning,
PMLR, 48:2664–2672, 2016.

26 Sketching Merge Trees

65 Jeff M. Phillips. Coresets and sketches. In Handbook of Discrete and Computational Geometry,
chapter 48. CRC Press, 3rd edition, 2016.

66 S. Popinet. Free computational fluid dynamics. ClusterWorld, 2(6), 2004. URL: http:
//gfs.sf.net/.

67 G. Reeb. Sur les points singuliers d’une forme de pfaff completement intergrable ou d’une
fonction numerique (on the singular points of a complete integral pfaff form or of a numerical
function). Comptes Rendus Acad.Science Paris, 222:847–849, 1946.

68 Tamás Sarlós. Improved approximation algorithms for large matrices via random projections.
Proceedings of 47th IEEE Symposium on Foundations of Computer Science, pages 143–152,
2006.

69 Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems. In Proceedings of the 26th Annual ACM
Symposium on Theory of Computing, 2004.

70 Raghavendra Sridharamurthy, Talha Bin Masood, Adhitya Kamakshidasan, and Vijay Natara-
jan. Edit distance between merge trees. IEEE Transactions on Visualization and Computer
Graphics, 2018.

71 Karl-Theodor Sturm. The space of spaces: curvature bounds and gradient flows on the space
of metric measure spaces. arXiv preprint arXiv:1208.0434, 2012.

72 Vayer Titouan, Nicolas Courty, Romain Tavenard, and Rémi Flamary. Optimal transport for
structured data with application on graphs. International Conference on Machine Learning,
pages 6275–6284, 2019.

73 Vayer Titouan, Rémi Flamary, Nicolas Courty, Romain Tavenard, and Laetitia Chapel. Sliced
Gromov-Wasserstein. Advances in Neural Information Processing Systems, pages 14726–14736,
2019.

74 David P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations and Trends
in Theoretical Computer Science, 10(1-2):1–157, 2014.

75 Hongteng Xu, Dixin Luo, and Lawrence Carin. Scalable Gromov-Wasserstein learning for
graph partitioning and matching. Advances in Neural Information Processing Systems, pages
3046–3056, 2019.

76 Hongteng Xu, Dixin Luo, Hongyuan Zha, and Lawrence Carin. Gromov-Wasserstein learning
for graph matching and node embedding. International Conference on Machine Learning,
pages 6932–6941, 2019.

77 Lin Yan, Yusu Wang, Elizabeth Munch, Ellen Gasparovic, and Bei Wang. A structural average
of labeled merge trees for uncertainty visualization. IEEE Transactions on Visualization and
Computer Graphics, 26(1):832–842, 2020.

78 Peng Zhan, George Krokos, Daquan Guo, and Ibrahim Hoteit. Three-dimensional signature of
the Red Sea eddies and eddy-induced transport. Geophysical Research Letters, 46(4):2167–2177,
2019.

79 Peng Zhan, Aneesh C. Subramanian, Fengchao Yao, and Ibrahim Hoteit. Eddies in the red sea:
A statistical and dynamical study. Journal of Geophysical Research, 119(6):3909–3925, 2014.

http://gfs.sf.net/
http://gfs.sf.net/

	Introduction
	Related Work
	Technical Background
	Methods
	Experimental Results
	Heated Cylinder Dataset
	Corner Flow Dataset
	Red Sea Dataset

	Implementation Details
	Theoretical Considerations
	Conclusion

