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Abstract

Recently, multi-scale notions of local homology (a vari-
ant of persistent homology) have been used to study
the local structure of spaces around a given point from
a point cloud sample. Current reconstruction guaran-
tees rely on constructing embedded complexes which
become difficult to construct in higher dimensions. We
show that the persistence diagrams used for estimat-
ing local homology can be approximated using families
of Vietoris-Rips complexes, whose simpler construction
are robust in any dimension. To the best of our knowl-
edge, our results, for the first time make applications
based on local homology, such as stratification learning,
feasible in high dimensions.

1 Introduction

Advances in scientific and computational experiments
have improved our ability to gather large collections of
data points in high-dimensional spaces. One aspect in
topological data analysis is to infer the topological struc-
ture of a space given a point cloud sample. We often
assume the space has manifold structure, however, more
interesting cases arise when we relax our assumptions to
include spaces that contains singularities and mixed di-
mensionality, such as stratified spaces for example.

Stratified spaces can be decomposed into manifold
pieces that are glued together in some uniform way. An
important tool in studying these spaces is the study
of the neighborhoods surrounding singularities, where
manifolds of different dimensionality intersect. We focus
on sampling conditions for such neighborhoods, which
allow us to begin examining how successful certain re-
construction techniques are with respect to the geomet-
ric properties of the underlying shape. Our goal is to
infer sampling conditions for recovering local structures
of stratified spaces, in particular, the local homology
groups, from a possibly noisy sampled point set.
Stratification learning. In stratification learning (or
mixed manifold learning), a point cloud is assumed to
be sampled from a mixture of (possibly intersecting)
manifolds. The objective is to recover the different
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pieces, often treated as clusters, of the data associated
with different manifolds of varying dimensions. Strati-
fied spaces has been studied extensively in mathematics,
see the seminal work in [24, 30]. Recently, topological
data analysis, relying heavily on ingredients from com-
putational topology [22, 33] and intersection homology
[23, 3, 5] has gained momentum in stratification learn-
ing. In particular, the work in [4] focuses on studying
the local structure of a sampled stratified spaces based
on a multi-scale notion of local homology (see Section
2). More recent work [6] studies how point cloud data
could be clustered by strata based on how the local ho-
mology of nearby sampled points map into one another.
Reconstruction and sampling. Reconstructing
shapes from potential noisy point cloud samples has
been studied in many different fields. Most often the
work is heavily tied to a reconstruction criteria (e.g. ho-
motopic, homeomorphic, etc.) and the assumptions on
the underlying space (e.g. manifold). Combinatorial al-
gorithms in geometry are generally derived from Delau-
nay triangulations [9] and alpha shapes [20], and provide
correctness proofs associated with such reconstructions
[18]. As the dimension increases, reconstruction efforts
have been redirected towards alternative combinatorial
structures such as tangential Delaunay complexes [7],
witness complexes [16], Čech complexes and the closely
related Vietoris-Rips complexes [10, 1, 2].

However, these existing techniques are primarily
concerned with global reconstruction. Providing recon-
struction guarantees for local structures is more chal-
lenging. To guarantee theoretical correctness in com-
puting persistence local homology, both [4] and [6] use
Delaunay complexes and their variants. However con-
structing Delaunay complexes in high dimensions is
known to be difficult due to scaling and numerical issues
with predicates. On the other hand, the Vietoris-Rips
complex is one of the most commonly used combina-
torial structure in topological data analysis due to its
algorithmic simplicity and robust computation in prac-
tice. Methods for fast [31] and efficient [1, 32] construc-
tion and approximation [28] of Vietoris-Rips complexes
are available, and there have been theoretical advances
on their topology-preserving qualities, making it appeal-
ing for computations in high dimensions. The goal of
this paper is to make persistent local homology com-



putation more practical through approximations based
upon Vietoris-Rips complexes.
Contributions. Our contributions focus on providing
sampling conditions to recover the local structure of a
space from a point cloud sample, based on previously
introduced [4] multi-scale notions of local homology.
Our main results are:
• We extend previously introduced algebraic con-

structions in the analysis of scalar fields over point
cloud data [12] to two multi-scale notions of local
homology.

• For both multi-scale notions of local homology,
we approximate their persistence diagrams by con-
structing families of Vietoris-Rips complexes based
on a set of sample points, formalized within The-
orem 3.2 and 4.1. The simplicity and efficiency of
building these complexes in any dimension, in com-
bination with their small-size sparse approximation
[28, 32] makes, for the first time, applications based
on local homology such as stratification learning
feasible in high dimensions.

• We show that relative persistent modules are inter-
leaved if the respective absolute persistent modules
are interleaved. We consider such a technical result
(Theorem 3.1) of independent interest.

• Our results imply algorithms for computing the
local homology either by a reduction to standard
persistence or a known variant which we describe
in Section 5.

2 Background

The background material focuses on the introduction
of persistence modules [11], local homology and its
multi-scale notions [4]. We assume a basic knowledge
of homology and persistent homology, see [27, 26] for
a readable background of the former, and [21] for a
computational treatment of the latter.
Persistence Modules. We use the definition of
persistence modules adapted from [11]. A persistence
module F = {Fα}α∈R is a collection of vector spaces
Fα (over any fields) together with a family {fβα : Fα →
Fβ}α≤β of linear maps such that α ≤ β ≤ γ implies
fγα = fγβ ◦ fβα , and fαα = idFα . A persistence module
is tame if it has finite number of critical values and all
Fα are of finite rank. In this paper, we suppose all
persistence modules we encounter are tame.

Two persistence modules {F}α and {G}α are
(strongly) ε-interleaved if there exists two families of ho-
momorphisms, µα : Fα → Gα+ε and να : Gα → Fα+ε,
that make the following diagrams (Fig. 1) commute for
all α ≤ β ∈ R [11]. The information contained in a per-
sistence module can be encoded by a multi-set of points
in the extended plane R̄2 (where R̄ = R ∪ {−∞,∞}),

called a persistence diagram [14]. If two tame persis-
tence modules are ε-interleaved, the bottleneck distance
between their persistence diagrams are upper bounded
by ε ([14], Theorem 4.4). In this paper, we consider
persistence modules of homology groups and relative ho-
mology groups over a field. Given a family of topological
spaces {Xα}α connected by inclusions Xα ↪→ Xβ , the
inclusions induce a sequence of homology groups con-
nected by homomorphisms, Hk(Xα)→ Hk(Xβ), where k
is the homological dimension. We therefore obtain per-
sistence modules of the form {Hk(Xα)}α. Specifically,
when the linear maps associated with two persistence
modules {Hk(Xα)}α and {Hk(Yα)}α are induced by in-
clusions at the space level Xα ↪→ Yα+ε and Yα ↪→ Xα+ε,
their k-th persistence modules are ε-interleaved [11].
For the rest of the paper, we sometimes abuse this nota-
tion by omitting the k-th homology functor unless nec-
essary. We work with singular homology here but our
results are applicable in the simplicial setting as well.
Local Homology. The local homology groups at a
point x ∈ X are defined as the relative homology
groups H(X,X − x) ([27], page 126). In this paper,
we assume that the topological space X is embedded
in some Euclidean space Rd 1. Let dx : Rd → R be the
Euclidean distance function from a fixed x ∈ X, dx(y) :=
d(x, y) = ||y−x||. Let Br = Br(x) = d−1x [0, r] and Br =
Br(x) = d−1x [r,∞) be the sublevel sets and superlevel
sets of dx. Taking a small enough r, the local homology
groups in questions are in fact the direct limit of relative
homology groups, limr→0 H(X,X∩Br), or alternatively
limr→0 H(X∩Br,X∩∂Br)[3], see Fig. 2. We adapt two
multi-scale notions of this concept based on persistence
(which are first introduced in [4]), referred to as the r-
filtration and the α-filtration. The goal of this paper
is to derive sampling conditions that are appropriate to
compute the persistence diagrams with respect to these
filtrations, therefore approximating the local homology
at x ∈ X.

For a fixed α ≥ 0, let Xα be the “thickened” or
“offset” version of X, that is, the space of points in Rd
at Euclidean distance at most α from X. Suppose L is
a finite set of points sampled from X 2, where L ⊂ X
and Lα = ∪x∈LBα(x). In subsequent sections, we put
further restrictions on L where we suppose L is an ε-
sample of X, that is,

∀x ∈ X, d(x, L) := inf
y∈L

d(x, y) ≤ ε.

The r-filtration (Fig. 3) is a sequence of relative

1This assumption can be relaxed in several ways, but this

setting is most common in our applications.
2Our results would hold with minor modifications in the setting

of sampling with noise, where elements of L lie on or near X.
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Figure 1: Strongly ε-interleaved persistence modules.
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Figure 2: Local homology as the direct limit, limr→0 H(X,X ∩Br) (left) or limr→0 H(X ∩Br,X ∩ ∂Br) (right).

homology groups connected by linear maps induced by
inclusion and excision, constructed by fixing a thicken-
ing parameter α and varying parameter r, for r′ > r,

· · · → H(Xα,Xα ∩Br
′
)→ H(Xα,Xα ∩Br)→ · · · .

The same filtration could be built on a set of points L
sampled from X, that is,

· · · → H(Lα, Lα ∩Br
′
)→ H(Lα, Lα ∩Br)→ · · · .

Here, we fix the space at resolution α, and vary the scale
r at which we analyze the local neighborhood, analog
to changing the lens from the front of the camera.

The α-filtration 3 (Fig. 4) is a sequence of relative
homology groups connected by inclusion, constructed
by fixing r and varying α, for α < α′,

· · · → H(Xα ∩Br,Xα ∩ ∂Br)→ . . .

→ H(Xα′ ∩Br,Xα′ ∩ ∂Br)→ · · · .

Its discrete counterpart built on a set of points L
sampled from X is,

· · · → H(Lα ∩Br, Lα ∩ ∂Br)→ . . .

→ H(Lα′ ∩Br, Lα′ ∩ ∂Br)→ · · · .

Here, we fix the size of the ball which defines the locality,
i.e. the size r of the local neighborhood, and we vary
the scale α at which we analyze the space.

3Technically, the r-filtration and the α-filtration are both per-

sistence modules that arise from their corresponding filtrations,
we refer to them as such for simplicity.

Čech and Vietoris-Rips Complexes. Suppose L is
a finite point set in Rd and Lα = ∪x∈LBα(x). The nerve
of Lα is the simplicial complex induced by all the non-
empty intersections of subcollections of balls in Lα and
is called the Čech complex of L, denoted as Cα = Cα(L)
(omitting L from the notation unless necessary). The
Vietoris-Rips complex of L is denoted as Rα, whose
simplices correspond to non-empty subsets of L of
diameter less than α. For Euclidean metric space, we
have, ∀α > 0, Cα/2 ⊆ Rα ⊆ Cα ⊆ R2α

4. This implies
that the persistence modules {H(Cα)}α and {H(Rα)}α
are α-interleaved 5.

3 Approximating the α-Filtration

In the α-filtration, since we will be computing relative
persistent homology, there are certain requirements on
the pairs, such that the maps of the relative filtration are
well-defined. Two persistence modules, A = {Aα}α∈R
and F = {Fα}α∈R are called compatible if for all α ≤ β,
the following diagram commutes:

Aα Fα

Aβ Fβ .

4Jung’s Theorem gives a tighter relation between Vietoris-Rips

and Čech complexes. We use the slightly looser relation in our

paper for simplicity.
5We emphasize that for our results the interleaving parameter

does depend on the parameter of the filtration. In other words,

for a fixed filtration scale parameter, we have a certain “constant”
interleaving.



Br
Br′

Xα
Br

Br′

Lα

Figure 3: The r-filtration for space X and its offsets (left), and the same filtration built on a set of points L,
sampled from X.
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Figure 4: The α-filtration for space X and its offset (left), and on the right, the same filtration built on a set of
points L, sampled from X.

This ensures that the relative persistence module is well-
defined 6. In our context, all the maps are induced
by inclusions hence the above diagram commutes. We
highlight steps involved to obtain our approximation
results:

• First, we show that under certain conditions, the
relative homology of a ball modulo its boundary is
isomorphic to that of the entire space modulo the
subspace outside the ball.

• Second, we prove that if we have two compati-
ble persistence modules F and A which are re-
spectively interleaved with G and B, the relative
persistent homology H(F ,A) is approximated by
H(G,B). This result may be of independent inter-
est.

• Last, we prove a series of interleavings to show that
both filtrations in our case can be interleaved with
a Vietoris-Rips construction on the samples.

6This is slightly more general that the condition required when

computing image, kernel and cokernel persistence of on pairs of
filtrations in [15].

We first show that the following two filtrations are
equivalent (where α < α′):

0→ H(Xα ∩Br,Xα ∩ ∂Br)→ H(Xα′ ∩Br,Xα′ ∩ ∂Br)
→ . . .→ H(Br, ∂Br),

(3.1)

0→ H(Xα,Xα − intBr)→ H(Xα′ ,Xα′ − intBr)

→ . . . . . .→ H(Rn,Rn − intBr).
(3.2)

Note that Xα − intBr = Xα − (Xα ∩ intBr). Unless
otherwise specified, α, α′ ∈ [0,∞). Graphically, these
filtrations are shown in Fig. 5. As it turns out, it is
easier to argue about the filtration in Fig. 5(right) than
Fig. 5(left), as shown in the following lemma.

Lemma 3.1. Assuming that spaces Xα and Xα− intBr
form a good pair, then H(Xα ∩ Br,Xα ∩ ∂Br) ∼=
H(Xα,Xα − intBr).

Proof Sketch. This follows from the Excision Theorem
([25], Theorem 15.1, page 82) and the Excision Exten-
sion Theorem ([25], Theorem 15.2, page 82). We excise
the space Xα−Br from the pair (Xα,Xα− intBr), and
obtain H(Xα,Xα − intBr) ∼= H(Xα − (Xα − Br),Xα −
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Figure 5: Left: the α-filtration with respect to the pair (Xα ∩ Br,Xα ∩ ∂Br). Right: the filtration with respect
to the pair (Xα,Xα − intBr).

intBr − (Xα−Br)) ∼= H(Xα ∩Br,Xα ∩ ∂Br). Since the
closure of Xα − Br needs not be contained in the inte-
rior of Xα − intBr, there are some technical conditions
which require some care. The key point is that since
the spaces form a good pair, this is sufficient for the
isomorphism to hold.

Recall that a pair of spaces (A,B) forms a good
pair if B is a nonempty closed subspace that is a
deformation retract of some neighborhood in A ([26],
page 114). This condition is required for the above
excision to be applicable. Without this condition, we
cannot guarantee that the homology of a quotient space
is isomorphic to the relative homology of the pair. See
Appendix A for details.

We now show that we can approximate local ho-
mology at multi-scale via the α-filtration using sample
points. We begin with sequence (3.2). Specifically,
we first consider the persistence module correspond-
ing to the whole space {Xα}, and then the persistence
module corresponding to the subspace we quotient by,
{Xα − intBr}. The key is a technical result described
in Theorem 3.1 which says that if we can interleave per-
sistence modules independently, we can interleave their
corresponding quotient persistence modules. We con-
sider this result to be of independent interest.

Theorem 3.1. Consider two pairs of compatible per-
sistence modules. Let A = {Aα}α∈R be compatible
with F = {Fα}α∈R and B = {Bα}α∈R be compatible
with G = {Gα}α∈R. If the modules A and B are ε1-
interleaved and F and G are ε2-interleaved, then the
relative modules {(Fα, Aα)}α∈R and {(Gα, Bα)}α∈R are
ε-interleaved, where ε = max{ε1, ε2}.

Proof Sketch. Without loss of generality, assume ε1 =
ε2 = ε. Each pair, {(F,A)} and {(G,B)}, gives rise to
a long exact sequence. The two sequences are related
by interleaving maps yielding the commutative diagram
in Figure 6.

To prove that the interleavings between individual
modules imply an interleaving between {(F,A)} and
{(G,B)}, we would need some careful diagram chas-
ing at the chain level. That is, we need to prove each
of the four diagrams (reviewed in Fig. 1) needed for in-
terleaving commutes, i.e. diagrams in Fig. 7 commute.
The key issue is that although each row is exact, maps
between persistence modules do not split — therefore
we may have one persistent relative class without a per-
sistent class in either component filtrations. The full
details of the proof (with digram chasing arguments)
are given in Appendix A.

Hn(Fα, Aα) Hn(Fα+2ε, Aα+2ε)

Hn(Gα+ε, Bα+ε)

Hn(Fα+ε, Aα+ε)

Hn(Gα, Bα) Hn(Gα+2ε, Bα+2ε)

Figure 7: Commuting diagrams for ε-interleaved persis-
tence modules.

With Theorem 3.1 in hand, we can begin to prove
the main result of the section. We would like to
construct a persistence module (based upon Vietoris-
Rips filtration) that interleaves with the α-filtration
{(Xα,Xα − intBr)}. The straightforward approach
is to consider {(Lα, Lα − intBr)}, as illustrated in
Figure 8. Such a construction is possible with careful
geometric considerations through interleaving with an
intermediate complex described below. We obtain our
main result by proving the following key steps:

1. {Lα} and {Xα} are ε-interleaved.

2. {Lα − intBr} and {Xα − intBr} are ε-interleaved.



Hn(Aα) Hn(Fα) Hn(Fα, Aα) Hn−1(Aα) Hn−1(Fα)

Hn(Bα+ε) Hn(Gα+ε) Hn(Gα+ε, Bα+ε) Hn−1(Bα+ε) Hn−1(Gα+ε)
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Figure 6: Commuting diagrams for the long exact sequence involving two pairs of filtrations.

3. (Nerve Lemma for {Lα − intBr}) For α < r,
N (Lα − intBr) is homotopic to Lα − intBr.

4. For a fixed α, we give an algorithm that compute
the 0- and 1-skeleton of N (Lα − intBr). Then we
build a Vietoris-Rips complex based on these 0-
and 1-skeletons by filling in the high-dimensional
co-faces. This is in fact a flag complex, or equiv-
alently, the clique complex of the 1-skeleton of
N (Lα − intBr). As α-varies, we refer to such a
filtration as Fα(L). We show that {Lα − intBr} is
α-interleaved with Fα(L).

5. We now arrive at the main result (Theorem 3.2):
{(Rα(L),Fα(L))} is (α + 2ε)-interleaved with the
α-filtration {(Xα,Xα − intBr)}.

Br Br

Figure 8: Illustration of filtrations, {Lα} (left) and
{Lα − intBr} (right).

For a fixed α, now we give the geometric construc-
tions of the 0- and 1-skeleton of N (Lα − intBr), or
equivalently, the 0- and 1-skeleton of Fα(L).

To construct the 0-skeleton (with a fixed α), for a
vertex xi ∈ L to be in the complex N (Lα − intBr),
it is required that the ball of radius α centered at xi
has non-empty intersection with the underlying space
Lα − intBr. Formally, let Bα(xi) be the ball of radius
α centered at xi and let p denote the center of the ball
Br = Br(p) defining the local neighborhood. There is
a corresponding vertex vi in the nerve if and only if
Bα(xi)− intBr 6= ∅.

p

xi

r
α

q

Figure 9: The boundary case for constructing the 0-
skeleton of N (Lα − intBr), where Bα(xi) − intBr is
nonempty and α+ d(xi, p) ≥ r.

As α varies, if xi lies outside Br, i.e. d(xi, p) ≥ r,
then the 0-skeleton is nonempty for all α > 0. If xi lies
inside Br, this set is non-empty for α > r − d(xi, p).
The boundary case is shown in Figure 9.

Therefore, to build a filtration of the 0-skeleton as α
increases, we introduce a vertex vi for every point xi ∈ L
with the following auxiliary function, which represents
the minimum value of α when Bα(xi) − intBr 6= ∅
and hence a vertex enters the filtration. The auxiliary
function, denoted by g, for a point xi ∈ L, is given by

g(xi) =

{
0 d(xi, p) ≥ r
r − d(xi, p) d(xi, p) < r

The filtration we consider is the sublevel set filtration
(at the simplicial level) of g.

To construct the 1-skeleton, we define the auxiliary
function g for the edges. We consider the situation
when the intersection of two balls (centered at x1 and x2
respectively) outside of the local neighborhood is non-
empty, i.e. Bα(xi)∩Bα(xj)− intBr(p) 6= ∅. Denote the
midpoint of the line segment connecting the two points
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Figure 10: This figure illustrates the computation of
α, that is, the time an edge xixj enters the filtration,
g(xixj). All edges are labelled by known distances. We
compute d(q, o) based on the triangle opq, and d(m, o)
based on the triangle omp, whose difference gives us
d(q,m). α can then be computed using the right triangle
xjqm.

by m, where

m =
xi + xj

2
.

The earliest an edge xixj can enter the filtration is
α > d(xi, xj)/2. If m lies outside the ball Br, g(xixj) =
d(xi, xj)/2. If m lies inside Br, we must compute the
closest point outside the ball. Consider, the Figure 10
where the line segment op is parallel to xixj so we can
compute

d(o, p) =

∣∣∣∣ (p−m)T (xi − xj)
d(xi, xj)

∣∣∣∣ .
Using basic geometry we get the following closed form
expression for the filtration function g on the edges.

g(xixj) =


d(xi, xj)/2, if d(m, p) ≥ r((√

r2−d(o,p)2−
√
d(m,p)2−d(o,p)2

)2

+d(xi,xj)
2/4

) 1
2

o.w.

With g defined on the 0- and 1-skeleton, it extends
to higher-dimensional simplices iteratively as the max-
imum value of its faces, e.g., triangles takes the max-
imum of its bounding edges, tetrahedra its bounding
triangles and so on. Now we arrive at our main result:

Theorem 3.2. Suppose L is an ε-sample of X. For
α < r, the relative module {(Rα(L),Fα(L))} is (α+2ε)-
interleaved with the α-filtration {(Xα,Xα − intBr)}.

Proof Sketch. Recall the key steps involved in proving
the main theorem. Step 1 and 2 are relative straight-
forward assuming L is an ε-sample of X. Step 3 and 4

requires careful geometric constructions. We defer the
technical details involving each step to Appendix A. We
describe the key ingredients for arriving at the interleav-
ing result (i.e. Step 5).

Step 1 gives an ε-approximation of the filtration
{Xα} and passing to the Vietoris-Rips complex intro-
duces an additional multiplicative factor of 2. We have,
on the chain level, the following sequence connected by
injective maps,

Ci(Xα)→ Ci(Lα+ε)→ Ci(R2(α+ε)(L)),

Ci(Rα(L))→ Ci(Lα)→ Ci(X(α+ε)).

Therefore, the interleaving parameter between the fil-
tration {Xα} and the Vietoris-Rips complex filtration
{Rα(L)} is α+ 2ε.

A similar construction gives us the same bound for
the filtration {Xα − intBr}. That is,

Ci(Xα − intBr)→ Ci(Lα+ε − intBr)→ Ci(Fα+ε(L)),

Ci(Fα(L))→ Ci(L2α − intBr)→ Ci(X2(α+ε) − intBr).

Applying Theorem 3.1 gives the interleaving constant of
α+ 2ε.

4 Approximating Local Homology: r-Filtration

4.1 r-Filtration approximation. In this section,
we describe approximating local homology with respect
to a fixed point x at multi-scale via r-filtration (Fig. 3).
We fix a thickening parameter α and drop it from the
notation, using only X. Consider the following filtration,
for r ≥ s ≥ t,

. . .→ H(X,X ∩Br)→ H(X,X ∩Bs)→
→ H(X,X ∩Bt)→ . . . ,

(4.3)

Now we endow the space X with a function g :
X → R, which is the Euclidean distance to a fixed
point x, g(y) = d(x, y) = dx(y). g could be viewed
as the restriction onto the space X, of a Euclidean
distance function to a point x, dx : Rd → R, that is,
g = dx|X. The function g is 1-Lipschitz and we see that
X ∩Br = g−1[r,∞), the superlevel set of g. The above
sequence becomes,

. . .→ H(X, g−1[r,∞))→ H(X, g−1[s,∞))→
→ H(X, g−1[t,∞))→ . . . .

(4.4)

This is the relative persistence module of g. Now let
f = −g : X → R, f is also 1-Lipschitz. Sequence (4.5)



holds the same information as sequence (4.4) assum-
ing tame functions 7, according to the Extended Per-
sistence Symmetry Corollary [8] (that is, the ordinary
persistence diagram of a function f equals the relative
persistence diagram of −f up to a dimension shift and
central reflection),

. . .→ H(f−1(−∞, a])→ H(f−1(−∞, b])→
→ H(f−1(−∞, c]) . . . ,

(4.5)

where a ≤ b ≤ c, which corresponds to the persistence
module of f based on its sublevel sets. Since the
filtrations in sequence (4.5) and sequence (4.4) hold
the same information, we can translate the diagram
and recover the information for the original r-filtration
(sequence (4.3)).

The key insight is that in this case, the r-filtration
amounts to studying the persistent homology of a
function on the space — the distance function to a point,
which is a particularly nice function, i.e. 1-Lipschitz. In
this section, we give results under strong assumptions
on the space X with some further discussions deferred
to Section 4.2.

We introduce a strong assumption on homotopy
between a pair of spaces, which requires that points are
only moved a bounded amount in the homotopy. Two
subsets of Euclidean space, X and Y are δ-homotopy
equivalent, if there exists two functions i : X → Y and
h : Y → X such that h ◦ i is homotopic to the identity
map idX, i◦h is homotopic to idY, d(p, h◦i(p)) ≤ δ (∀p ∈
X) and d(q, i ◦ h(q)) ≤ δ (∀q ∈ Y). Although weaker
assumptions have been used in approximation results
for a space, in this setting, we must approximate a
sublevel set filtration. An example of when a space as a
whole can be well-approximated but the approximation
fails for the sublevel set, along with other consequences
of such an assumption are discussed further in Section
4.2. In our context, the map i is typically the canonical
inclusion map, therefore if d(q, i ◦ h(q)) ≤ δ (∀q ∈ Y)
then d(p, h ◦ i(p)) ≤ δ (∀p ∈ X). Then we refer to
h : Y → X as the δ-homotopy equivalence between Y
and X, where d(p, h(p)) ≤ δ.

The first step in approximating the r-filtration
is relating the sublevel set filtration of a 1-Lipschitz
function f : X→ R on the space X, and the sublevel set
filtration of a corresponding function fε : Xε → R on Xε.
These filtrations together with maps induced by space
inclusions form the (homology) persistence module of f
and fε, respectively. Recall that f is the negative of dx
restricted to X, f = − dx|X. Likewise, fε = − dx|Xε .

7It is unclear whether this holds in the case of non-tame

functions which could arise as a consequence of a pathological
underlying space.

Since there is an inclusion X ↪→ Xε, it follows that
f = fε|X. For the rest of the section we use the following
notation for sublevel sets: F (a) = f−1(−∞, a], Fε(a) =
f−1ε (−∞, a], for every a ∈ R. The persistence module of
f and fε are represented as {H(F (a))}a and {H(Fε(a))}a
respectively.

Lemma 4.1. Suppose X and Xε are δ-homotopy equiv-
alent through the canonical inclusion map i : X → Xε
and the map h : Xε → X. Then the persistence modules
of f and fε, that is, {H(F (a))}a and {H(Fε(a))}a, are
δ-interleaved.

Proof. Consider the following sequence of maps:

F (α)
i′−→ Fε(α+ ε)

h′−→ F (α+ ε+ δ).

We define the map i′ = i|F (α) and show that i′

is well-defined. ∀p ∈ F (α), by definition, we have
f(p) ≤ α and f = fε|X, therefore fε(p) ≤ α. This
implies that p ∈ Fε(α) ⊆ Fε(α + ε), therefore, i′ is a
well-defined inclusion, which induces inclusion on the
homology level, i∗ : H(F (α))→ H(Fε(α+ ε)).

We define h′ = h|Fε(α+ε), and we need to show

that h′ is well-defined, that is, the image of h′ lies in
F (α + ε + δ). ∀p ∈ Fε(α + ε), by definition, we have
fε(p) ≤ α+ε. Since fε = − dx|Xε , then −d(x, p) ≤ α+ε.
Combining with d(p, h(p)) ≤ δ, we have

f(h(p)) := −d(x, h(p)) ≤ d(p, h(p))−d(x, p) ≤ α+ε+δ.

This implies that h(p) ∈ F (α + ε + δ). Therefore h′ is
well-defined. In addition, based on our assumption that
X and Xε are homotopy equivalent through maps i and
h, this implies that h′ is a homotopy equivalence, which
induces an isomorphism h∗ on the homology level,

h∗ : H(Fε(α+ ε))→ H(F (α+ ε+ δ)).

In order to show persistence modules {H(F (a))}a
and {H(Fε(a))}a are max(δ, ε)-interleaved, it easy to
verify that the four diagrams in Fig. 1 commute based
on the linear maps i∗ and h∗. Finally, by definition,
ε ≤ δ, that is, the boundary of the offset must be moved
at least ε. Therefore, max(δ, ε) = δ and we conclude
that the persistence modules are δ-interleaved.

The next step is to relate the above filtrations to
the union of balls on the samples. For notational con-
venience we define the union of balls centered around
points with a function value less than some threshold
a ∈ R as Uε(a) = ∪p∈L,f(p)≤aBε(p), where a ∈ R
and a ≤ 0. Since Uε(a) contains Euclidean balls
which are convex, the Nerve Lemma holds, that is, its



nerveN (Uε(a)), which corresponds to the Čech complex
Cε(a), and Uε(a) are homotopy equivalent. As a varies,
these complexes together with the maps induced by in-
clusions form a persistence module {H(Cε(a))}a. Simi-
larly we define the corresponding Vietoris-Rips complex
and its persistence module as Rε(a) and {H(Rε(a))}a
respectively.

Lemma 4.2. Suppose X and Xε are δ-homotopy equiv-
alent through the canonical inclusion map i : X → Xε
and the map h : Xε → X for ε ≤ δ. Suppose L is an ε-
sample of X. Then the persistence modules {H(F (a))}a
of f and {H(Cε(a))}a are (ε+ δ)-interleaved.

Proof. The proof is nearly identical to the proof of
Lemma 4.1. Consider the following sequence:

F (α)
i′−→ Uε(α+ ε)

h′−→ F (α+ 2ε+ δ)

We define the map i′ = i|F (α) and show i′ is well-

defined. ∀p ∈ F (α), by definition, f(p) = −d(x, p) ≤ α.
Since L is an ε-sample of X, there exists q ∈ L such
that p ∈ Bε(q), that is, d(p, q) ≤ ε. Combining
the above inequalities, we obtain f(q) = −d(x, q) ≤
−d(x, p) + d(p, q) ≤ α+ ε, implying that p ∈ Uε(α+ ε).

For map h′, since Uε(α+ ε) ⊆ Fε(α+ 2ε), based on
the results in Lemma 4.1 that the map Fε(α + 2ε) →
F (α + 2ε + δ) is well-defined, we can define h′ =
h|Uε(α+ε). Following similar argument in Lemma 4.1,
{H(Uε(a))}a is (ε+ δ)-interleaved with {H(F (a))}a. By
the Nerve Lemma, the union of balls 8 is homotopic
to the Čech complex for all a, leading to H(Cε(a)) ∼=
H(Uε(a)). Furthermore, the homotopy commutes with
inclusion ( [10], Lemma 3.4).

Theorem 4.1. Suppose h is δ-homotopy equivalence
between X2ε and X for δ ≥ 2ε, and L is an ε-sample
of X. Then the Vietoris-Rips module {H(R2ε(a))}a is
(2ε+ δ)-interleaved with the r-filtration {H(F (a))}a.

Proof. Suppose X2ε and X are δ-homotopy equivalent
through the canonical inclusion map i : X → X2ε and
the map h : X2ε → X. We can construct the following
commutative diagram in Figure 11.

First we consider the top and bottom rows in the
diagram. The 1st map is an inclusion on the space level.
The 2nd and 5th maps are homotopy equivalences based
on the Nerve Lemma (which induces isomorphisms
on the homology level). The 3rd and 4th maps are
inclusions based on interleaving between Čech and
Vietoris-Rips complexes, i.e. Cε ⊆ R2ε ⊆ C2ε. Second,

8Note the definition of the union of balls filtration – it precisely
equals to the lower star filtration of the Čech complex.

all the vertical maps between the top and bottom rows
are inclusions. Finally, we define the connecting map
U2ε(α+ε)→ F (α+3ε+δ) as h′ = h|U2ε(α+ε)

. To show

h′ is well-defined, ∀p ∈ U2ε(α+ ε), f(p) ≤ α+ 3ε, since
h′ is a δ-homotopy, h′(p) has a function value at most
α+ 3ε+ δ, therefore h′(p) ∈ F (α+ 3ε+ δ).

From the above commutative diagram, we consider
the following maps between spaces: F (α) → R2ε(α +
ε)→ F (α+3ε+δ). This leads to a factor of 2ε+δ in the
interleaving between persistence modules {H(R2ε(a))}a
and {H(F (a))}a and since δ ≥ 2ε, we can simplify this
to 2δ.

4.2 Discussion on the r-filtration. In this section,
we describe the assumption of δ-homotopy equivalence
between a pair of spaces. This is a strong assumption
since it is a homotopic equivalence but also requires
that points are only moved a bounded amount in the
homotopy. This is to quantify the distortion introduced
in situations such as the one illustrated in Fig. 12. Here
we define the Euclidean distance function to the point
p as dp(x) := d(p, x) = ||x − p||. We study the local
homology of any point p ∈ Rd, hence p can be chosen
to be any point in Rd, including any point in X.

Now consider dp restricted to X and Xα. Although
the part of X shown is well-approximated via a retract
from Xα, it is insufficient to guarantee that we could
closely approximate the persistence module of dp|X
through that of dp|Xα . The homology changes when
the two pieces shown merge in the sublevel set of dp.
The parameter at which the change occurs differs in
the filtrations on X and Xα by δ, or in other words,
the persistence diagrams of these filtrations differs by
at least δ.

X

X↵

Figure 12: The space X, its α-offset Xα and a point
p. Consider the distance function dp to p. This is an
example where the offset Xα and space X are homotopy
equivalent but the persistence diagrams of the functions
dp|X and dp|Xα are potentially far apart.



F (α)

Uε(α+ ε)

Cε(α+ ε)

R2ε(α+ ε) U2ε(α+ ε)

C2ε(α+ ε)

F (α+ 3ε+ δ)

Uε(α+ 4ε+ δ)

Cε(α+ 4ε+ δ)

R2ε(α+ 4ε+ δ) U2ε(α+ 4ε+ δ)

C2ε(α+ 4ε+ δ)

' '

' '

Figure 11: The commutative diagram interleaving the r-filtrations for the sublevel set filtration F , the filtration
of the function, the Čech complex C and the Vietoris-Rips complex R.

The problem of approximating a sublevel set filtra-
tion of a function on a space has been studied before.
The setting is closely related to the results of [12].
In [12], there is an approximation guarantee between
a sublevel set filtration of a c-Lipschitz function on a
space and an image persistence filtration on two nested
Vietoris-Rips complexes with an appropriately chosen
parameter. There are numerous requirements to apply
such results, which we outline here.

The first requirement is that we have access to
geodesic distances or some provable approximation of
it. While the geodesic distance can be inferred from
the Euclidean distance in certain cases, this can be
a difficult problem depending on how our space is
embedded. The second requirement is that the space
has positive convexity radius. While this is generally
a safe assumption for manifolds; for spaces where
local homology yields interesting information, such as
stratified spaces, this measure can often be zero (i.e.
a cone has zero convexity radius). If, however such
requirement is satisfied, we can apply the results in
[12] directly. The resulting algorithm is to build the
underlying simplicial complex using geodesic distances,
which given a sufficiently dense sampling relative to
the convexity radius, gives an approximation for any
c-Lipschitz function. Since distance functions are 1-
Lipschitz, the approximation results follow.

This highlights a key obstacle in stating sampling
results for function filtrations as well as an open problem
we discuss below: in terms of which measures should we
state sampling results? Is there a global geometric mea-
sure which is meaningful for stratified spaces? Are there
weaker conditions than δ-homotopy for approximating
sublevel set behavior? As pointed out above, geometric
measures, such as reach or convexity radius can be zero
even for nice spaces. It would be preferable to use quan-
tifiers such as homological feature size [14]. Research in
these directions is left for future work.

5 Algorithms

With the theory developed in the previous sections,
we outline the algorithms for computing the different
filtrations. In a nutshell, for the r-filtration, we could
reduce the computation of persistent local homology to
standard persistence on the sample points [22, 33]. On
the other hand, for the α-filtration, using Theorem 3.2,
we can compute relative persistent homology of the
filtrations built on the sample points using the algorithm
described in [29].

We begin with the the r-filtration. As input we
take a point set L which is an ε-sample of a space X
such that X and its offset X2ε are homotopic, and the
point p at which we want to study the local homology.
We construct a 2ε-Vietoris-Rips complex and compute
the function defined by the distance to p for all points in
the point sample, i.e. f(x) = d(x, p), ∀x ∈ L. Here we
assume that we can choose ε such that Theorem 4.1
holds and that we obtain a 4ε-approximation of the
sublevel set filtration. By the Extended Persistence
Symmetry Corollary [8], this gives us an approximation
of the filtration in Equation 4.3. Therefore, we use
the standard persistence algorithm on the Vietoris-
Rips complex filtered by f [22, 33] and we correct
for reflection and dimension shifts. This is described
in [17], however we recount it here for completeness.
We substitute birth and death times (i.e. reflection)
and increase the dimension of all infinitely persistent
classes by one. Correctness is proven in [8].

For the α-filtration, as input we again take a point
set L which is an ε-sample of a space X, a point p and
radius r at which we want to study the local homology.
We again consider the two component filtrations which
make up the relative persistence of the pair. The
filtration on the whole space is the standard Vietoris-
Rips filtration up to parameter r. For the other
filtration, we modify the parameter values according to
the formulas given in Section 3.

We can then compute the relative homology directly
using the methods of [29]. To compute the approxima-



tion to the α-filtration we construct the Vietoris-Rips fil-
tration on the point sample L up to parameter r (which
is given as input). Now we give a bit more technical
details on the algorithm described in [29]. Recall that
persistence may be viewed as homology over k[t] where
k is a field and the grading in t represents the time when
simplices enter the filtration. Furthermore, finitely gen-
erated persistence modules may be represented by a pre-
sentation of generators and relations. For standard per-
sistence, we obtain

B(X)→ Z(X)→ H(X)→ 0

where B(X) and Z(X) are freely generated graded
modules over k[t] representing the boundaries and cycles
respectively. That is, they represent the basis chains
of the boundaries and the cycles (and these chains
are graded in t). To compute the relative persistent
homology of a pair of spaces A ⊆ X, we compute the
following presentation

C(A)⊕B(X)→ Z(X)→ H(X,A)→ 0

where C(A) represents the graded chain space of A.
Here we have the implicit assumption that the filtrations
are compatible such that when a simplex enters A it
also enters X or has already entered X. Formally, any
chain in C(A) is expressible in C(X) with a possible
multiplication by t. Therefore, we can find the graded
linear map which sends a the span of C(A) ⊕ B(X)
into Z(X). The Smith-Normal form of this map is the
barcode.

To speed up the algorithm, we can remove the
rows and columns corresponding to simplices which
lie outside the ball Br(p) in C(A) and C(X). More
precisely, we remove a simplex if and only if all of its
vertices lie outside Br(p). This is an observation on the
above presentation, since if a simplex lies completely
outside the ball it is immediately quotiented out (since
for these simplices we do not change the filtration value).
Also note that this does not correspond to a simplicial
complex, since, for example, an edge with one vertex
in the ball and one outside will only have the row that
corresponds to the vertex outside the ball removed.

The algorithm can be further improved by observing
that since we only compute the filtration up to r, only
the points in the sample which lie at most 2r from x
need to be considered, rather than the entire sample.
This is due to the fact that no simplex will exist in
the Vietoris-Rips filtration with an edge longer than
2r. Alternatively, this could be proved using excision.
This implies that the size of the complex we need to
consider depends on r. Namely, if we have a dense
sample near p we can choose a small r to keep the
complexity manageable.

6 Discussion

Local homology and relative homology are common
tools in algebraic topology. In this paper, we recounted
two different multi-scale notions of local homology: the
α- and r-filtrations. We show that both can be well-
approximated using Vietoris-Rips complexes based on a
finite sample of the space and therefore efficiently com-
puted. We also prove a novel technical result involv-
ing interleaving between relative persistence modules
derived from interleaving between absolute persistence
modules. Several open questions remain: Are there bet-
ter geometric measures to describe the sampling condi-
tions in approximating local homology? Could a similar
sampling theory be developed for witness complexes?
Under what conditions on the space are the underlying
filtrations we study tame?

Our work was motivated by stratification learning.
We prove in this paper that the multi-scale versions
of local homology, vehicles for describing local struc-
tures of stratified spaces, could be approximated with
Vietoris-Rips complexes. In higher dimensions, the size
of the Vietoris-Rips complexes could be manageable if
the topological space has fairly low intrinsic dimension
and the number of sampled points is small. However,
although Vietoris-Rips complexes are simple to com-
pute and preserve the topology of the underlying space,
they do not scale well with higher intrinsic dimension
or large number of sampled points. In this case, we
would rely on fast and efficient construction and ap-
proximation of Vietoris-Rips [31, 1, 32, 28]. In partic-
ular, the work in [28] provides a linear-size approxima-
tion of the Vietoris-Rips filtration across all scales for
large data sets. The recently introduced Graph Induced
Complex (GIC) [19] also offers an alternative approxi-
mation scheme to make Vietoris-Rips approximation in
high-dimension computable in practice. It would be in-
teresting to extend the results of this paper to other
complexes such as GIC or witness complexes.

Furthermore, the results in this paper could be
applied to any applications where local or relative
homology computations are relevant, i.e. for future
directions, the approximation of the Conley index or
well groups [13], which also include computation of
relative homology groups.
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A Detailed Proofs for Approximating Local
Homology at Multi-scale via α-filtration

A.1 Lemma 3.1 We first prove the following lemma:
Lemma 3.1. Assuming that spaces Xα and Xα −
intBr form a good pair, then H(Xα ∩ Br,Xα ∩ ∂Br) ∼=
H(Xα,Xα − intBr).

Proof. First we recall several theorems related to exci-
sions. Let Y,U,A be topological spaces. The inclusion
map of pairs (Y−U,A−U)→ (Y,A) is called an exci-
sion if it induces a homology isomorphism. In this case,
one says that U can be excised. We will make use of the
following two results about excision ([25]).

Theorem A.1. (Excision Theorem) ([25], Theo-
rem 15.1, page 82) If the closure of U is contained in
the interior of A, that is, clU ⊆ intA, then U can be
excised.

Theorem A.2. (Excision Extension) ([25], Theo-
rem 15.2, page 82) Suppose V ⊂ U ⊂ A and (i) V can
be excised; (ii) (Y− U,A− U) is a deformation retract
of (Y− V,A− V). Then U can be excised. fig

In our context, let Y = Xα, A = Xα − intBr,
U = Xα − Br. Therefore Y − U = Xα ∩ Br and
A − U = Xα ∩ ∂Br. However, since clU needs not
be contained in intA, so we must define a suitable
V ⊂ U. One direct way is to choose some small enough
positive δ and a neighborhood I, such that we define,
I = Xα ∩ ∂Br ∩ clU, Iδ = {x ∈ clU | dI(x) ≤ δ}, and
V = U− Iδ, where dI(x) is the Euclidean distance from
x to the set I.

The existence of this δ follows from the assumption
that the pair (Xα,Xα − intBr) := (Y,A) form a good
pair. This is a technical condition which implies the
existence of a neighborhood of Y− U (i.e. Y− V) that
deformation retracts to Y−U. It is then straightforward
to verify that V ⊂ U ⊂ A satisfies the hypotheses of
Theorem A.2.

Therefore the chain map k : C(Y,A) → C(Y −
U,A − U) is an excision. It is defined as k = r# ◦ s,
where r# is the chain map induced by the retraction
r : (Y − V,A − V) → (Y − U,A − U), and s is
the chain-homotopy inverse of the chain map included
by the inclusion of pairs (Y − V,A − V) → (Y,A),
s : C(Y,A)→ C(Y− V,A− V).

A.2 Theorem 3.1 We describe our long and tech-
nical proof of Theorem 3.1 based on diagram chasing.
We first need the following lemma that comes from the
short exact sequences of a pair ([27], page 140).

Lemma A.1. The quotient map on the chain level com-
mutes. That is, for compatible maps A → B and
X → Y there is a map (X,A) → (Y,B) such that the
diagram in Fig. 13 is commutative.

Proof. The assumption of compatibility ensures the left
square commutes. Note that i, j must be injective maps
and in all the case we consider f and g are also injective,
which is sufficient for compatibility. To define h we note
that imh = im g/(im (g ◦ i) ⊕ im j). To show that the
right square commutes (h ◦ q = r ◦ g), we note that any
class in im (r ◦ g) must be in im q by exactness and the
assumption that the left square commutes (g◦i = j ◦f).
Since it is not in im i or map to im j, it is in imh.
Alternatively, any class in im (h ◦ q) must have a lift
to C(Y ) since r is a surjection. This must be in im g by
the definition of h, which concludes the proof.

Theorem 3.1. If we have two compatible filtrations
interleaved with two other compatible filtrations, the
relative filtration is also interleaved. Formally, if com-
patible persistence modules F = {Fα}α∈R and G =
{Gα}α∈R are ε1-interleaved, A = {Aα}α∈R and B =
{Bα}α∈R are ε2-interleaved, then the relative modules
{(Fα, Aα)}α∈R and {(Gα, Bα)}α∈R are ε-interleaved,
where ε = max{ε1, ε2}.

Proof. We begin with a list of notations. Suppose
{F} and {G} are compatible and are ε-interleaved
with homomorphisms {fα : H(Fα) → H(Gα+ε)} and
{gα : H(Gα) → H(Fα+ε)}. Suppose {A} and {B} are
also compatible and ε-interleaved, with homomorphisms
{φα : H(Aα) → H(Bα+ε)} and {ψα : H(Bα) →
H(Aα+ε)}. For relative homology to be well-defined,
we have injective maps at chain level, for simplicity, we
further require Aα ↪→ Fα and Bα ↪→ Gα.

We would like to prove that {(F,A)} and
{(G,B)} are also interleaved, and we could con-
struct their corresponding homomorphisms, {µα :
H(Fα, Aα) → H(Gα+ε, Bα+ε)} and {να : H(Gα, Bα) →
H(Fα+ε, Aα+ε)}.

To prove the result, we pass to the stack of long
exact sequences in Fig. 14. First, we explain the
notation. A map, i.e. φαn, represents a map that maps
n-dimensional homology groups of Aα to some other
homology groups. We note that all the squares in this
diagram (Fig. 14) commute based on Lemma A.1,
and by assumption the two component filtrations are
interleaved, so the first, second, fourth and fifth columns
commute with the maps induced by inclusion. For
example, the map induced by inclusion im (Hn(Fα) →
Hn(Fα+2ε)) equals im (gα+εn ◦ fαn ). Commutativity
implies interleaving in some of the cases. We prove
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0 Cn(B) Cn(Y ) Cn(Y,B) 0

i q

j r

f g h

Figure 13: Commuting diagrams on the chain level.

Hn(Aα) Hn(Fα) Hn(Fα, Aα) Hn−1(Aα) Hn−1(Fα)

Hn(Bα+ε) Hn(Gα+ε) Hn(Gα+ε, Bα+ε) Hn−1(Bα+ε) Hn−1(Gα+ε)
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n
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n
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n
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n
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Figure 14: Commuting diagrams for the long exact sequence involving two pairs of filtrations. This is identical
to Figure 6 for convinience.

the following triangle commutes (Fig. 7) through four
claims.

Claim 1: if a relative class is in im (Hn(Fα, Aα)→
Hn(Fα+2ε, Aα+2ε)), and it is in im jαn and im jα+2ε

n , then
it is in im qα+εn .

If a relative class γ in im (Hn(Fα, Aα) →
Hn(Fα+2ε, Aα+2ε)) is in im jαn and im jα+2ε

n , then by
the interleaving, it must be in Hn(Gα+ε). Therefore
suppose γ is not in im qα+εn , it must have a preim-
age in Hn(Bα+ε). Since γ is in im jα+2ε

n , it does not
have a preimage in Hn(Aα+2ε). This would imply that
the lower left square does not commute (gα+εn ◦ pα+εn 6=
iα+2ε
n ◦ψα+εn ). That is a contradiction, therefore it must

be in im qα+εn .
Claim 2: If a relative class is in im (Hn(Fα, Aα)→

Hn(Fα+2ε, Aα+2ε)), and it is in cok jαn and cok jα+2ε
n ,

it must be in cok qα+εn . If the relative class γ in
im (Hn(Fα, Aα) → Hn(Fα+2ε, Fα+2ε)) is in cok jαn and
cok jα+2ε

n , then by exactness γ maps into im kαn and
im kα+2ε

n , that is, it maps to a non-trivial element
in Hn−1(Aα) and Hn−1(Aα+2ε). By the interleaving
between A and B, it must also map to an element
of Hn−1(Bα+ε). Furthermore, it must be in ker iαn−1.
Therefore suppose γ is not in cok qα+εn (or equivalently,
im rα+εn or ker pα+εn−1) , it must map to a class in
Hn−1(Gα+ε), which implies that the top right square
does not commute (fαn−1 ◦ iαn−1 6= pα+εn−1 ◦ φ

α+ε
n−1) leading

to a contradiction.
We now show that commutativity is not a suffi-

cient argument. Consider a persistent relative class in
Hn(Fα, Aα)→ Hn(Fα+2ε, Aα+2ε) such that it is in im jαn
and cok jα+2ε

n . Alternatively, it may be in cok jαn and
im jα+2ε

n . In these cases, we may map this class to zero
the middle row and still maintain the commutativity of
the diagram (although this implies the relative filtra-
tions are not interleaved). This problem stems from the
fact that the maps between persistent modules do not
split (The relative persistence module does not split into
direct sum of the image and cokernel in the long exact
sequence).

Claim 3: If the relative class is in
im (Hn(Fα, Aα) → Hn(Fα+2ε, Aα+2ε)), then it is
not possible that it is in im jαn and cok jα+2ε

n at the
same time.

First we handle the case where the relative class is
in im jαn and cok jα+2ε

n by showing this cannot occur.
Since it is in im jαn at the chain level, there is a cycle
representative in Zn(Fα). Since this maps to a cycle
representative in Zn(Fα+2ε), this implies that the cycle
is in the boundary. However, looking at the relavent
part of the short exact sequence shown in Fig. 15.

The cycle representative in Cn(Fα+2ε) lifts to some
element in Cn+1(Fα+2ε). Now by assumption, there is
still some cycle representative in Cn(Fα+2ε, Aα+2ε). By
commutativity, the bounding element in Cn+1(Fα+2ε)
must also map to a bounding element of the cycle
representative in Cn(Fα+2ε, Aα+2ε), meaning it cannot
be a relative homology class. If on the other hand, the
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Figure 15: Short exact sequence on chain level.

cycle representative in Cn(Fα+2ε) is in the kernel of the
quotient map, a relative homology class would appear
one dimension up. This is the case we deal with next.

Claim 4: If the relative class is in
im (Hn(Fα, Aα) → Hn(Fα+2ε, Fα+2ε)), and it is in
cok jαn and im jα+2ε

n , then it must be in im qα+εn or
cok qα+εn (i.e. it must be Hn(Gα+ε, Bα+ε)).

For a relative class in cok jαn , there is a cycle
representative in Cn−1(Aα) of the corresponding class
Hn−1(Aα) which by the injectivity of the interleaving,
maps to a cycle in Cn−1(Bα+ε) and Cn−1(Aα+2ε).
Further, since it is in cok jαn , it follows that it maps
to a bounded cycle in Cn−1(Fα) (and by injectivity)
the corresponding cycle representatives in Cn−1(Gα+ε)
and Cn−1(Fα+2ε) are also bounded. Since this relative
class is assumed to be in im jα+2ε

n , it follows that the
cycle representative in Cn−1(Aα+2ε) is now bounded,
with the pre-boundary mapping to a cycle in Cn(Fα+2ε).
This follows from a chain level understanding of the
exactness of the bottom row. Take the representative
(n − 1)-cycle in Cn−1(Aα) denoted by a and map
it into Cn−1(Fα). iαn−1(a) has a pre-boundary in
Cn(Fα) which maps to the cycle representative of the
relative class in Cn(Fα, Aα). This is just the connecting
homomorphism construction. If we map this relative
cycle representative to Cn(Fα+2ε, Aα+2ε), since the class
is in jα+2ε

n , it lifts to a non-trivial cycle in Cn(Fα+2ε).
This cycle is precisely the image of the pre-boundary of
a in Cn−1(Aα+2ε) mapped to Cn(Fα+2ε) plus the pre-
boundary of the image of iαn−1(a) in Cn−1(Fα+2ε).

There are two case to consider. If φαn−1(a) is a non-
trivial cycle, then there is a homology class in ker pα+εn−1
and by exactness, a corresponding class in the cok qα+εn .

If φαn−1(a) maps to a bounded cycle, then by the
same reasoning as above, the pre-boundary of this
cycle in Cn(Bα+εn ) must map to a non-trivial cycle in
Cn(Gα+εn ). Hence there is a corresponding class in
im qα+εn . Proving the claim.

Following the above four claims, we’ve shown the
triangle in Fig. 7 commutes. Fig. 7 equals the
trapezoid in Fig. 16(a) by setting α′ = α. It follows that
the trapezoid in Fig. 16(a) commutes based on similar
diagram chasing argument.

The other diagrams in Fig. 16 follow similar proofs.
For example, to show that the diagram in Fig. 16(d)
commutes, the argument goes through in precisely the
same way, on diagrams shown in Fig. 17 and Fig. 18.

This shows that the two commute and hence we
conclude that the relative filtrations are interleaved.

A.3 Theorem 3.2 To prove Theorem 3.2, first we
prove a collection of lemmas (A.2, A.3, A.4, A.5, A.8).

Lemma A.2. If L is an ε-sample of X then {Xα} is ε-
interleaved with {Lα}.

Proof. Given that L is an ε-sample of X, by definition,
L ⊆ X, this implies that (a) Lα ⊆ Xα and (b) Lα+ε ⊆
Xα+ε. Subsequently, we would prove by the triangle
inequality that, (c) Xα ⊆ Lα+ε. Combining (a), (b)
and (c), we have,

Lα ⊆ Xα ⊆ Lα+ε ⊆ Xα+ε.

By the special case of ε-interleaving, we have Lα ⊆ Xα+ε
and Xα ⊆ Lα+ε, therefore the persistent homology
modules of {Xα} and {Lα} is ε-interleaved.

Now we prove that the inclusion in (c) holds. For
any point p ∈ Xα, let q = arg min x∈Xd(p, x), therefore
by definition of Xα, d(p, q) ≤ α. Since q ∈ X and L is
an ε-sample, let s = arg minz∈L d(p, z), by definition
of L, d(q, s) ≤ ε. By triangle inequality, d(p, s) ≤
d(p, q) + d(q, s) ≤ α+ ε. Therefore p ∈ Lα+ε.

Lemma A.3. The nerve of Lα, N (Lα), is homotopic to
Lα.

Proof. This is an application of the Nerve Theorem.
Since these are Euclidean balls in Euclidean space, they
are all convex as are all their intersections. They are
hence contractible and the Nerve Theorem applies.

Lemma A.4. {Lα− intBr} is ε-interleaved with {Xα−
intBr}.

Proof. The proof follows directly from Lemma A.2,
since {Lα} and {Xα} are ε-interleaved, removing the
same set from both spaces does not change this.

Lemma A.5. For α < r, the nerve of Lα − intBr is
homotopic to the union of balls Lα with intBr removed.

Proof. By removing intBr, the balls and their intersec-
tions are no longer convex. To apply the Nerve theorem,
we show that the condition α < r ensures that they are



H(Fα, Aα) H(Fα′+2ε, Aα′+2ε) H(Fα+ε, Aα′+ε) Hn(Fα′+ε, Aα′+ε)

H(Gα+ε, Bα+ε) H(Gα′+ε, Bα′+ε) H(Gα, Bα) H(Gα′ , Bα′)

(a) (c)

H(Fα+ε, Aα+ε) H(Fα+ε, Aα′+ε) H(Fα, Aα) H(Fα′ , Aα′)

H(Gα, Bα) H(Gα′+2ε, Bα′+2ε) H(Gα+ε, Bα+ε) H(Gα′+ε, Bα′+ε)

(b) (d)

Figure 16: Commuting diagrams for ε-leaving of the pairs.

H(Aα) H(Fα) H(Fα, Aα) H(Aα) H(Fα)

H(Aα′) H(Fα′) H(Fα′ , Aα′) H(Aα′) H(Fα′)

H(Bα′+ε) H(Gα′+ε) H(Gα′+ε, Bα′+ε) H(Bα′+ε) H(Gα′+ε)

Figure 17: Commuting diagrams for Fig. 16 (d) top path.

H(Aα) H(Fα) H(Fα, Aα) H(Aα) H(Fα)

H(Bα+ε) H(Gα+ε) H(Gα+ε, Bα+ε) H(Bα+ε) H(Gα+ε)

H(Bα′+ε) H(Gα′+ε) H(Gα′+ε, Bα′+ε) H(Bα′+ε) H(Gα′+ε)

Figure 18: Commuting diagrams for Fig. 16 (d) bottom path.

still contractible. This is only an outline of the proof.
The goal is to prove that from any intersection there is
a homotopy to a convex body and hence all the inter-
sections are contractible.

Take an arbitrary intersection. If it does not
intersect intBr, it is convex. If it does, then take the
tangent plane to Br at a point on the boundary within
the intersection. Clearly the half-plane which does not
contain Br intersected with the intersection is convex
and hence contractible.

The rest of the intersection can be retracted to the
tangent plane, which we prove by giving an explicit
deformation retract. The tangent plane will be referred
to as T (s) (the tangent plane at point s).

First, we define a deformation retract before we
remove Br(x) (Figure 19(a)). We consider a straight-
line homotopy to s. Since the space is convex, this
retract is within the intersection. Now for any point
p, consider the point where the retract intersects Br(x)
and denote it by q. To define the retract, we alter the



path from the straight line ps to the following path
(Figure 19(b)): from p to q, it coincides with straight-
line ps; and from q to s, it is the geodesic along the
boundary of the ball, ∂Br(x). This path is continuous
on the set outside Br(x) and to ensure it is a valid
retract, we must show that for any intersection, this
geodesic lies in the intersection.

By definition, the intersection must be contained
in all the balls of radius α. Without loss of generality,
we only consider the points q to s. Any ball which
contains both q and s, and whose radius is smaller than
r, must also contain the geodesic (Figure 19(c)). When
the center of the ball lies outside Br(x), all points along
the geodesic are closer to the center than s and q and
hence must also be in the ball (Figure 19(d)).

In particular, for balls centered inside Br(x) (Figure
19(c)), consider the sphere centered at that point which
passes through q and s. The sphere is a subspace of
the ball since q and s are in the ball and this implies
that the sphere has a higher curvature than Br(x). This
means the length of the arc along the sphere is longer
than the geodesic, which implies that it lies within the
ball. Hence, the non-convex part is contractible as well.

We now prove that the algorithm described in
Section 3 accurately computes the parameter values
of the filtered Vietoris-Rips complex for the 0 and 1-
skeleton.

Lemma A.6. Let Br denote a ball of radius r centered
at point p. For a point xi, let g(xi) denote the infimum
of parameter α such that Bα(xi)− intBr 6= ∅. Then,

g(xi) =

{
0 d(xi, p) ≥ r
r − d(xi, p) d(xi, p) < r

Proof. If xi lies outside Br, that is, d(xi, p) ≥ r, then
B0(xi)− intBr is the point at xi and hence nonempty.
If xi lies within Br, then for α = r − d(xi, p), Bα(xi)
intersects the boundary of Br. Therefore, Bα(xi) −
intBr 6= ∅. This is illustrated in Figure 9.

Lemma A.7. Let Br denote a ball of radius r centered
at point p. For two points xi and xj, let the function
g(xixj) denotes the infimum of α such that Bα(xi) ∩
Bα(xj)− intBr 6= ∅. Let m denote their midpoint, i.e.

m =
xi + xj

2
.

If d(m, p) ≥ r, then g(xixj) = d(xi,m). Otherwise, if

d(m, p) < r, then

g(xixj) =

√√√√√ (√
r2 − d(o, p)2 −

√
d(m, p)2 − d(o, p)2

)2
+ d(x1, x2)2/4

where

d(o, p) =

∣∣∣∣ (p−m)T (x1 − x2)

d(x1, x2)

∣∣∣∣ .
Proof. First, if d(m, p) ≥ r, then the first time Bα(xi)∩
Bα(xj) 6= ∅ is at α = d(xi, xj)/2 at the point m.
Since m lies outside intBr (i.e. d(m, p) ≥ r), we
conclude that the intersection is still non-empty with
intBr removed. For d(m, p) < r for α = d(xi, xj)/2
although the intersection Bα(xi)∩Bα(xj) is non-empty,
Bα(xi) ∩Bα(xj)− intBr remains empty .

To find the first non-empty intersection, we must
find the closest equidistant point to xi and xj which lies
on the boundary of Br. Suppose we are in d-dimensional
Euclidean space. The space of equidistant points is
given by a (d−1)-hyperplane which is determined by the
point m and the normal vector xi − xj . The boundary
of a Br is a (d− 1)-sphere and their intersection forms
a (d− 2)-sphere, as m lies on the hyperplane and inside
Br.

To find the closest point on the (d − 2)-sphere, we
can perform the following bit of geometry. Denote the
center of the (d − 2)-sphere as o. The closest point on
the sphere is the point at a distance r (on the boundary
of Br) on the line going through o and m.

The first step is to compute d(o, p). This is given
by normalized inner product

d(o, p) =

∣∣∣∣ (p−m)T (xi − xj)
d(xi, xj)

∣∣∣∣
Furthermore, using the Pythagorean theorem on the
construction in Figure 10, we can compute the time of
the first non-empty intersection as

α =

√√√√√ (√
r2 − d(o, p)2 −

√
d(m, p)2 − d(o, p)2

)2
+

d(xi, xj)
2/4

concluding the proof.

Lemmas A.6 and A.7 describe the filtration of the
0- and 1-skeleton of the nerve of the union of balls
with Br removed. Lemma A.5 tells us that the Nerve
Lemma still applies for α < r and so we have a
faithful topological representation. We now recount the
construction of the Vietoris-Rips filtration Fα.
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Figure 19: (a) The layout of the points p, q, s along with the deformation retract. (b) The modified deformation
retract. (c) The situation when the center of the a ball is outside Br(p). (d) The situation the center of the a
ball is inside Br(p) and the radius of the ball is less than r.

The Vietoris-Rips filtration Fα is based on the 0-
and 1-skeleton of N (Lα − intBr). By construction, for
a fixed α, the 0- and 1-simplices of Fα(L) are identical
to the 0- and 1-skeleton of N (Lα − intBr), and Fα(L)
by definition is the clique complex of the 1-skeleton of
N (Lα − intBr).

Formally, for dimensions 0 and 1 and a fixed α, we
could define such a filtration directly at the chain level,

C0(Fα(L)) = C0(N (Lα − intBr)),

C1(Fα(L)) = C1(N (Lα − intBr)),

and construct the clique complex based on the 1-
skeleton of the nerve, which gives us higher-dimensional
chain complexes.

Lemma A.8. {Lα−intBr} is α-interleaved with Fα(L).

Proof. For i ≤ 1, Ci(Fα) = Ci(N (Lα − intBr)) follows
by construction. For higher dimensions e.g. i > 1 we

have the following sequence,

Ci(N (Lα−intBr))→ Ci(Fα(L))→ Ci(N (L2α−intBr)),

where the maps are injective. The first injective chain
map is induced from inclusion on the space level (i.e.
0- and 1-skeleton) and follows from the fact that the
Vietoris-Rips complex fills in all possible co-faces 9.
The second injective chain map is induced as follows:
if we have k points such that, for each pair of points,
the corresponding balls centered at these points have
intersection that lies partially outside Br, then at
parameter 2α, the corresponding balls centered at these
points will have a (k − 1)-way intersection.

9To get the standard Vietoris-Rips inclusions we would have to

scale the edges by 2 to take into account the standard definition
of the Vietoris-Rips filtration.



Theorem 3.2 For α < r, {(Rα(L),Fα(L))} is (α+2ε)-
interleaved with {(Xα,Xα − intBr)}.

Proof. Lemma A.2 and Lemma A.3 give an ε-
approximation of the filtration {Xα} and passing to the
Vietoris-Rips complex introduces an additional multi-
plicative factor of 2. We have, on the chain level, the
following sequence connected by injective maps,

Ci(Xα)→ Ci(Lα+ε)→ Ci(R2(α+ε)(L)),

Ci(Rα(L))→ Ci(Lα)→ Ci(X(α+ε)).

Therefore, the interleaving parameter between the fil-
tration {Xα} and the Vietoris-Rips complex filtration
{Rα(L)} is α+ 2ε.

Similar construction gives us the same bound for
the filtration {Xα − intBr}. That is, based on Lemma
A.5, Lemma A.6, Lemma A.7, and Lemma A.8 we have,

Ci(Xα − intBr)→ Ci(Lα+ε − intBr)→ Ci(Fα+ε(L)),

Ci(Rα(L))→ Ci(L2α− intBr)→ Ci(X2(α+ε)− intBr).

Applying Theorem 3.1 gives the result.


